Nanoscale imaging of domains in supported lipid membranes

  1. Get@NRC: Nanoscale imaging of domains in supported lipid membranes (Opens in a new window)
DOIResolve DOI:
AuthorSearch for:
Journal titleLangmuir
Pages58865895; # of pages: 10
AbstractThe formation of domains in supported lipid membranes has been studied extensively as a model for the 2D organization of cell membranes. The compartmentalization of biological membranes to give domains such as cholesterol-rich rafts plays an important role in many biological processes. This article summarizes experiments from the author's laboratory in which a combination of atomic force microscopy and near-field scanning optical microscopy is used to probe phase separation in supported monolayers and bilayers as models for membrane rafts. These techniques are used to study binary and ternary lipid mixtures that have gel-phase or liquid-ordered domains that vary in size from tens of nanometers to tens of micrometers, surrounded by a fluid-disordered membrane. Examples are presented in which these models are used to investigate the distribution of glycolipid membrane raft markers and the preference for peptide and protein localization in ordered versus fluid membrane phases. Finally, the enzyme-mediated restructuring of membranes containing liquid-ordered domains provides an in vitro model for the coalescence of membrane rafts to give signaling platforms. Overall, the results demonstrate the importance of using techniques that can probe the nanoscale organization of membranes and of combining techniques that yield complementary information. Furthermore, the ability of supported lipid bilayers to model some aspects of membrane compartmentalization provides an important approach to understanding natural membranes.
Publication date
AffiliationNational Research Council Canada; NRC Steacie Institute for Molecular Sciences
Peer reviewedNo
NPARC number12329054
Export citationExport as RIS
Report a correctionReport a correction
Record identifier874abd77-3b9a-4fc6-bd28-e8aad68d658d
Record created2009-09-10
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)
Date modified: