NRC Publications Archive Archives des publications du CNRC

Lower cost, lower weight and greener polypropylene biocomposites for automotive applications

Mihai, Mihaela; Stoeffler, Karen

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/23000804

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=d5b176e0-ceb9-4a43-9795-3e047f33b1f5 https://publications-cnrc.canada.ca/fra/voir/objet/?id=d5b176e0-ceb9-4a43-9795-3e047f33b1f5

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

PRESENTATION OUTLINE

- > About National Research Council Canada
- > NRC's green vision
- > Materials, processes and characterization
- Bio-based PP compounds:
 - > Lower-cost biocomposites
 - > Lighter biocomposites
 - > Greener bioblends and biocomposites
- > Summary

NRC CNRC

National Research Council Canada: A Research & Technology Organization

- Mission-oriented provides innovation services to companies, organizations and governments (R&D projects, technical services, consortiums, Industrial Research Assistance Program)
- ➢ Bridges gap between early stage R&D and technology deployment
- > Builds economic competitiveness and improving quality of life

NRC: Biomaterials for automotive applications Value Proposition

Stronger, tougher thermoplastic / biofiber materials for lighter, lower-cost and eco-friendly applications:

- · Forestry and agricultural cellulosic fibers;
- Sustainable biomaterials;
- Cellulosic biofiber contents up to 50%;
- Weight reduction up to 25%;
- Reduction in material costs, energy cost = <u>Cost savings</u>;
- Custom made formulations to meet industry requirements.

NRC's green vision for PP

- > Focus on replacement of PP filled with minerals and PP-glass fiber composites by PP bio-compounds;
- The substitution of petroleum-based PP compounds and PP composites by biocomposites containing cellulosic fibers can <u>allow weight and cost</u> reductions;
- The use of injection foaming process allows to further reduce the weight and the cost of the parts;
- The substitution of a part of PP by a bioplastic is a <u>way to increase renewable content</u>.

NRC offers solutions for novel PP biocomposites and bioblends which:

- Could be cost competitive, greener and lighter;
- Could have equivalent or higher performance compared at conventional materials.

Materials

- PP: Pro-fax 6323 general purpose homopolymer from Lyondell Basell for injection molding applications. PLA: 8302D amorphous grade from Nature Works, was selected as bio-sourced minor phase;

- Commercial PP grades used for comparison purposes were:

 PP 20 % talc Accutech 20t. & PP 40% talc Accutech 40t.

 PP 20 % GF Polifil GFPP-20 & PP 40% GF Polifil GFPP-40

Fibers:

- Cellulosic fibers contents: up to 40 wt.%;
 Short flax fibers: was supplied by Schweitzer Maudult Canada;
 Thermo-mechanical pulp (TMP) fibers: was supplied by SEC Papier Masson WB,
 Wood fibers (WF) in the form of dices (WoodForce) were supplied by Sonae Industria;
- Short glass fibers (GF), 3 cm in length, were a commercial grade;

NRC-CNRC

Processing & Characterization

Compounding line:

Testing

- Morphology: Scanning Electron Microscopy (SEM)
- Tensile properties (TS, TM, e%) ASTM D638
- Impact strength (IS_{Izod}) ASTM D256
- Heat Deflection Temperature (HDT) ASTM D648

NRC demonstrators based on Polyolefins biocomposites

Recycled Polyolefins / 10-50% cellulosics: thermoformed sheets for trim and molding applications

NRC-CNRC

NRC demonstrators based on Polyolefins biocomposites

- Recycled Polyolefin / cellulosics: extruded foamed profiles.
- · Up to 25% weight reduction compared to unfoamed profiles.
- · Applications: decking, door and window profiles, others...

NRC demonstrators based on Polyolefins biocomposites

Polyolefins / cellulosics biocomposites: Sidings obtained in extrusion and extrusion foaming

MC CMC

Summary

- > NRC biocomposites based on PP and PP/PLA are:
 - Equivalent in terms of mechanical and thermal properties to conventional PP-based materials currently used by automotive industry;
 - Lower-cost due to a content up to 50 wt.% of renewable resources;
 - Lighter due to:
 - · Partial or complete replacement of glass fibers by cellulosic fibers;
 - Foaming in injection molding;
 - Greener when a bioplastic replaces a part of the PP matrix.
- > We also developed:
 - PE and PE/PLA based biocomposites with cost and weight reductions;
 - PA6 and PA6/PLA based biocomposites with cost and weight reductions;
 - ABS and ABS/PLA based biocomposites with cost and weight reductions;
 - PP, ABS and PA6 based biocomposites with continuous cellulosic fibers by D-LFT process.
- > Those lower-cost, lighter and greener biocomposites could replace the petroleum compounds and composites in automotive applications.

MC CINC

