NRC Publications Archive Archives des publications du CNRC

Novel mineralogical quantitative phase analysis methodology applied to Canadian oil sands for ore characterization, processability prediction and optimization of froth treatment technologies Mercier, P. H. J.; Patarachao, B.; Kung, J.; Dungbao, F.; Kingston, D. M.; Le Page, Y.; Sparks, B. D.; Kotlyar, L. S.; Woods, J. R.; Toll, F.; McCracken, T.; Ng, S.; Kresta, J.

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=255f690a-05c3-450c-bd62-11e921139870 https://publications-cnrc.canada.ca/fra/voir/objet/?id=255f690a-05c3-450c-bd62-11e921139870

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Novel mineralogical quantitative phase analysis methodology applied to Canadian oil sands for ore characterization, processability prediction and optimization of froth treatment technologies

P.H.J. Mercier*, 1 B. Patarachao, 1 J. Kung, 1 F. Dongbao, 1 D.M. Kingston, 1 Y. Le Page, 1 B.D. Sparks, 2 L.S. Kotlyar, 1 J.R. Woods, 1 F. Toll, 1 T.McCracken, 1 S. Ng, 3 & J. Kresta 3

¹National Research Council of Canada, Ottawa, Ontario ²V. Bede Technical Associates, Ottawa, Ontario ³Syncrude Research and Development Centre, Edmonton, Alberta

*patrick.mercier@nrc-cnrc.gc.ca

IMA 20th General Meeting, Budapest, Hungary, 26 August 2010

Topics for the talk

Part 1 Background

- Strategic importance of Alberta oil sands to World Oil Reserves
- Goal: Reduce energy intensity and environmental footprint of production

Part 2 Novel methodology developed for quantitative phase analysis (QPA)

- Merging of weighted experimental results from various kinds of analyses
- Singular-value decomposition (SVD) of the QPA least-squares matrix to identify *family of solutions* consistent with all experimental observations

Part 3 Applications to oil sands R&D

- Mineralogy of fines (<44
 µm solids) as potential indicators for ore characterization and processability predictions
- Optimization of bituminous froth treatment processes

Part 4 Concluding remarks

- Completeness of SVD-based least-squares QPA approach developed
- Next step in methodology development

Institute for Chemical Process and Environmental Technology

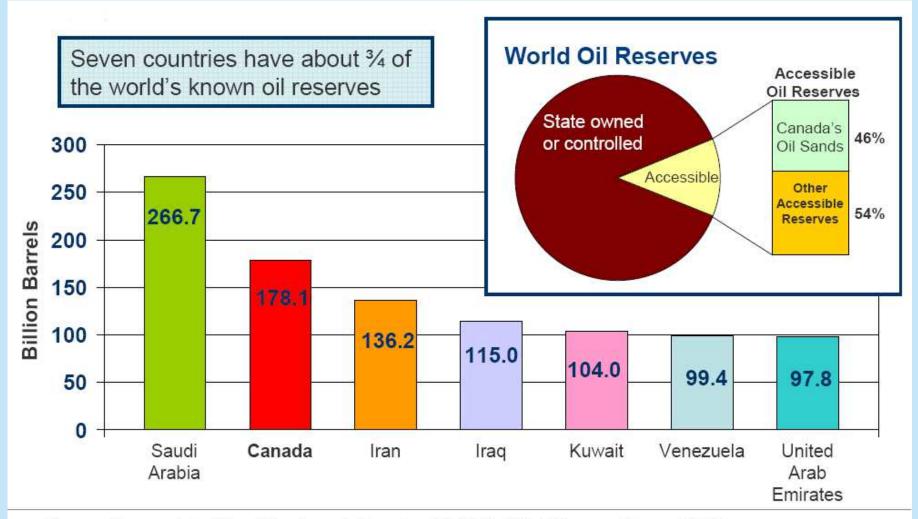
Alberta Oil Sands

Oil sands are composed of:

- coarse sand, silt and clay solids (80–85 wt%),
- bitumen (5–15 wt%), and
- water (1–5 wt%)

Syncrude's oil sands operations

- an open-pit mine north of Fort McMurray
- produced/shipped 105.8 millions bbl of synthetic crude oil in 2008


Photographs taken from National Geographic, March 2009

Canada's oilsands potential is vast and largely untapped...

proven reserves

1.7 trillions bbl oil in place

...placing Canada 2nd in proven oil reserves recoverable with today's technology

Source: Reserve data, Oil and Gas Journal, December 22, 2008 - "World Reserves" image, CAPP

From assessment of ore properties and process conditions

Knowledgebase to predict:

- bitumen recovery
- tailings discharge
- bitumen froth & crude quality

Research focused on Processability Issues...

Current Standards:

Fines content (<44 µm solids)

Bitumen content (ore grade)

Ore blending:

- fines, grade, D50, facies

Research to address knowledge gaps

Known detrimental effects of:

- -- clays & ultra-fines (mineralogy/chemistry/size)
- -- organic rich solids (ORS)

Could results of quantitative mineralogical analyses be used as processability markers to:

- -- Reduce energy intensity?
- -- Decrease environmental footprint?

2. Novel methodology developed for quantitative phase analysis (QPA)

Incorporate experimental results from:

- -- K, Al, Si, Fe, Ca, Mg, Ti, and Zr concentrations from XRF spectrometry
- -- C and S concentrations from elemental analysis

-- mineral mass ratios of crystalline phases from XRD powder patterns

into a single weighted linear least-squares refinement for QPA

2.1

Mineral phases typically observed in oil sands ore

QPA by
least-squares solution
of a linear system of
weighted equations where
variables are the
phase concentrations of:

- -- 18 minerals
- -- "organic C"
- -- "organic S"

(i.e., C and S unaccounted for by the mineral phases)

Mineral	Chemical formula	Density (kg/m 3) [\div 1000 = g/cm 3]			
Quartz	SiO ₂	2,664			
Clay minerals:					
Illite	$K_{0.8}AI_{2.8}Si_{3.2}O_{10}(OH)_2$	2,794			
Kaolinite	$Al_2Si_2O_5(OH)_4$	2,599			
Chlorite	$Mg_{2.5}Fe_{2.5}Al_2Si_3O_{10}(OH)_8$	2,982			
Ca-Mg Carbonates	:				
calcite	CaCO ₃	2,713			
dolomite	CaMg(CO ₃) ₂	2,868			
ankerite	$CaFe_{2/3}Mg_{1/3}(CO_3)_2$	3,133			
Heavy minerals:					
Siderite	FeCO ₃	3,944			
Pyrite	FeS ₂	5,016			
Zircon	ZrSiO ₄	4,675			
Rutile	TiO ₂	4,249			
Anatase	TiO ₂	3,895			
Ilmenite	FeTiO ₃	4,787			
Lepidocrocite	FeO(OH)	4,008			
Calcium sulphates					
Gypsum	CaSO ₄ · 2 H ₂ O	2,339			
Bassanite	CaSO ₄ · 0.5 H ₂ O	2,715			
Feldspars:					
Anorthite	CaAl ₂ Si ₂ O ₈	2,762			
Sanidine	KAISi ₃ O ₈	2,557			

Analysis for each element K provides its weight fraction K^w in the sample, with uncertainty $\sigma(K^w)$, leading to a weighted equation of the type:

concentration of element K in phases P1, P2, ...
$$[(M_K/M_P1) X_P1 + (M_K/M_P2) X_P2 + ...] / \sigma(K^w) = K^w/\sigma(K^w)$$

$$etc.$$

For each mineral mass ratio determined by Rietveld XRD (where two mineral phases P1 and P2 have similar density and micro-absorption), we have a weighted equation of the type:

$$[X_P1 - (wt_P1 / wt_P2) X_P2] / [\sigma(wt_P1 / wt_P2)] = 0$$

$$etc.$$

This gives a linear system of weighted equations that we symbolize as

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$$

with as many equations as there are elements analyzed and mineral mass ratios included.

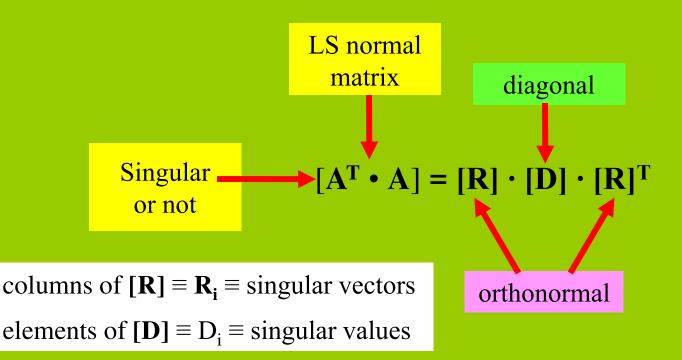
From this, we create the *normal system of equations*, with dimension equal in number to the much smaller number of parameters in the model : (here the 20 phase concentrations sought in the QPA)

$$A^T \cdot A \cdot x = A^T \cdot b$$

and solve it by singular value decomposition (SVD) based matrix inversion as:

$$\mathbf{x} = [\mathbf{A}^\mathsf{T} \cdot \mathbf{A}]^{-1} \cdot \mathbf{A}^\mathsf{T} \cdot \mathbf{b}$$

	Rietveld QPA	SVD value	QPA 1-sigma s.u.		C	Compar Star	rison w ndard	vith	2.3
Quartz Ilmenite Illite Kaolinite Chlorite Siderite Calcite Dolomite Pyrite Zircon Rutile	72.58 0.00 7.81 12.53 1.01 0.66 0.00 0.49 0.39 0.00 2.20	53.5 0.00 20.2 15.5 1.3 3.0 -0.5 1.4 0.2 0.28 0.685	4.5 0.03 2.7 6.9 0.5 3.6 1.6 1.1 1.2 0.05 0.009			inco eld-only SN	only C	emental-a	ınalysis
Anatase Anorthite Gypsum Sanidine	2.14 0.00 0.00 0.00	0.666 0.0 0.0 0.0	0.009 0.009 6.4E-05 6.0E-05 1.0E-04			Rietveld QPA	SVD QPA	Measi concent value	
C organic S organic Ankerite Bassanite Lepidocrocite	0.00 0.00 0.18 0.00 0.00	0.8 0.0 0.5 0.00 0.00	0.8 0.0 0.5 0.00 0.00	Si Al Fe	(wt%) (wt%) (wt%) (wt%) (wt%)	0.6 38.6 4.3 0.8 0.2	1.6 33.3 7.3 1.9 0.3	1.7 33.3 7.7 1.9 0.3	0.1 0.8 0.5 0.6 0.1
					(wt%) (wt%) (wt%) (wt%) (wt%)	0.2 0.1 2.60 0.0 0.2 0.2	0.5 0.2 0.81 0.1 1.3 0.1	0.3 0.2 0.81 0.1 1.3 0.1	0.1 0.3 0.03 0.1 0.5 0.5


Singularity of Quantitative Phase Analysis Problems

Singularity problems arise in QPA of multiphase geological systems because:

- -- Standard Rietveld-only QPA analysis is SINGULAR in the presence of amorphous phases. It can at best derive RELATIVE proportions of CRYSTALLINE phases.
- -- Elemental-analysis only QPA of soils with this complexity is also SINGULAR as we deal practically with 20 phases and 10 chemical elements.
- -- Any claim to have extracted a single solution from a singular system can be shown mathematically to be optimistic at best (i.e., non-unique solution), and more probably wrong.

Assessing Singularity of QPA Problems

Singular value decomposition (SVD) of least-squares matrix $[A^T \cdot A]$

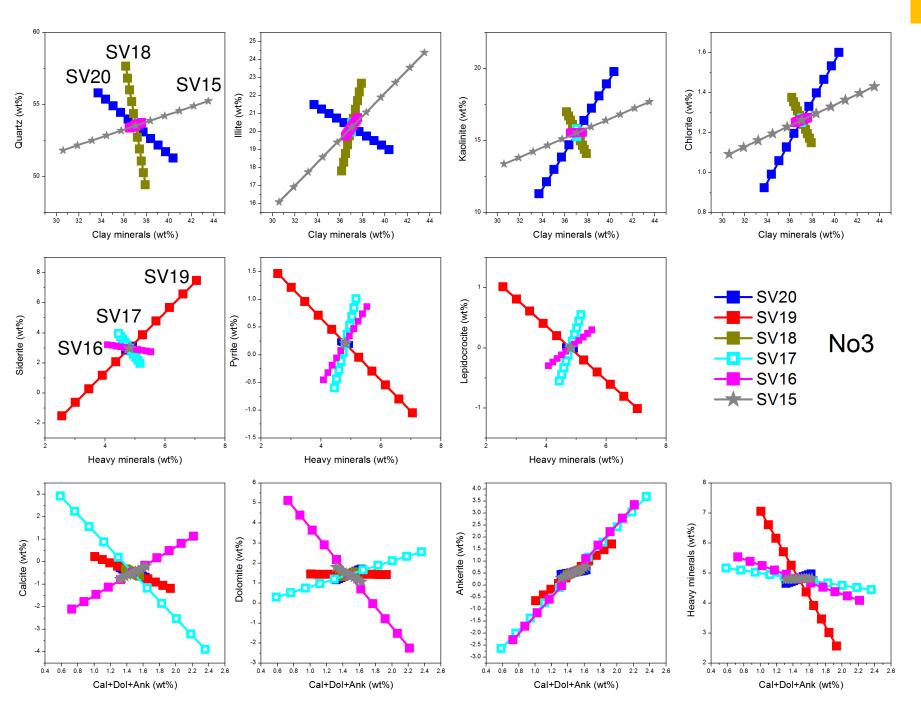
Family of solutions compatible with observations are identified by plotting vectors:

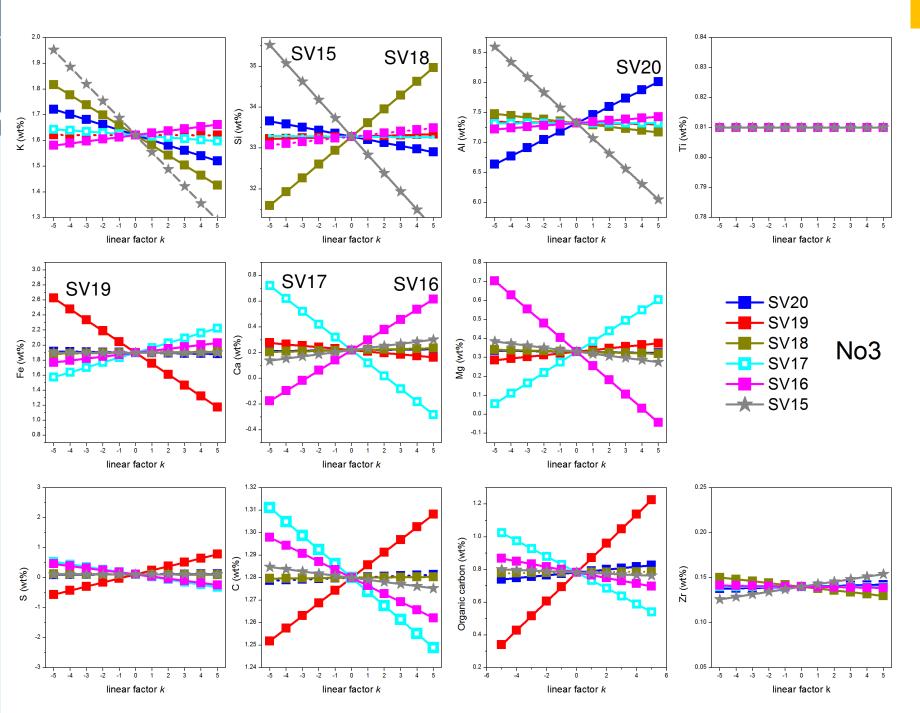
$$\mathbf{x} + k \mathbf{R_i}$$

where $\mathbf{x} = [\mathbf{A}^{\mathsf{T}} \cdot \mathbf{A}]^{-1} \cdot \mathbf{A}^{\mathsf{T}} \cdot \mathbf{b}$ and k is a scalar linear factor.

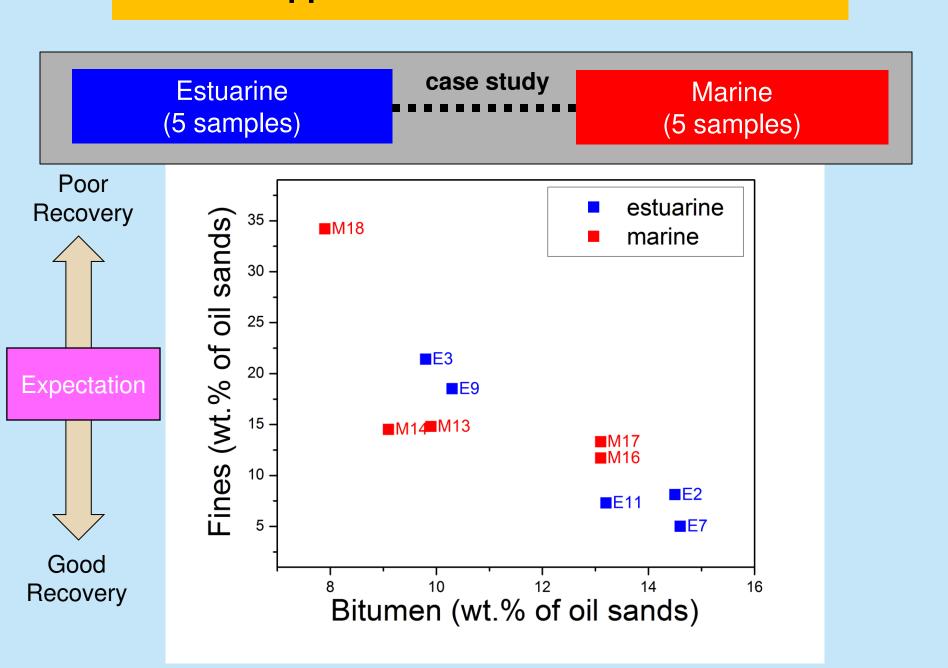
1403										
Singular values:	21073.108	21072.969	21071.649	21071.452	11982.921	10004.000	803.734	189.060	34.831	20.507
Qtz	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0005	0.0000	0.0057
lim	0.0000	0.0000	0.0000	0.0000	0.0003	0.0000	-0.3647	0.0015	0.9306	0.0000
III	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0001	0.0000	0.0030
Kao	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0787	0.0008	0.0029
Chi	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0002	0.9969	-0.0017	0.0001
Sid	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0003	0.0019	0.0172	0.0000
Cal	-0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0000
Dol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0040	0.0001	0.0000
Pyr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	-0.0003	0.0018	0.0171	0.0000
Zir	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0000	1.0000
Rut	0.0000	0.0000	0.0000	0.0000	-0.6966	0.0000	-0.6681	-0.0005	-0.2613	0.0000
Ana	0.0000	0.0000	0.0000	0.0000	0.7174	0.0000	-0.6486	-0.0005	-0.2542	0.0000
Anor	-0.3498	-0.0702	-0.9336	0.0320	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Gyp	-0.5161	-0.3395	0.2445	0.7474	0.0000	-0.0001	0.0000	0.0000	0.0000	0.0000
SanM	-0.5068	0.8528	0.1256	-0.0037	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Corg	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	0.0000
Sorg	-0.0001	-0.0001	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000
Ank	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0001	0.0019	0.0067	0.0000
Bas	-0.5953	-0.3905	0.2297	-0.6636	0.0000	-0.0001	0.0000	0.0000	0.0000	0.0000
Lep	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0003	0.0025	0.0235	0.0000

Typical example of performing SVD on least-squares matrix [AT • A]

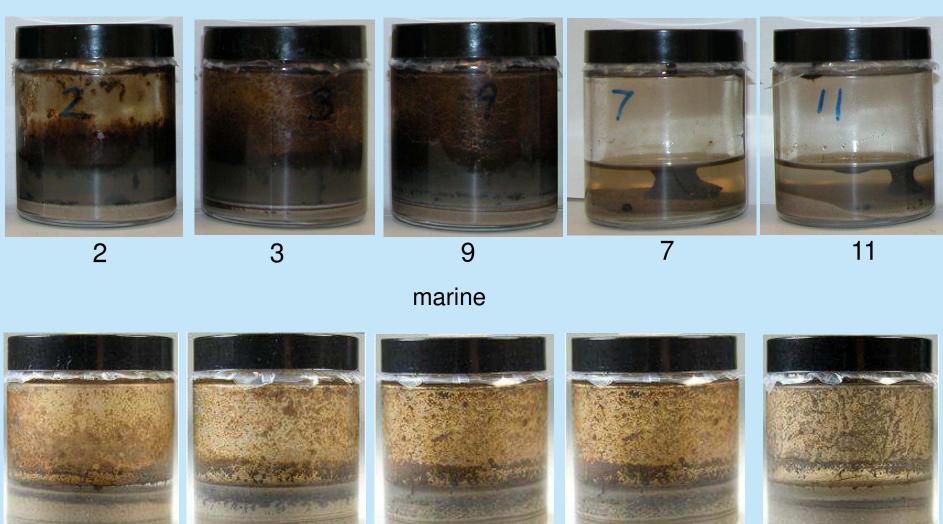

Most problematic family of solutions compatible with observations will be those


No3

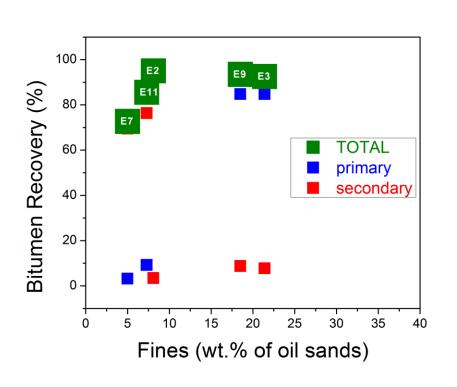
 $x + k R_i$

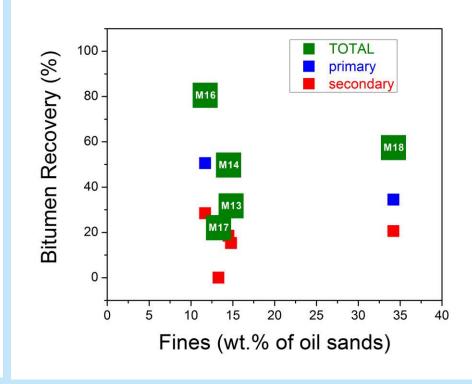

where R_i correspond to the smallest singular values.

	0.0000	0.0000	0.0003	0.0023	0.0233	0.0000	7		
							•		
4.617	3.970	2.355	1.342	0.981	0.841	0.514	0.308	0.254	0.125
-0.0004	0.0005	-0.0018	0.0013	-0.3418	0.0374	-0.0049	0.8216	0.0331	-0.4533
0.0166	-0.0269	-0.0008	-0.0034	0.0000	-0.0008	-0.0021	-0.0001	0.0045	0.0001
-0.0008	0.0010	-0.0036	0.0027	-0.8283	0.1011	-0.0570	-0.4876	-0.0021	-0.2503
-0.0110	0.0106	-0.0196	0.0049	-0.4303	0.0047	0.0539	0.2901	-0.0165	0.8489
0.0023	-0.0018	0.0011	0.0001	-0.0337	0.0025	0.0024	0.0226	-0.0010	0.0675
-0.2407	0.2631	0.0612	0.1245	-0.0002	0.0474	0.1980	0.0127	-0.9000	-0.0403
-0.2461	-0.1081	-0.5763	-0.0232	0.0576	0.3240	-0.6809	0.0326	-0.1424	0.0417
-0.2479	-0.1216	-0.5631	-0.0539	-0.0725	-0.7374	0.2264	-0.0253	-0.0020	-0.0524
-0.2066	0.4204	0.0294	0.8204	-0.0013	-0.1321	-0.1604	-0.0045	0.2514	0.0049
0.0000	0.0000	0.0001	0.0000	0.0056	-0.0005	0.0000	-0.0041	-0.0001	0.0009
-0.0045	0.0072	0.0002	0.0009	0.0000	0.0002	0.0005	0.0000	-0.0012	0.0000
-0.0043	0.0070	0.0002	0.0009	0.0000	0.0002	0.0005	0.0000	-0.0012	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-0.7681	-0.4536	0.4398	-0.0162	-0.0039	-0.0170	-0.0484	0.0009	0.0886	0.0086
0.0000	-0.0001	0.0000	-0.0002	0.0000	0.0000	0.0000	0.0000	-0.0001	0.0000
-0.2705	0.0419	-0.3823	0.0655	0.0468	0.5621	0.6319	-0.0239	0.2369	-0.0197
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-0.3373	0.7205	0.0784	-0.5509	-0.0004	-0.0597	-0.1108	-0.0035	0.2026	0.0042



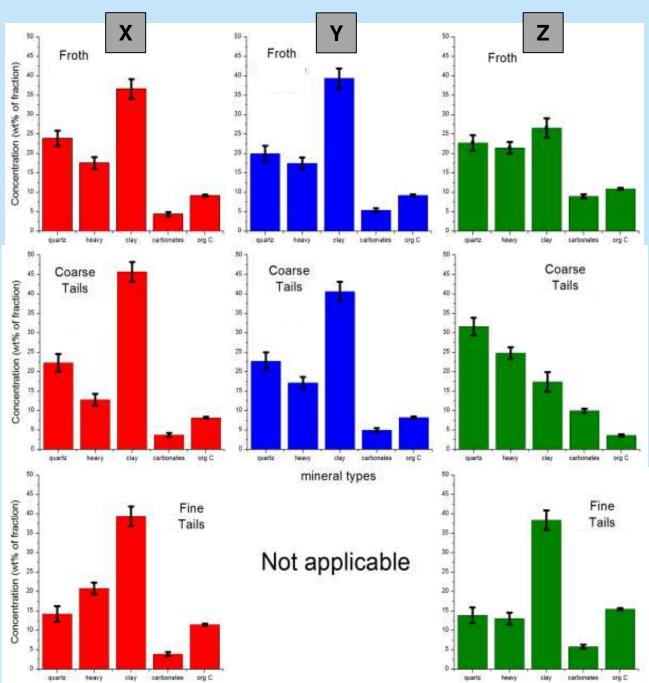
3. Applications to Oil Sands R&D


Correlation with Jar Test and BEU Assessments of Bitumen Recovery


estuarine

Bitumen Recovery vs. Fines Content (Process Water A = Constant Caustic)


Estuarine Marine



No relationship between bitumen recovery and fines (or bitumen) content was noted for the 10 oil sands tested in this case study

Bituminous Froth Treatment Processes

QPA results with novel methodology

- Showed measurable differences in froth solids composition do occur
- Allowed assessment of relative advantages/ disadvantages between different froth treatment processes

4. Concluding Remarks

Limitations of traditional approaches to QPA

- -- Standard Rietveld-only QPA analysis is SINGULAR in the presence of amorphous phases. It can at best derive RELATIVE proportions of CRYSTALLINE phases.
- -- Elemental-analysis only QPA of soils with this complexity is also SINGULAR as we deal practically with 20 phases and 10 chemical elements.
- -- Any claim to extract a single solution from a singular system can be shown mathematically to be optimistic at best.

4. Concluding Remarks

Superiority of SVD-based least-squares QPA approach developed

- -- Rietveld data and elemental-analysis data can be merged into a linear system of weighted observations where ABSOLUTE phase abundance are the unknowns.
- -- The corresponding least-squares system is usually NOT SINGULAR, even in the presence of 20 phases like here, where some phases are crystalline and others amorphous.
- -- The SVD solution of this system would flag any singularity and pinpoint its origin, leading to least-squares results objectively and uniquely expressed in terms of abundance of COMBINATIONS of phases.
- -- Any additional analytical result (e.g. magnetic measurements) that can be expressed in terms of phase abundance can be merged into the above SVD-based least-squares approach, increasing the accuracy of numerical results.

Acknowledgements

Financial support from federal government programs (CCTI, EcoETI) is gratefully acknowledged

Financial support from CONRAD (Canadian Oil Sands Network for R&D) through Syncrude's sponsorship is gratefully acknowledged

