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A Procedure for Deriving Thermal Transfer Functions
for Walls from Hot~Box Test Results: Part I
by
D.G. Stephenson, K. Ouyang, W.C. Brown
IRC/NRC

1988

Abstract
A guarded hot~box 1s used to determine the U-value of a wall

specimen at two different mean temperatures. With the hot side temperature
held constant, the cold side temperature is varied at a constant rate during
the transition between the two steady-state conditions. The results of this
test are used to determine three time constants of the wall, which are then
used to calculate the coeffieclents of the z-transfer function for that
wall.

Introduction . ‘

The transfer function approach for caleculating heat flow through
walls and ceilings has been endorsed by ASERAE for the past 20 years, and is
widely used throughout North America. The procedure requires, as data, the
coefficients of the wall's thermal transfer functions, and hourly values of
the temperature for the outer face of the wall. Transfer function
coefficients for many walls have been published in the ASHRAE Handbook of
Fundamentals (1). :

Unfortunately, these data are all based on the assumption that the
heat flow through these walls i1s one dimensional. There is no allowance for
framing members that act as heat bridges through insulation, nor for such
common building materials as hollow concrete blocks. Therefore, the
transfer function data in the ASHRAE Handbook of Fundamentals may not
accurately represent the thermal performance of real walls. Consequently
there 1s a growing interest in belng able to derive these data from the
results of tests on full scale wall specimens. This paper presents a
procedure for dolng this. It involves using a guarded hot—box wall testing
facility; the IRC facillty is shown schematically in Figure l. A test
conslsts of three phases:

I} An 1nitial steady-state U-value test with the room-side
environmental temperature at Ty and the climate side temperature
at T ..

ci

II) A transition phase during which the climate chamber temperature -
is changed from T,; to T,ge. The temperature is changed at a
constant rate during this transition.

I11) A final steady-state U-value test with the room-side temperature
at Th and the climate side temperature at ch.

Figure 2 shows the temperature vs time curve obtained for a typlcal
test, and the corresponding values for the heat flux into the room—side face
of the test wall. These results can be used to determine three
tlme-constants for the wall, plus their associated resldues. These
time~constants and regidues plus the U-value are used as the data to
calculate the coefficients for a rational z-transfer function that relates
the heat flux through the room—side face of the wall to the temperature at
the outside surface. The procedure for thils latter calculation is basically
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the same as is described in Stephenson and Mitalas (2). The difference is
that the time-constants and residues are derived from test results rather
than from the dimensions and thermal properties of the materials that make
up the wall.

Theory

The Laplace transforms of T, and Tc_are respectively 91 and 92, and
the transforms of the heat fluxes Qy, and Q. are $; and ¢, respectively.
These are related by

61 AB 8,
= ® (1)
¢1 cCD ¢2
I . I

where the elements A, B, C and D of the transmission matrix are functlons of
the thermal properties and dimensions of the materials in the wall and the
heat transfer resistance at the surfaces. This formulation, which is taken
from Carslaw and Jaeger (3), assumes that the thermal properties of the wall
are constant. Equation 1 can be recast as

¢1 b/B -1/B e1
= ° (2)

¢2 1/B -A/B 2
] L - L _4

The element C has been eliminated by using the fact that AeD — B+C = 1. The
functions D/B, 1/B and A/B are referred to as the Laplace transfer functions
of the wall,

The transfer function 1/B(s) can be represented as

1 = an
— =l I ———— {3)
B(s) a=1 1+Tn 8

where T, are the time constants of the wall (i.e., the poles of 1/B(s) are
at 8 = =1/1 : :

a, are the residues at the poles
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All the transfer functions of Equation (2) have their poles at s = -1/1
since B(s) is the common denominator.

When calculating the heat flux through a wall or roof it 1s more
convenient to use z-transforms of the temperatures and fluxes rather than
the Laplace transforms. (The z-transforms are sometimes referred to as the
time-series representations of these quantities). An equation similar to
equation 2 relates the z~transforms of heat flux to the z-transforms of
temperatures: viz,

D 1
2{o} = 503 - 2in,} - g5y - 2T ) 4)
where
- . -1 -2
Z{Qh} - Qh,t + Qh’t_s Z + Qh,t-26 z Feronvsva
= -1
Z{Th} Th,t +Th,t"6 z + Th,t—ZG z +esevsane
= ' -1 -2
and Z{Tc} Tc’t + Tc,t—ﬁz +Tc,t""26 4 +esevcene

The z-~transfer functions can be approximated by

N -n
D(z) LI a, .z
-0 (5)
B(z) N -
z dn 'z
0
and
N A
ULh =z n
1 o
- 3 (6)
B(z) Zd - z—n
o T

where U = th% overall conductance of the wall

z2 = »
the time interval between successlive terms in the time series for
the temperatures and heat fluxes,

=
il
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s = the parameter Iin Laplace transforms,
N = the number of terms in the various sums (N may be different for
each summation)
a,,b,,d, = z-transfer function coefficients.

Equation 4 is usually written in the time domain as

N N N
d *Q ,=UZ a_ °*T __ =0 & b T .= £ d °Q .,  (7)
o h,t n=0 ™ h,t=né n=0 ™ c,t-néd pel M h,t-né

where Ty, , is the environmental temperature in the building at time t,
Tc:t is the environmental temperature outside at time t.

The approach used in this paper 1s to approximate 1/B(s) by the sum
of only three (or in some cases four) terms, and then to use these values of
a_ and T. te calculate b, and d_. When values of a_ are required (d.e.,
wﬁen ins?de temperature is changing), they are obta?ned from experimentally
determined values of the wall's frequency response and the time constants,
as described in Part II of this paper.

Step #1 Determination of the « and 7 of a wall
If the start of phase LI (see Figure 2) is taken as t = 0, Q; as the

value of heat £flux during the steady-state at the end of phase I, and Q¢ at
the steady-state in phase III, then the heat flux, Qt’ at any time t during
phase II can be represented (3) by: '

Q - Q = o
£ i I - n
ORI Sy PP F PO S . | — £ <t (8)
f{(Qf - O‘i ] } 82 n=1 1 + Tn s

where t* is the duration of phase II. This can be inverted to give

Q — Q
f i
Q = Q *+ (T)(t - +e, | 0 < <£* (9)
where
-]
I'=
L @ T (10)
n=1
and
Q ~Q, = -t/
£ i n
€ = F z @ T e (11)
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As t L et 0]

Q; =
+ -
and Q *Q + e (t - I
- Q - Q
This asymptote is a straight line with a slope of rr o and it equals Qi

when t = I's Thus the value of I' can be obtained from the Intergsection of

this asymptote and the value of Qi'

In phase 11I,

Q. - Q, = -t'/x
Qf - Qt = st = .._..-——.—.-.-f v i z a,n'rne n t* <t (12)
n=1

where t' = t-t*

Since €.(0<t<t*) is equal to €., (t*<t), Equation 12 can be combined with
Equation 9 to give the following expression for T

t*

' = — ———
- QU - ¢

(Q + Quae = Q — Q) 0<t <t (13)

A value of T can be obtained in this way from each value of Qs and the
corresponding Q.u,., for 0 <t < t*,

Equation 12 indicates that as t' becomes large

Q. - Q a T -t'/t
£ — Qt +* t*l e 1 t* <t (14)
Q- Q

where T is the largest time-constant.
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Q: - Q a T '
pif t 11 t
e - *
Thus in (Qf g, * In| o ) T | t* <t (15)

This asymptote I1s a straight line with a slope of --—%m, and its value at

a T 1
=0 (i.e., t = t¥) is ln( o ]. Thus the asymptote glves values for 21 and

o

}.l
If equation 12 1s integrated from t* to = it gives
f i 2
[l -q et = (=)L a =
- f t £* n=] B 0
2 -
Thus ) o T %= 4 (16)
n=1 :
- -]
e [ (o - 0 Jae
where A= —E (7

One more relationship can be derived from the fact that

d
_?E(Qt) =0

t=0

When equations 9 and 11 are differentiated they give

Q. - Q ® -t/ T
d f i n
Q)= )0 §oee D)
Therefore
E a =1 (18)
n=] n

Equations 10, 16 and 18 are used to deiermine the time constants and
residues. However, if the transfer function grzy 1s to be approximated by a
finite number of terms rather than an infinite number, the sums of the
various finite serles must be the same as the sums of the corresponding
infinite series, i.e.




X a =1
n=] B
N
nzl anTn - ! (19)
p! 2
nzl antn = A

Values of ) and T; can be derived directly from the test results
using equation 15. Thus, %f N=2 there would be only two undetermined
constants, a, and T,, 80 1t would not be possibie to satisfy all three
relations. n the other hand, i1f N=3 there would be four undetermined
constants, and the three relations are not sufficlent to determine all four
constants. One of the constants must be used as an undetermined constant to
be determined by some other constraint. It is convenlent to let 03 be the
undetermined constant.

Let a2 + a3 = F.= l-al
UyTy + Ty = G = P—alrl (20)
2 2 oW Aeg ot 2
dZTz + a313 H A alrl

where T and A are determined from Equation 13 and 17, respectively. These
can be solved to give

o,
6 + [(62 - F)(- =2 ]

3
Ty = 7 {(21)

G - a313
2 o

2

There 1s the additional constraint that T, and T, must be real and
positive., This limits the possible range for oy as follows:

a) 1f 6% > FH
0q must have the opposite sign to F
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b) if 6% = PH
g must be zero and Ty = -{%—

e) if G2 < FH
%y must be between zero and F.

The best value for oy is determined by trying several values within the
allowable range, and for each of these determining a consistent set of
values for a,, 7, and Tq. Then using these varlous sets of values a
variance n, is calculated as:

Q - Q 3 -t/
£ i n
n, = ——— nE; {°‘n T e = €, 0<t St* (22)

and €, is determined from experiment (et = Qf - Qt for £*<t)

The best value for a; is the one that gives the smallest value for
f:nt2°dt. This is a "least squares" curve fitting procedure that satisfies
the constraints on Q.and 1ts first derivative.

Example 1
This procedure 1s 1llustrated in example l. In this example,

however, the values of Qt have been calculated from the exact solution for a
homogeneous slab rather than being expefimental results. Hence, the values
of n, are due to the approximation of « In a real test there would
also be some experimental error in the measured values that would also
contribute to Ny

For a homogeneous slab of the following properties

R = 2,0 m2K/W
Lee = 1,728 x 10° J/(m2eK)

under the following test conditlons,

T, = 20.0°C
T, = 10.0°C
Toe = 30.0°C
t% = 50.0 h

the following values are calculated using the exact transfer function:

RLpe = 3,456 x 10° s = 96 h
96
6

i

' =w—"=16h

T = =

n n 211'2

_ 2(_l)n~i-1

Q
I




A = 179.19 h?
The resulting heat flux, Qt’ and t—:,t are given in Table 1.
Table I

t Q. &, St Qt €,

0 15.0000 3.2000

1 15.0000 3.0000 _ 13 15.4178 1.0178
2 15.0000 2.8000 14 15.5194 9194
3 15.0002 2.6002 15 15.6302 8302
4 15.0014 2.4014 16 15,7496 7496
5 15.0066 2.2066 17 15.8767 6767
6 15.0184 2.0184 18 16.0108 .6108
7 15.0404 1.8404 19 16,1513 «5513
8 15.0734 1.6734 20 16.2975 «4975
9 15.1184 1.5184 21 16.4490 <4490
10 15.1758 1.3758 22 16.6052 4052
11 15.2452 1.2452 23 16.7656 +3656
12 15.3260 1.1260 24 16,9298 3298

For the remainder of phase II, Qt is given by

Q, = 11.800 + 0,200 {t + 19.4536 & */9+7268}
~ where @, = 2.000 and T, = 2% = 9,7268 h
ki)

{These are the values that would be Indicated by the results of a perfect
ramp test).

From equation 20

F = 1,000 - 2,000 = «1,000

G = 16,000 - 19.4536 = ~3.4536 Eh]

H= 179,19 -~ 189.22 = =10.03 [h?]

62 - FH = 1.8974 [h?]

Thus ag must have the opposite sign of F, 1.e. positive.

Table ITI gives the values of o, T) and 74 that are consistent with
varlous values of « The lower part of the table gives the values of i
for three of the cases. These values show that the approximation gets
better as dq increases, but beyond 03 = 3 the improvement is very_slight.
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Table II
1 2 3 4 5
2,00 2,00 2.00 2.00 2.00
=200 ‘3000 "'4-00 -5000 -6000
1.00 2.00 3.00 .00 5,00
9.7268 9.7268 9.7268 9.7268 9.7268
2.4799 2.3293 2.2611 2.2220 2.1966
1.5062 1.7671 - 1.8636 1.9141 1.9452
¥ + +
L™ Ny e
- 0000 .0000 »0000
0029 -0021 .0020
0046 .0030 -0028
0032 0015 0013
.0010 -.0002 -.0003
-.0009 -.0014 ~-.0015
-.0015 -.0015 -,0015
l0020 “00016 "°¢0016
-,0019 -,0013 -.0013
-,0016 -.0009 -.0008
-.0013 -.0006 -,0005
""-0010 ”00004 -00003
"'00005 “50001 -00001
~-.0004 -0000 »0000
-’30002 00001 00001
-, 0002 -0001 . 0001
-.0001 .0001 0001
-,0001 0001 .0001
-.0001 - -
21
22
24

-6
In? = 23x10
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Step #2 Determining the z-transfer function coefficients

The problem at this step 1s to determine the coefficients b, and d
that make

N
Z bnz—n
R - n=0
B(z) N
z dnz—n
n=0
equivalent to
S S-S
B(s) n=1 1+Tns

Values of o and T were determined in step #1. Equivalence of the
two transfer functions requires that the poles of the two correspond, and
that they have the same frequency response at frequencies that are of
particular importance in the intended application.

The poles of the Laplace transfer function are at s = —llrn. Hence
the poles of the z-transfer function must be at z = e-s/rn.
3 - 3 mG/Tn -1
Therefore z dnz = 1 (l-e .z ) (23)
n=0 n=1

which gives the coefficients dn as:

d0 = 1,0000
3 =&/t
d, = -~ I e
1 =1
n3 -8/t 3 5/
dy= (T e ) 2 e’ (24)
ngl n=1}
d, =~-1 e_G/T
3
n=1

The frequency_response of R/B|s=i(2ﬂf) can be calculated from

3 o
=X_+ 1Y

R n
m)ls=i(2nf) ) nfl +1(27E T ) £ £ (25)




where
3 o
X, = I ————
£ 2
n=1 1+(2wft )
n
e % Gh(ZHan)
£ n=1 1+(2wf1ﬁ)2
Let
z dn .z 127§ = Vf + 1 Wf
n=0 Z=e
wvhere
3
Vf = I dn * cos (2méf)
n=0
3
Wf = - F dn « gin (2méf)
n=0

Then matching the frequency response of R/B(z) to R/B(s) for a
harmonic driving function with a frequency of f requires

N ‘
I bn cos (2méf) = Xf Vf - Yf Wf
n=0
and
N
- I b sin (2mdf) = X W + Y.V,
n=0
At steady-state (i.e., £ = 0)
3
X. = & a =1
0 -1 "
Y. =0

(26)

(273

(28)

(29)

(30)

(31)

(32)




Therefore

I b = I 4 (33)

Equations 31, 32 and 33 can be solved to find three b coefficients,
In matrix form

= I S | P i
3
1 1 1 by I d
n=0 n
1 cos (2WSE) cos (4T78E)| o by | = | XV, - Y.fo | (34)
0 -sin (278f) ~gin (4n6f) b2 xfwf + Yfo
" - I . -

If it is desired to match the frequency response at a second frequency,
there would have to be five b  coefficients. Two more rows and two more
columns would be added to the square matrix, and two more terms in the
column matrix on the right side of the equation.

If the square matrix In equation 34 is M, then b, are glven by

_ - —_ 3 -
b0 nfo dn
b, | = M-t X Ve = YW, (35)
b, | XWe + Y.V,

- - -

Example IT
Taking the output of step 1 in Example I to be

a = 2.00 Ty, = 9.7268 h




With 6 = 1 h, and f = 1 cycle/24 hours

Thus

@, = -4.00

(135

] =

And from Equation 24

d

d
d
d

W N = O

3]
[=
[]

n=0

24
24
24
24

H < oM

v - W
W+ YV

"

1.0000
-~2.1296
1.4381
~0.3390

0.0145

~0.27165

-0.109306

~0.0123426
0.0493402

0.008746
-0.012054

0.02491]1
~0.07155
0.06114

3.00

0

14.6739

-28.3478

14.6739

12=2'
1.

3
(9% ]
]

1

0.9659
~-0.2588

-13.6739
28.3478
-14,6739

2611 h
8636 h

1
0.8660
-0.5000

-

5.6639
=7.5958
1.9319

o




w]Hm

2
Z b = 0.01450
n
n=0

Table III compares the frequency responses of R/B(s) and R/B(z) with
the correct" values obtained from an analytieal solution for this
homogenéougzsl?b. These values show that R/B{z) matches the correct values
well when £S5 < 4, But when this number is larger, the difference between
R/B(z) and the correct frequency response is substantial. Whether this
difference will lead to a significant error in Q. depends on the frequency
content of the driving function T..

LE%5§ is a dimenslonless parameter
thickness of slab

density

speclfic heat

thermal conductivity
frequency

where

a0 O
'}
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Example III - Results of a Ramp Test on a Heavy Wall with Heat Bridges

A ramp test was carried out on a wall with a 127 mm layer of foam
polystyrene sandwiched between two 89 mm wythes of concrete. The sample was
brought to.a steady-state with T, = 21°C and T,y = ~7.1°C. Then the
temperature on the cold side was reduced to T . = -30.0°C at a constant rate
over a period of t* = 60 hours. Table IV gives the values of temperature
and total heat flow at 3-hour intervals over the 7-day test period.

The U~value of the specimen can be determined from the initial and
final steady-state results. The variation of U with mean temperature can
then be calculated from

- Q Y Ty * Tc)
Area [Th - Téj o 4T 2

For this test Q, = 86.6 W, Q. = 156.6 W, and the test area A = 5.946 m2,
These values lead to:

U, = 0.517 Wm-2%~1

and
au_ - _ — g —2y=2
ﬁ— = 1,66 x 10 Wm— K
m
du
As T is very small it is valid to analyze the results from the transient
m

part of the test as though the U-value were a constant.
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Table IV

Results of a Ramp Test

t T, Qe r
[h] 10 W] ]
- 7.1 8606
-~ 7.1 86.5
7.1 86.6
Phase 1 ~ 7.1 86.6
- 7.1 8607
- 701 86-5
- 7.1 86'5
Ramp Started
at 0.0
0.3 - 7-3 8606 13.4
3.3 -~ 8.4 86.6 13.4
6-3 - 905 87.0 1305
9.3 ~10.7 88.2 13.5
12.3 ~11.8 89.9 13.5
15.3 ~13.0 92,1 13.5
1893 _14n6 9407 1305
2103 "15.3 97-6 1305
Phase II 24.3 ~16.5 100.6 13.5
27&3 "1706 103.8 1305
t%*=60,0h 30.3 ~18,.7 107.1 13.5
33.3 ~20.0 110.4 13.5
36.3 ~21.1 113.8 13.5
39.3 ~22.2 117.2 13.5
42-3 "'23-4 }.20.6 13o5
45.3 ~24.4 124.0 13.5
48,3 ~25,5 127.5 13.5
51 3 "'2607 131.0 1304
54.3 ~27.9 134.5 13.4
57'3 "29.2 13800 13.4

Ramp Finished
at 60.0
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Table IV (cont'd)

[n] [ec] [W]
60.3 -30.0 141.5
63.3 __30-0 14409
66.3 —30.0 147-9
69.3 _30.0 ' 150.2
Phase III 7293 ) -30.0 . 151.9
75.3 —30.0 153.2
78,3 -30.0 154.1
8l.3 =30.0 155.7
84-3 _3000 15502
87-3 “3000 155'5
90.3 _30.0 155-7
9393 _3000 15509
96.3 ~30.0 156.0
-30.0 156.1
102,3 -30.0 156.2
105.3 -30.0 156.3
108,3 -30,0 . 156.3
111.3 _30.0 156-4
114-3 ”30.0 15604
117.3 «30.0 156.4
120.3 ~30.0 156.4
123-3 "30-0 156-5
126.3 _3000 156.5
129.3 -30.0 156.5
132.3 -30.0 156.6
135.3 -30.0 156.6
138.3 ~30.0 156.6

141.3 -30.0 156.6
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Values of T are given in Table IV for each value of Qt in Phase I1. These
were calculated uslng Equation 13, 1.e.

£k

I' = t - 6;:"6;‘{Qt + Qt*+t - Qi - Qf} Q<L ar®

The values in table IV show that the best value for T Is 13.5 hours.

Table IV shows that ¢, has not decayed to zero when t' reaches 60.0 h
(a period that equals t*), Thus €_ will also not be zero when t = t* ({.e.
at the end of phase II). This must be taken into account when calculating
€.+ for the early part of phase II1. Subtracting Cenpy from Q. (for t3t*)
corrects for the residual effect of phase II, that is

fer = Qe = (Q - ey ) £ e

For example:

60.3 = 156.6 ~ (141.5 - 002) = 15.3
€49 7 15646 - (144.9 = 0.1) = 11.8
etc,

560.3 = 156:6 - 156.4 = 002
€63,3 = 156.6 ~ 156,5 = 0,1

The values of €., are then used to determine o and s (or as in this
example CGn, Tg, a* and Tl). Figure 3 shows wvalues of 1In &1 V8 t'. At
large values of t' the points lie along a curve that is siightly concave
upward and this curvature is due to the heat bridges, which conduct some
heat through the insulation in parallel with the maln heat flow path. To
account for this effeect, values of €1 for t' 212 hours can be represented by
the sum of two exponential terms:

Q"'Q 1
€ = £ 1 -t /T0+a1'rle

o = o (e Y

A regression fit of the data to this equation gives:

qo = 0.056 To m 25.0 h

0'-1 = 1.670 Tl = 8,33 h



wl ] -

Integrating €., from t' = 12 to t' = @ yilelds a value of 57.3 W+h.
The integral from tt = 0 to t' = 12 can be evaluated numerically. It equals
114.3 Weh., (This value waes obtained using hourly values rather than the
3-hour wvalues in Table IV.)

Thus, from Equation 17

_ 60(114.3+57.3)

= 2
0.0 = 147.1 h

&

Also from Equation 20

F=1=0,056- 1,670 = -0.726
G = 13.50 = 1.40 - 13.92 = -1.82 h
H = 147.1 - 35.0 = 116.0 = -3,90 h?

Therefore G2 — FH = 0,48 h?

As G » FH and F < 0, @, must be less than zero and must be greater than
zero in order for Ty and T, to be real and positive. Various pairs of
values for %y, Oy Were tried and

= 2,00, o, = 1.274

% 3

gave results in good agreement'with the experimental values for the early
part of the test. From Equation 21 the corresponding values for Ty and Tg
are:

TZ = 1!745 h

13 = l.31 h

These values can be used to determine the coefficlents of R/B(z) just as
was done in Example II.
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Table V
Summary of Results
n a T a T a 1 2
n n nn n n
[h} [h] [h?]
0 0.056 25.0 1.40 35.0
1 1.670 8.33 13.92 116.,0
2 ~2.000 1.74 -3.49 -6a1
3 1.274 1.31 1.67 2.2
3
Z 1.000 _ 13,50 147.1
n=0

Discussion
Figure 3 shows the importance of obtalning values of € over as long

a2 perlod as possible, When there are some heat bridges through layers of
insulation they give rise to a long time-constant with a small associated
residue. This means that the wall may appear to have reached a
steady-state, but the heat flux will continue to change very slowly for
many hours. Thus 1t is good practice to maintain the constant temperature
conditions for at least a day after 1t seems that the steady—-state has been
reached.

The concept of a transfer function that embodies the thermal
characteristics of a wall is valid only if the thermal properties of the
wall are lndependent of the temperature and time. The initial and final
steady-state results can be used to check whether this assumption is valid.
This check should be made before making a detailed analysis of the results
from the transient part of the test.

The output from a ramp test should be the values of Uo’ %%——, Ty and

o, » These values will enable a user to calculate the values of b, and d,
for any time-step. When values of a, are required it 18 necessary to have
values of the A/B and D/B transfer function for the frequenciles of
particular interest. This procedure is explained in Part II.

Conclusdion _
A ramp test starting from a steady-state and ending with another

steady—-state yields enough information to determine three time constants of
the wall, which are then used to calculate the z~transfer junction
coefficient 1/8(z) for the wall.
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A Procedure for Deriving Thermal Transfer Functions for Walls from
Hot-Box Test Results: Part 11 '
By
D.G. Stephenson, K. Ouyang, W.C. Brown

Part I of this paper presents a procedure for determining the
time-constants (and associated residues) for a wall from the results of a
not-box wall test. This second part presents a procedure for obtaining the
frequency response of a wall from the results of a second set of hot-box
tests. Both the time~constants and the frequency response are requited when
calculating the coefficlents of the z-transfer functions.

This second part of the paper also presents a procedure for the
calibration, or obtaining the transfer functions, for the hot-box.

Determiniqg_the Frequency Response of a Wall

A section of a wall is iInstalled in a hot-box wall testing apparatus
Just as 1t would be for a U-value test. The arrangement is shown
schematically in figure l. To determine the frequency response of the %
transfer function the temperature in the climate chamber is kept constant
while the power to the metering box 1s varlied sinusoidally at various
frequencles. The resulting variation in the temperature in the m Iering box

1s measured at regular intervals, and from these data a value of | g=i12nf
can be derived for the particular frequency, f, used for the test.

The y transfer functlon can also be obtained from cyclic test
results. In this case the climate chamber temperature 1s varied
sinusoidally and the power to the meterlng box is kept constant.

The metering box is assumed to be a linear system with three
transfer functions E, I and J. The E function allows for the heat capacity
and transport lag of the heating system, and 1 and J account for the heat
capacity of the air and baffle in the metering box and for the heat that
flows into (or out of) the shell of the metering box, that is

Eef = Al + I-Ol - J-Gh (1)
® = Laplace transform of the power, P, supplied to the metering box
A = area of the test wall
¢, = Laplace transform of the heat flux into the test wall from the metering

box, represented by: D 1
¢W = {'B-'@l - 'B-'Oz} (2)

91 = Laplace transform of T,, the temperature in the metering box
G, = Laplace transform of T_,, the temperature in the climate chamber
Gg = Laplace transform of T_, the temperature in the guard space surrounding

the metering chamber

If T, is constant 1t can be subtracted from Ty and TC, and then J+O
can be droppéd from equation 1 (i.e., T_ is the reference or zero level for
the temperatures). Thus, from Equation§ 1 and 2

E D 1 1
KCQ:(E'-FK) 'el"‘“ﬁ"ez (3)
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This is the baslc relation that can be used to determine the value of 1
s=1w

=)
et Sl

and %- when-% and-% are known for s=iw (w = 2nf where £ is the
s=1w

frequency). Conversely when a wall is tested that has known values of-% and

%-the results can be used to determine §=and %a This 1s the way the

metering box is calibrated.

‘Determination of glsgim

The climate chamber temperature 1s kept at a constant value, T., and
the power to the metering-box 1s varled sinusoidally at an angular
veleocity w, that is

P=P+ % ei(wt + B) (4)

This cyclical variation of the power produces a corresponding cyelical
varlation of Ty

T, = T, + §, L+ (5)
Thus with Tc constant
G+ =@ & L LEM (6)
s=ilw s=1iw Th

The values of the real and imaginary parts in this complex

expression depend on the value of w. When-% and«% are known
s=1iw s=iuw
from a calibration of the hot box (as explained later), the value of

2 can be obtalned from the results of a cyclical test using

s=iw
equation 6.

Example T
Data for the metering box obtained from calibration for

f =1 eycle/day (w = 0.2618 rad/h)

A = 595 [n?]

E = 1,00 |~0.8°




I = 24,5 |54.1°

(/%]

Test conditions and measured quantities:

-3
]

-20.0 [°c]

150.0 + 90.0

i)
[

3
i

20,0 [°c]

e
]

0.2618 [rad/h]

H
fn

0.0° [W]

h 20.0 + 1.92 [-54.2° [°C]

Derived quantities:

wl o
+
o et
|

But %

P

150.0 = 0.630

U = — -
A(Th - Tc)

L
i

w3
i

1.00 =08

5.95 (40.0)

= 1.586 [mZ-K/w]

90.0 Lg;g

= ey ¢

7.87 |53.4°

4.69 + 1 6.32

for the box is repres

I
T = 2.41 41 3.33

" 1.92 l—54.2)

[W/(m2eK) ]

ented as

[W/ (m2K) ]

[W/(m2eK) ]




Therefore

D
3 2.28 + 1 2.99

= 3.76 |52.67° [W/(m2eK) |

Determination of-%

s=iw

For this test the climate chamber temperature, T., 1s varied
sinusoidally and the power to the metering chamber is kept constant.
causes a sinusoidal variation of The
In this case

T =T 4+ T ei(wt+w)
c c c

and from Equation 3:

™~

1 D I T, LY
3 =E+P * (= )
s=iw s=iw Tc s=iw
Example 11

Test conditions and measured quantities:

T, = -20.0 + 10.0 [0.0 [°C]
P = 150.0 [W] |
Ty = 20.0 + 0.22 |-211.1° [°c]
T = 20. e
g 0.0 [°c]
0.2618 [rad/n]

- E
]

Derived quantities:

From the previous test

This

N




D I
— °
3 i 7.87 |53.4

1 0.22 =211.1
Thus 3= (7.87 i53.4) ( 100 ] ) )]

|
= 0,173 |[=157.7° [W/(m2:K}]
i

or §=o.275 ~157.7°

= =0.254 -~ 1 0.104

These values for the real and imaginary parts of %» can be
. s=iw
compared with the values derived from the time-constants and residues. It

should be noted, however, that the values derived from the results of the

cyclical tests may have a relatively large uncertainty because the amplitude

~

Th can be quite small, The value of-% s on the other hand, will have a
s=1iw

much smaller probable error because of a larger magnitude of f;.

Calibration of the Metering,Box

E
The transfer functions«x and-% for the metering box can
s=iw s=1w

be determined for various frequencies in the same way as the frequency

response of a wall is determined. But for this calibration the test wall
must be one whose transfer functions are known. This 1s best obtained with

a wall that 1s made of a homogeneous materlal whose thermal properties are

known. In this case the transfer functions %- and 3— can be
s=iw =1
derived from the dimensions and thermal property values. Thus for a
calibration test %- and E- are the unknowns.
s=1w s=1iw

In this case the first test has P held constant while Tc is varied
sinusoidally, i.e. the same test conditions as for %u

Equation 7 can be rearranged to




F |y

D 1 1 c
(=+ ) = () (( —) (8)
B A B ~

T, LY

As % and % are known for the wall that 1s used for the calibration,
equation 8 gives the value for —:i--
For this case a 100 mm expanded polystyrene wall was used and the

values of {- and %were found to be
1
N 4,117 154.1
nd E = (0,168 {-0.8
a A L ] -

Then having determined the value of % + %:, it can be used in

equation 6 to obtain % as:

~

£, Ly
E D I H
re (E+Z)(’P§'_[§—)
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