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SOUND ABSORPTION IN SOLIDS

Summary

The absorption of plane sound waves in a solid body
resulting from the incident wave splitting into two waves
of different frequencies is considered. This process is due
to the presence of cubic terms in expressions for the den-
sity of elastic energy regarded as perturbation., The effect
appears to be possible (in the first approximation) only for
longitudinal incident waves.

In the work of 1. Landau and G. Rumer(l) the absorption of
sound in a solid body is regarded as the result of collisions be-
tween sound quanta and heat quanta, Here it is found that by vir-
tue of conservation laws, in the first approximation it is only
possible to have absorption of transverse sound waves by longitudi-
nal heat waves,s The agbsorption of longitudinal waves is possible,
according to this theory, only in the second approximation, taking
into account guartic terms in expressions for the density of elas-
tic energy and when at least four waves are involved.

Meanwhile, as we will show, if one considers that the
sound quantum splits into two quanta, which is possible under non-
linear conditions, then, contrary to the opinion expressed above,
by virtue of the conservation laws it is possible for the longi-
tudinal sound quantum to split and impossible for the transverse
sound guantum,

In fact the laws of the conservation of energy and momen-
tum must hold, i.e.,

Moreover, the theory of elasticity requires that the
propagation speed of longitudinal waves Cy should be greater than
the propagation speed of transverse waves Cys i.e.y Cp > Cye
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Thus we have k € k, + lp, where k = Lgo', k, =;§1’,
k, = lgg , and also k_ = wo/co, k, = w,/e,, k, = w,/c,, hence

coo/cO < w1/c1 + wz/cz.

Consider the possible cases.

1. Cq = Cgs C, = Cpgy Cy = Cye Then
wo/c6 < c.\>1/c‘5 + wz/ct.
This inequality holds only when c, > Cye

2e Co = Cgs Cy = Cis Cp = Cyo Then
This also is possible only when Cp > Cye

Consequently the absorption of longitudinal wnves occurs
in the Tirst approximstion because of splitting and only in the
second =rproximation because of gbsorption by heat gquanta.

We will note that the transverse waves, s it is easy to
seec from tne conservation laws, do not split in the Lfirst vporoxi-
mation,

In fecet we will consider the possible coszs of the
splitting of lateral guania:

1, Cy = C¢s Cy = Cyy C, = Cyuu Then

wo/ct < w1/ct + wz/c&.
2e C, = Cpy C, = Cpy C, = Cuo Then

cuo/ct £ w1/c6 + ®2/°5°

In both cases the inegualities obtained hold only wien
Cy > c, wnich contradices the elasticity theorye.
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Note that in this work we are completely neglecting sound
dispersion and therefore we are not considering the splitting of
the transverse sound quantum into two transverse quanta and the
longitudinal quantum into two longitudinal quanta. These effects
take place only when dispersion is taken into account, since then
the quanta obtained after splitting will have a velocity somewhat
different from the velocity of the initial gquantum,

Strictly speaking one should take into account not only
the splitting of the sound quantum but also the reverse process of
reformation, i.e., the formation of one gquantum from two. We
neglect the second process since, at low temperatures, heat vi-
brations are practically not excited in a solid body.

Like the work by Landau and Rumer the present work refers
to short waves and therefore it cannot be experimentally proven at
the present time,

The calculation proceeded as follows:

A plane sourid wave with a wave vector go and a frequency
w propagates in an isotropic medium, When the classical theory
of elasticity is used it is impossible to have splitting. If, in
the expressions for energy density, cubic terms are considered we
have the terminal probability of splitting., These cubic terms in
expressions for energy density we regard as perturbation causing
splitting of the sound wave (the wave vector go amdf?eduency wo)
into two sound waves (wave vectors k, and k, and frequencies w, and

wz).

We restrict ourselves to the first approximation, This
means that only three waves will be considered. As shown gbove, in
the presence of three waves it is possible to have splitting only
of the longitudinal wave,
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Perturbation Energy

If we denote the components of the deformation tensor by
waB’ the density of the elastic energy accurate to terms of the
fourth order is expressed by:

- 2 2 [ ) ' 2 | J—c
W = Aw + Bw + P'w + Q waawaﬁ + R Waﬂ

. _ 2 _ 3 _
where Yo = Spur WQB, WaB = Spur WQYWYB, WGB Spur waywyéwéﬁ.

If we discard the cubic terms we get the usual expression
for the density of elastic energy.

Coefficients A and B are connected with the velocity c,

and ¢, by the following ratio: c = /3 c = 2 where p is

t p? “¢
the density. Coefficients P', Q' and R' characterize the deviation
from Hooke's law,

The deformation tensor in this case has the form:

_ 1 aua ou aum . aun
"6 77 Uom, om0
2 X xa Xa xB

B

where uy is the displacement of the point.

We introduce two more tensors

l au au ~
- [__q + =B

u =
af
2 aXB a:xa o

and

1 au du, ~
Vaﬁ = o= {——-——a' - ——-ﬁ
2 aXB axa o
Expressing Wa‘(3 by uaB and Vaﬁ and substituting in the ex~
pression for energy density we get (neglecting terms of the fourth
order with respect to deformation)

— 2 2 3 2 3 _ 2
W= Aul o+ BuaB} + {Pul + U, Ung * Rujg = Au, v Bu, Vo V. }

aa " ap aB By yva
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Terms in the second set of brackets we regard as pertur-
bation resulting in splitting of the propagating wave.

Transition Probability

We represent sound waves in the form of the sum of har-

monic waves: ,
u {r} = Z},l_ {k,» 2}

i(kg T -1
w (ks £} = golagetlba B) 4 g xemilka 2))

where €q is the unit vector of the direction of polarization, 8q, is
the amplitude, ga is the wave vector., Let the number of sound
quanta be Nd. We want to find the probability of transition from
the state with the numbers of sound guanta No, N,, N, into states

with nunbers of sound guanta of No -1, N, +1, N, + L.

Substituting in the expression for the density of pertur-
bation energy

N O BN O SRS () RN C) B CS

where the indices 1 and 2 refer to waves obtained after splitting,
we find

. N I S IO RPN O S C I S C) DG RO

perturb, aa Caa Yad aa aﬁ aﬁ aqa aB aB

+ 0l ul)) + erull) ) wl) 4 2a(ald) V(0 V(D) -

R O Y O ST O B N CO I

S RCERERCEC IR

In this expression all terms are discarded which contain
functions with one sign two or three times since they are of no
significance in our calculation,
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From the theory of harmonic oscillators we know the
matrix elements of the displacement. Only the following elements
are non-zero:

AN AN .

-jiw_ t a _iwat
(N - 1la |N ) = ’—-iL e %' (N la*N «1)= |—c¢ ,
a I al a 2mma ’ al a | a > .

where m is the mass of the volume V.

The matrix elements of the components uaB and vaﬁ we find
by differentiating the displacement component:

1 ik x)

(N uuB|N 1) = ==—¢€" (eakP + ePx) (Nla*lN - 1),
2
1 i(x )
(N uuB|N + 1) = ; e\ 2 <) o (e0kB + eBKka) (NIalN + 1),
i
(N vaBlN -1) = -~ e_i(lg z) o (e0kB - efka) (NIa*iN - 1),
2
i
(0] vgg|W + 1) = = *EE) . (coxp - efxa) (va|v + 1),

[\V]

where e%, k@ denote x, y, z — the components of the vectors g and
Ke

For longitudinal waves [ek] = 0, consequently

(vaaelN -1) = (NIvaB|N + 1) =

For transverse waves (gg) = 0 consegquently

(N]ug | = 1) = (W|uyo |V + 1) =

Therefore in case No. 1 ([QOEO] =0, [e,k,] =0, (gk,) =
0) the expression for the density of perturbation energy can be
presented in the form: ’

” T NONO NN RO MNONON
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In case No. 2 ([¢ k ] =0, (g,k,) =0, (g,k,) = 0) the
density of perturbation energy has the form

= 200 5D w4 eral!) o)

wberturb. ad aB aB o BY uYa
o) (1) (2 (o) (1) (2)
+ 2Au§‘a) G-B) GB) 2BuaB) BY) YCL .

In further calculations we will compute the following ex-~

pression:

1

q, = 3 (e,%%,% + e,9%,2) (e,%%,B + e,Pk,2) (e 2k B + e Pk 2),
1

q, = g (eo“koa + eo“koa') (e,%k, B + e,Pk ) (e %, B + e,Pk, %),
1 .-

r = -g (eonoG + eonOY) (e,0%k,B + e,Bk &) (e,Pr, T + e27k26),
1

a = 3 (e %k * + e % *) (e, % B - e Pk ) (e, % B - ¢ Bk 2),
1 <+

b, = -g (eoakoﬁ + eoﬁlgoﬂ») (e,Px,Y - e, Yk, B) (e,Yk,0 - e,0k,Y).

For case No, 1 we get: a, =k, (eg,e)) (k k), q, =

k (k.k,) (g,8,),
1
r =k k, {(e,g,) (g,8,) (ke)) + (goe,) (gee,) (g,k,)1.
For case No. 2 we get:
1
% =3 k, {(e,e,) (k,k,) + (g,k,) (k,e)i,
1
Pk [(g02,) (k,e,) (k,e,) + (gk,) (gk,) (e,8,) +
+ (g.82) (goey) (k) + (eoe,) (k) '(21.%2)3-
1 1
a = ;ko([£1£1] . [3255]) = E ko>£(§,1§,2) (,151.152) ~(g ) (k‘?—-«z);
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[ee,) (ke » Bk, 1) +(5 k) (ke 1 [ee,1)le
Calculating all uaﬁ and vaﬁ and substituting them in the
expression for the density of perturbation energy we find:

W o eburn,=10280a, + ag) + 6relu®k ,mul) 0@ (g, 8,

W = 1[2qq, + 6Rr + 22 -28b,]u’ (i ,2ul” (x,,2} oDk 0l .

2
perturb.

Hence we find that the matrix element we are interested
in has the form

(N, N, N2|wl‘) |v, -1, N +1, N2+1) = i[2Q(q, + g,) + 6Rr] -

erturb,.

,RNO \/'n(m + 1) jﬁ(Nz * 1) i[(ke)-2t]
. . —_— e € e~ ?
2mwo an1 2m.0~)2

2 —
(N, N, 1\12|wP -1, N +1, N +1)= i[2Q,q3 + 6Rr + 24a -

erturb.INo

- 2Bb,] - /ﬁNC’ . JM . IM . o—ik(Er) -2t]
2mw

o me1 2mco2

where K = k, - k, -k, 8 = W, W =W,
Integrating over the volume V we find the matrix of the

perturbation energy Hperturb,'

-i(Xr,

Note that.[e )dx is non~zero only under the condition

K =0, i.e., only when the law of the conservation of momentum
holds.

In this case we have

[e_i(l{-r’)d'r =[d1: = V.

\' \'
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As a result of integration we find

(N, N, N |H N, - 1, N+ 1, N, + 1) =i[2a(q, + q;) +

perturbe.
tN RN, + 1) #(N_ + 1)

+ 6Rr]V‘J o \[ ! = . 18T ’

2mw 2mw, 2mw,

(s N N IHPerturb.lno -1L N +1, N + 1) = i[qua + 6Rr + 2Aa -
AN, + 1) AN+ 1) .

- 2Bb ]V‘\/ \[ 2 . e1%T

2mw

2

For calculating the probability of excitation of a given
state in a unit of time we have the known formula of the perturb-
ation theory

a ' R 2% .
=L RT-EDY ON

where a8 is the probability amplitudes

m |26(wmn) ’

For our case (an.rhnéo) = 0, ngn,n, # NoN;N,;  ayg n
(0) = 1) this formula takes on the following simpler form:

d 27
- — 2 .
Wo = at No =19 Ny + 1, N, + 1' 12 |(NO’ N,s NzIHperturb.

-1, N, + 1, N, + 1) [2a(2).

Wo gives the probability of transition in a unit of time of the
longitudinal sound gquantum of the frequency @, into two sound
quanta of the frequencies w, and w, of a given polarization.

To get the transition probability of a sound quantum into
two quanta of given frequencies but with arbitrary polarization it
is necessary to integrate the expression for WO over angles
characterizing polarization.
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Fige 1 Fig. 2
Case No. 1. Case No, 2.

We have (see Figs. 1 and 2)
2%

2 3 N (N, + 1)(N. + 1
w(1) - -ﬁ_":- 6(9) k - . O( 1 + , )( 2 + ) v2 /[2Q(q1 + q3)+ 6Rr]2d¢’
(2m) WoW, W, K
2% 2
w2 _ _2§ 5(2) k3 N(N, + 1)(N, + 1) ve " W(ZQ . 6mr +
ot (2m)3 WoW, @, o[of s

2Aa - 2Bb )2 dge dde »

Carrying out the integration, assuming that N, = N2 =0
and dividing both sides of the equation by No we find, for the
probability of the decomposition of a sound quantum into two quanta,
the expression,

2
. o(e) » T.(8, 8.),
3 2 17 1 2
m c,%cy

1 (‘E )2 AV? k°k1k
2
X \2 2%LEV k k k

w2 =(—> . 2 8(2) + 1,(6,, 8,),

3
(2m) c&ct2

where

I,(e, 6,)={Q[sin 26, + sin 2(8, + 6_)] + 3R cos 6 sin(6 + 20 )%,
" 1.(e,, 8,)= [(2Q + 3R) cos 2(e,+6,) +B + 2A]2 +

+ [2(Q + A) cos (8, + 8,) + (3R + B) cos 6, cos 6,]3.



The nunber of states at which k, is directed towards
the element of the solid angle d91 and the absolute magnitude of
k, lies in the range between k, and k, + dk,, is given by the
known formula

Pk, dk,dR, = k,%dx. a2, .

(2x)®
The full required probability of splitting in a unit of
time is given by the integral,

_— i, )
w_/w pkidk1d91.

Carrying out this integration (taking into account the
fact that k,, k,, 61, 62 are connected among each other by con-
servation laws) gives

_(,)=1. 3 .(2Q.+3R)2. s L
W > ko P(ct) ’

256 Cg Cy p3

.o 3 1 c
W(z) — —— 3 e ¥‘; k05D Q" R’ A’ B —6- ’

o CeCiy P Ct

where
ce\_ ¢ -~ 1 2 3 2 2 2

p(—>- —— {(e? - 1)3(1 - 1/u) + 2(c? - 1)2(3¢® + 1)In 1/u -
cy c?
- (c® = 1)(13c* + 6c? + 1)(1 - u) + J4e*(ec? + 1)(1 - u?) +
+ 2/3(c® = 1)(7c* + 2¢® + 1)(1 - v®) +
-‘el-(’-7<:6 + et =c?-1)(1=u*)+ 2/5(c® =1)(7c* + 2¢2+1)(1-10%+
+ 4/3 e*(c® + 1)(1 - v®) - 1/7 (c® - 1)(13c* + 6¢? +1)(1-u?)+

+ 1/4(c® = 1)2(1 + 3¢®)(1 - v®) =~ 1/9(e? - 1)3(1 - w°)} ,



- 13 -

(c® - 1)° c-1
D(Q,R,A,B,—) [—-(lSc - 10c® + 3) + ———-—3——-(1 + 3¢%)1n +
240 c c+1

+ 1/3 « (18c* - ulc® + 32) - 2/c2:| (2Q + 3R)® +
+ 1/240 o (3c* - 10c® + 15)(3R + B)? + 1/60 (15c4§ 50¢% + 43)(Q + AP+
+ 1/240 » (15¢* = 10¢® + 3)(B + 2A)®
+ 1/60 + (5¢* - 22¢® + 25)(Q +A)(3R + B) +
+ 1/120 « (15¢* ~ 90c® + 83)(B + 24)(2q¢ + 3R),

where ¢ = °&/°t and u = (¢ = 1)/(c + 1) For ¢ = N3 we have:

1 17 1
P(W3) ® — , D(Q,R,A4By ¥3) = — (2@ + 3R)® + — (3R + B)® +
2 100 20

7 9 1 13
+=—(Q+2)2 +—(B+28)2 +—(Q+A)(ZR+B) - — (B + 24) (2Q + 3R).
15 20 15 30

Thus longitudinal sound quanta are absorbed because of
splitting into longitudinal and transverse gquanta and because of
splitting into two lateral sound gquanta, Thus the probability of
the absorption of a longitudinal sound guantum owing to any
splitting can be found by combining the probabilities of splitting
found for cases 1 and 2,

For the value of ¢ =43 we find that only splitting into
two transverse quanta 1s significant,

In conclusion I would like to thank Professor Iu. Rumer
under whose direction this work was carried out,

Moscow
Faculty of Physics, Received August 13th, 1937.
Moscow State University.



- 1L -

Reference

1. Landau, L. and Rumer, G. Hoer Schallebsorption in festen
Korpern (Sound absorption in solids). Sow., Phys. 11
(1), 1937.



