Paralytic shellfish poisoning toxin analysis by capillary electrophoresis-linear ion trap mass spectrometry

AuthorSearch for: ; Search for: ; Search for:
Subjectparalytic shellfish poisoning; toxins; mass spectrometry
AbstractHere we report the first application of a matrix-assisted laser desorption/ionization (MALDI) triple-quadrupole mass spectrometer for targeted proteomics. Employing an amine-specific isotopic labelling approach, the technique was validated using five randomly selected bovine serum albumin peptides differentially labelled at known ratios. An indirect benefit of the isotopic labelling technique is a significant enhancement of the a1 ion in tandem mass (MS/MS) spectra of all peptides studied. Therefore, the a1 ion was selected as the fragment ion for multiple reaction monitoring (MRM) in all cases, eliminating tedious method development and optimization. Accurate quantification was achieved with an average relative standard deviation (RSD) of 5% (n = 5) and a detection limit of 14 amol. The technique was then applied to validate an important virulence biomarker of the fungal pathogen Candida albicans, which was not accurately quantified using global proteomics experiment employing two-dimensional liquid chromatography/electrospray ionization tandem mass spectrometry (2D-LC/ESI)-MS/MS. Using LC/MALDI-MRM analysis of five tryptic peptides, the protein PHR1 was found to be upregulated in the hyphal (pathogenic) form of C. albicans by a factor of 7.7 ± 0.8.
AffiliationNRC Institute for Marine Biosciences; National Research Council Canada
Peer reviewedNo
NRC number42650
NPARC number3538083
Export citationExport as RIS
Report a correctionReport a correction
Record identifier1bde3273-35f6-4a57-a869-157345b0c06f
Record created2009-03-01
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)
Date modified: