Role of the πσ* State in Molecular Photophysics

  1. (PDF, 2 MB)
  2. Get@NRC: Role of the πσ* State in Molecular Photophysics (Opens in a new window)
DOIResolve DOI:
AuthorSearch for: ; Search for: ; Search for:
Journal titleAccounts of Chemical Research
Pages506517; # of pages: 12
AbstractPhotosynthesis, which depends on light-driven energy and electron transfer in assemblies of porphyrins, chlorophylls, and carotenoids, is just one example of the many complex natural systems of photobiology. A fuller understanding of the spectroscopy and photophysics of simple aromatic molecules is central to elucidating photochemical processes in the more sophisticated assemblies of photobiology. Moreover, developing a better grasp of the photophysics of simple aromatic molecules will also enhance our ability to create and improve practical applications in photochemical energy conversion, molecular nanophotonics, and molecular electronics. In this Account, we present a concerted experimental and theoretical study of aromatic ethynes, aromatic nitriles, and fluorinated benzenes, illustrating the important roles that the low-lying πσ* state plays in the electronic relaxation of these aromatic compounds. Diphenylacetylene, 4-dialkylaminobenzonitriles, 4-dialkylaminobenzethynes, and fluorinated benzenes exhibit fluorescence that strongly quenches as the excitation energy is increased for gas-phase systems and at elevated temperatures in solution. Much of this interesting photophysical behavior can be attributed to the presence of a dark intermediate state that crosses the fluorescent ππ* state. Our quantum chemistry calculations, as well as time-resolved laser spectroscopies, indicate that this dark intermediate state is the πσ* state that arises from the promotion of an electron from the π orbital of the phenyl ring to the σ* orbital localized in the CtX group (where X is CH and N) or on the CsX group (where X is a halogen). These crossings not only lead to the strong excitation energy and temperature dependence of fluorescence but also induce highly interesting πσ*-mediated intramolecular charge transfer in 4-dialkylaminobenzonitriles. Most previous studies on the excited-state dynamics of organic molecules have examined aromatic hydrocarbons, nitrogen heterocycles, aromatic carbonyl compounds, and polyenes, which have low-lying excited states of ππ* character (hydrocarbons and polyenes) or nπ* and ππ* character (carbonyls and N-heterocycles). These studies have revealed important involvement of selection rules (promoting vibrational modes and spin-orbit coupling) and Franck-Condon factors for radiationless transitions, which have important effects on photophysical properties. The recent experimental and time-dependent density functional theory (TDDFT) calculations of aromatic ethynes, nitriles, and perfluorinated benzenes described in this Account demonstrate the importance of the bound excited state of a πσ* configuration in these molecules.
Publication date
AffiliationNRC Steacie Institute for Molecular Sciences; National Research Council Canada
Peer reviewedYes
NPARC number17673496
Export citationExport as RIS
Report a correctionReport a correction
Record identifiera8226938-1419-4df4-8887-174dde1aa264
Record created2011-04-01
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)
Date modified: