
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Student Report; no. SR-2009-17, 2009-01-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=ef6c81c8-89cc-40ec-9895-1aa2486a7e83

https://publications-cnrc.canada.ca/fra/voir/objet/?id=ef6c81c8-89cc-40ec-9895-1aa2486a7e83

NRC Publications Archive
Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien
DOI ci-dessous.

https://doi.org/10.4224/18253250

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Porting of the Wave Analysis Module to SWEET
Young, Adam

National Research
Council Canada

Institute for
Ocean Technology

Conseil national
de recherches Canada

Institut des
technologies océaniques

SR-2009-17

Student Report

Porting of the Wave Analysis Module to SWEET.

Young, A.

Young, A., 2009. Porting of the Wave Analysis Module to SWEET. St. John's, NL :
NRC Institute for Ocean Technology. Student Report, SR-2009-17

 DOCUMENTATION PAGE

REPORT NUMBER

SR-2009-17

NRC REPORT NUMBER

DATE

August 2009

REPORT SECURITY CLASSIFICATION

Unclassified

DISTRIBUTION

Unlimited

TITLE

PORTING OF THE WAVE ANALYSIS MODULE TO SWEET
AUTHOR(S)

Adam Young
CORPORATE AUTHOR(S)/PERFORMING AGENCY(S)

Institute for Ocean Technology, National Research Council, St. John’s, NL
PUBLICATION

SPONSORING AGENCY(S)

Institute for Ocean Technology, National Research Council, St. John’s, NL
IOT PROJECT NUMBER

NRC FILE NUMBER

KEY WORDS

GEDAP, Wave Analysis, ZCA, VSD, SWEET

PAGES

FIGS.

8
TABLES

SUMMARY

This document serves as a reference to future developers working on or with the wave
analysis modules in SWEET (ZCA, VSD, FFT). It provides background information on
design decisions as well as an overview of the math involved in each module.

ADDRESS National Research Council
Institute for Ocean Technology
Arctic Avenue, P. O. Box 12093
St. John's, NL A1B 3T5

Tel.: (709) 772-5185, Fax: (709) 772-2462

National Research Council Conseil national de recherches
Canada Canada

Institute for Ocean Institut des technologies

 Technology océaniques

Porting of the Wave Analysis Module to Sweet

SR-2009-17

Adam Young

August 2009

 i

Contents

1 Introduction………………………………………………………………..1

2 Zero Crossing Analysis……………………………………………………2

 2.1 Overview 3

 2.2 Down Crossing Analysis 3

 2.3 Pre-Analysis Processing 4

 2.4 Wave Train Analysis 4

3 FFT Module……………………………………………………………….7

4 VSD Module……………………………………………………………....8

 4.1 Design Overview 8

 4.2 Wave Train Processing 8

 4.3 Spectral Smoothing 9

 4.4 Spectral Moment Calculation 11

 4.5 Formula Discrepancy 11

 1

1 Introduction

At the current time, the Software Engineering Group (SEG) of the National Research

Council’s (NRC) Institute for Ocean Technology (IOT) is switching to Python as its

preferred programming language. With some exceptions, the majority of new software

the department is producing is being written in Python. Older software already in use is

also being ported to the language. The reason for this transition to Python is beyond the

scope of this report. Instead, a closer look at the porting process of a specific module will

be performed. Development decisions and mathematical background of the module will

be explored providing future developers reference when attempting to update or interface

with the software.

 The module in question is the Wave Analysis Module, which is part of the

Generalized Experiment Control and Data Acquisition Package (GEDAP). The GEDAP

software is written in Fortran and currently runs in a Virtual Memory System (VMS)

environment. To access the software, users usually connect to a VMS server remotely

through a command line terminal called GECKO. Transferring data to and from the

GEDAP software for analysis can become tedious as it involves running exportation

routines and sometimes editing files in excel.

This incompatibility of current Python software and GEDAP is the main reason

for porting the functionality of the Wave Analysis Module to the Software Environment

for Experimental Technologies (SWEET). SWEET is a Python framework developed by

IOT and the Institute for Information Technology (IIT) that provides groundwork for data

manipulation and analysis. By integrating functionality from the Wave Analysis Module

into SWEET data can be handled in a standardized manner common to the other tools

 2

available in the framework. In particular, the Channel and ChannelCollection data

structures provide versatile methods of data storage with multiple built in math routines.

The Wave Analysis Module itself is actually made of multiple smaller modules.

These consist of a Zero Crossing Analysis (ZCA) module, a Fast Fourier Transform

(FFT) module and a Variance Spectral Density (VSD) module. Each of these is

implemented separately in SWEET. Although developed as stand alone tools, the ZCA

and VSD modules could easily be integrated as part of the Channel class as they both

take a channel object containing a wave train as their main argument. Despite this, the

fact that they both do not alter the original channel and produce a separate

ChannelCollection object as a return classifies them more as external routines.

 3

2 Zero Crossing Analysis

2.1 Overview

The ZCA module is the simplest of the modules from a mathematical standpoint. The

analysis is performed completely in the time domain and does not involve calculus.

Although given a generalized name of zero crossing analysis, the module actually

performs a down crossing analysis in order to calculate basic wave train statistics such as

wave height and average period. The raw data from the down crossing analysis can be

used to calculate both down crossing and up crossing parameters.

2.2 Down Crossing Analysis

 In a down crossing analysis a wave cycle is classified as shown in Figure 1. The

cycle starts with a zero crossing that precedes a trough and ends with the zero crossing

that follows the adjacent crest. This definition is important for the analysis as any part of

the wave train that appears before a full wave cycle is discarded. This discarded portion

is indicated in Figure 1 as the “Cut Off Region”.

Figure 1: Down Crossing Cut off Region

 4

2.3 Pre-Analysis Processing

 Before any analysis is performed the wave train undergoes a trend removal

process. The type of trend removal is user specified upon calling the function. There are

options for removing a mean, removing a linear trend, and providing a mean to remove.

These options ensure that the time series is not shifted or skewed in a manner that will

hinder a zero crossing analysis.

 In order for the analysis to be accurate it requires an average of fifty sample

points per wave. If this requirement is not met the wave train must be resampled. The

current implementation uses a cubic spline routine built into the Channel object of

SWEET. After isolated testing of the spline routine it has been proven to produce

identical results to routines provided by GEDAP.

2.4 Wave Train Analysis

 Once the wave train is in an acceptable form the actual down crossing analysis

takes place. During the analysis troughs and crests are processed sequentially until the

last full trough or the last full crest is encountered. This means that an analysis may end

midway through a full wave cycle. For each cycle four points are recorded; the down

crossing time to start the wave, ordered pairs for the trough and crest, and the up crossing

time between trough and crest. Due to the data being discrete, it is almost certain that

points will not lie perfectly on zero crossings or maxima/minima, therefore interpolation

is used to calculate these points.

 Crest and trough values are calculated using a parabolic fit of the highest/lowest

sample points and their two adjacent sample points. An attempt to use built in SciPy

regression methods to calculate crest and trough values was not successful. The

 5

regression calls produced a bottleneck that slowed overall execution speed to an

unacceptable level. A simple math expression for the quadratic equation of a line passing

through three points was therefore derived to maximize speed. This is more criptic than a

named function call but is the only way to eliminate the bottleneck.

 Calculation of zero a crossing time is more straightforward. First, the two sample

points that occur on either side of a zero crossing are found. Then, simple linear

interpolation is used to find the time at which the zero crossing occurs.

An important aspect of the ZCA is noise removal. This is accomplished in two

different ways. The first is a minimum wave threshold. This comes into effect during the

processing of the waves. To register a crest the wave train must not only produce

positive y-value samples, but also the samples must be larger than the minimum wave

threshold. No matter how many consecutive values appear above the x-axis, a crest will

not register until at least one point crosses the minimum wave threshold. This also

applies to troughs but the minimum wave threshold is inverted. Noise reduction is also

Figure 2: Minimum Period Filtering

 6

obtained through minimum period filtering. This is performed after the wave train has

been processed. Each wave is checked to ensure that its length is greater than the

minimum period. If it is not, the wave's zero crossings, trough point and crest point are

removed, absorbing it into the preceding wave. This is shown above in Figure 2 where

the middle wave cycle is shorter than the minimum period. After filtering it is absorbed

into the first wave.

 7

3 FFT Module

 The fft module provides the low level functionality needed in a VSD analysis. It

was produced in SWEET as a stand-alone module in order to supply the rest of the

framework with access to fft routines. The actual fft calculations are performed by

SciPy's built in fft method. This pre-built function is paired with some data processing to

provide the exact functionality present in the GEDAP module. One of the most

prominent features is that data sets passed into the fft must have a length that is a power

of two. This was done for a few reasons. Firstly, it is specifically stated in the

documentation for SciPy's fft method that it is most efficient on data that has a length that

is a power of two. SciPy does offer an option for zero padding to this length in the fft

routine, however zero padding is not the only way. Other methods such as resampling

may be preferred. By forcing the data to already be of optimal length it ensures quick

execution time and leaves it up to the user to determine how they would like to alter the

data to meet the requirement. Secondly, requiring an optimal length matches the manner

in which the GEDAP implementation expects its arguments.

 The form of the input argument for the inverse fft is in a fairly unusual form. It

takes a channel collection consisting of a real and an imaginary channel that represent a

spectrum to be transformed. This decision was made so that the output of the forward fft

routine could be used in its unaltered form with the inverse fft routine to produce the

original data.

 8

4 VSD Module

4.1 Design Overview

 The VSD analysis contains the most complicated math of the wave analysis

package. It is a lengthy process and is therefore divided into multiple functions. The

way in which it was divided was chosen to mimic the division of GEDAP’s VSD routine,

as focus during development was to obtain a working module. From a Pythonic

viewpoint, this was not the best way in which to separate the module. For purposes of

testing and clarity some of the larger functions such as spectral_density and

moving_average_filter should have been broken down further into smaller functions

based on different low-level functionality. Some processing in the vsd method should

have also been split into its own function to keep the main method, which will be used

externally, as clean as possible. Given time, a refactoring of this module would improve

clarity but is unnecessary for functionality.

4.2 Wave Train Pre-processing

 Before a wave train is passed to the fft routine it undergoes some processing.

First, its length is converted to be a power of two. This ensures an efficient execution of

the fft. It can also improve leakage in the spectrum. The method for extending length

varies depending on the data. If the wave train is non-cyclic then it is zero padded until it

reaches an acceptable length. All zeros added are appended to the end of the data. In the

case of a cyclic wave train, re-sampling is used to preserve its cyclic nature.

 For non-cyclic data, a data window may also be applied. This is done after zero

padding has taken place. Currently there are two types of data windows available; a

cosine bell and a trapezoidal. The transition length for each data window is specified by

 9

an alpha value. Alpha represents the ratio of the length of the wave that is to be tapered.

Each end is tapered the same amount meaning alpha values must fall between 0.0 and

0.5. Examples of the data windows are shown in Figure 3 below.

4.3 Spectral Smoothing

After the Fourier transform smoothing of a spectrum is performed by a moving

average filter. Successive values in the spectrum are averaged together into fewer values

and the process acts as a low pass filter eliminating high frequency noise. Just how high

a frequency to eliminate is determined by the filter bandwidth or degrees of freedom the

user desires. Equation 1 relates the two values, where m is the length of the wave train

before zero padding / re-sampling, dt is the wave train sampling period just before the fft,

and alpha is the value used to specify data window size.

Figure 3: Data Window Types

Equation 1: Bandwidth and Degrees of Freedom Relation

 10

The desired bandwidth is then used to determine the size of the averaging window

needed. This relationship is show in Equation 2 where n is the length of the wave train

after padding / re-sampling.

This window size dictates the number of values used in each averaging calculation as

well as the number of values in the filtered spectrum. Figure 4 shows the first three

iterations of a moving average filter with averaging window of three. It should be noted

that the averaging filter used for vsd is actually a moving sum filter. All numbers in the

averaging window are summed together but are not divided by the number of values in

the window. This still smoothes the spectrum but affects the scaling.

Equation 2: Averaging Window Size

Figure 4: Moving Average Filter Process

 11

4.4 Spectral Moment Calculation

 Calculation of spectral moments is one of the most important parts of the vsd

module. Almost all other spectral attributes are determined using these moments.

Although based on a simple integral, these moments present a problem, as they have to

be calculated on very large data sets. To obtain the execution speed required, the integral

was derived to an algebraic expression representing the nth spectral moment of a straight

line between two points. This expression is then applied to each set of adjacent values in

the spectrum. The general formula for a k
th

 order spectral moment is show in Equation 3.

Here f represents frequency and S(f) is the spectral value at f. Equation 4 shows the

integral derived for a straight line between two points, (X1, Y1) and (X2, Y2).

4.5 Formula Discrepancy

 During the porting process an irregularity was found in the formula for Goda’s

Peakedness Factor. The expression programmed into GEDAP did not match the

expression found in reference material. The reference material was dated after

development of the module so the newer formula was used. This is the only value

Equation 3: Spectral Moment Integral

Equation 4: Spectral Moment Derived Expression

 12

produced in SWEET’s vsd routine that will not match the corresponding value from

GEDAP.

