Durability of acrylic sealants applied to joints of autoclaved lightweight concrete walls: evaluation of exposure testing

  1. Get@NRC: Durability of acrylic sealants applied to joints of autoclaved lightweight concrete walls: evaluation of exposure testing (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1520/STP154520120003
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for:
Proceedings titleASTM Special Technical Publication
Conference4th Durability of Building and Construction Sealants and Adhesives, 16 June 2011 through 17 June 2011, Anaheim, CA
Volume1545 STP
Pages4769; # of pages: 23
SubjectAdhesion joints; Climate regions; Cohesive failures; Exposure period; Exposure testing; Joint configuration; Local temperature; Outdoor exposure; Outdoor testing; Sealant products; Subtropical climates; Surface cracking; Surface cracks; Tensile performance; Thin layers; Wall panels; Adhesion; Adhesive joints; Adhesives; Concrete products; Concrete testing; Construction; Deterioration; Durability; Interfaces (materials); Sun; Surface defects; Walls (structural partitions); Sealants
AbstractIn Japan acrylic sealants are traditionally the sealant products of choice when specified for use between autoclaved lightweight concrete (ALC) panels. Although, in general terms, the mechanisms of the deterioration of acrylic sealants are well known its long-term durability to outdoor exposure has not, however, been fully investigated. The research described in this paper focuses on the change in the properties and deterioration of acrylic sealant products when exposed to outdoor testing. The two stage project consisted of (i) on-site investigations of deteriorated acrylic sealants that had been placed in external joints of ALC-clad buildings; and (ii) outdoor exposure testing of different types of acrylic sealant in three climate regions located in Japan. The results of the work from the first stage of the study revealed the following. Two-sided adhesion joint configurations installed in deep panel ALC cladding were more reliable than three-sided adhesion joints used for thin panel ALC cladding from the viewpoint of the durability of the sealed joint installed in actual buildings. Most fractures of the sealed joint could be characterized as failure in peel (or thin layer cohesive failures), in which the sealant ruptured at the interface with the ALC substrate to which it was applied. Additionally, in 47 of 62 locations surveyed, surface cracks were apparent on the coating that had been applied to protect the sealant. The second stage of the project focused on the degree of deterioration of coated and non-coated acrylic sealants subjected to outdoor exposure testing in a cold, a warm, and a subtropical climate. Results from this stage showed that aging of the sealant, as determined by the degree of surface cracking, expectedly depended on the local temperature and the respective degree of exposure to solar radiation. It was determined that the longer the exposure period, the lower the tensile performance of the acrylic sealants. The elongation of three-sided adhesive joint configurations after 5 years exposure testing decreased remarkably and their maximum elongation was less than 50%. A significant number of sealed joints after 5 years ofexposure had ALC substrate failure
Publication date
AffiliationNational Research Council Canada (NRC-CNRC); NRC Institute for Research in Construction; Construction
Peer reviewedYes
NPARC number21269226
Export citationExport as RIS
Report a correctionReport a correction
Record identifier636f11f2-e8fb-4923-91f0-93beb3a122fb
Record created2013-12-12
Record modified2017-08-16
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)
Date modified: