
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Student Report; no. SR-2009-30, 2009-01-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=d1b52ec7-0ef0-466c-88b9-3a5aeeddbed6

https://publications-cnrc.canada.ca/fra/voir/objet/?id=d1b52ec7-0ef0-466c-88b9-3a5aeeddbed6

NRC Publications Archive
Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien
DOI ci-dessous.

https://doi.org/10.4224/18253445

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Design Guide for Wake Survey Positioning Software Version 1.0
Coish, Bryan

National Research
Council Canada

Institute for
Ocean Technology

Conseil national
de recherches Canada

Institut des
technologies océaniques

SR-2009-30

Student Report

Design Guide for Wake Survey Positioning Software
Version 1.0.

Coish, B.

Coish, B., 2009. Design Guide for Wake Survey Positioning Software Version 1.0. St.
John's, NL : NRC Institute for Ocean Technology. Student Report, SR-2009-30.

 DOCUMENTATION PAGE

REPORT NUMBER

SR-2009-30

NRC REPORT NUMBER

DATE

December 2009

REPORT SECURITY CLASSIFICATION

Unclassified

DISTRIBUTION

Unlimited

TITLE

DESIGN GUIDE FOR WAKE SURVEY POSITIONING SOFTWARE VERSION 1.0
AUTHOR(S)

Bryan Coish
CORPORATE AUTHOR(S)/PERFORMING AGENCY(S)

National Research Council, Institute for Ocean Technology, St. John’s, NL
PUBLICATION

SPONSORING AGENCY(S)

IOT PROJECT NUMBER

NRC FILE NUMBER

KEY WORDS

Wake Survey, Python, Aerotech, Soloist

PAGES

iii, 20, App. A

FIGS.

10

TABLES

3

SUMMARY

The wake survey experiment is used to profile water flow around a ship's propellers.
This is done by positioning pressure sensors at various locations using a two axis
stage. Two Soloist motion controller manufactured by Aerotech, with each controller
operating a single axis motor, controls the stage. The Wake Survey Positioning
software provides a user interface to the controllers and allows execution of a
runfile. The runfile contains a list of points where pressure data is to be collected.
Typically there is insufficient tanks space to complete all the points in a single run,
therefore points are organized into multiple runs. The Wake Survey Positioning
software contains several software components that interact together to perform a
wake survey. These components are responsible for communications with the
controllers, operations with the runfile, and application support operations such as
configuration management. Components are also present for decoupling the model
from the graphical user interface. Additionally, two programs run the motion
controllers that provide status feedback and analog output of positional information.
This report will discuss design of these modules and operation of these modules.

ADDRESS National Research Council

Institute for Ocean Technology
Arctic Avenue, P. O. Box 12093
St. John's, NL A1B 3T5
Tel.: (709) 772-5185, Fax: (709) 772-2462

National Research Council Conseil national de recherches
Canada Canada

Institute for Ocean Institut des technologies
 Technology océaniques

Design Guide for Wake Survey
Positioning Software Version 1.0

SR-2009-30

Bryan Coish

December 2009

NRC-IOT SR-2009-30

i

Abstract

 The wake survey experiment is used to profile water flow around a ship's propellers.

This is done by positioning pressure sensors at various locations using a two axis stage. The

stage is controlled by two Soloist motion controller manufactured by Aerotech, with each

controller operating a single axis motor. The Wake Survey Positioning software provides a user

interface to the controllers and allows execution of a runfile. The runfile contains a list of points

where pressure data is to be collected. Typically there is insufficient tanks space to complete all

the points in a single run, therefore points are organized into multiple runs. The Wake Survey

Positioning software contains several software components that interact together to perform a

wake survey. These components are responsible for communications with the controllers,

operations with the runfile, and application support operations such as configuration

management. Components are also present for decoupling the model from the graphical user

interface. Additionally, two programs run the motion controllers that provide status feedback

and analog output of positional information. This report will discuss design of these modules

and operation of these modules.

NRC-IOT SR-2009-30

ii

Table of Contents

List of Figures ... iii

List of Tables .. iii

List of Equations ... iii

Introduction .. 1

Application Backend ... 1

The Controller Backend... 2

Overview ... 2

Design .. 3

Logging System ... 6

Overview ... 6

Design .. 7

Configuration System .. 8

Overview ... 8

Design .. 9

RunFile System .. 10

Overview ... 10

Design .. 11

The Event System .. 12

Overview ... 12

Design .. 13

Soloist Based Programs ... 14

Wake Survey Feedback ... 14

Analog Positioning .. 16

Graphical User Interface Interactions ... 17

Conclusion ... 19

Recommendations .. 19

Works Cited ... 19

Appendix A: Sample RunFile ... 20

NRC-IOT SR-2009-30

iii

List of Figures

Figure 1: Controller Interface Class Diagram .. 3

Figure 2: Network Layer Class Diagram .. 5

Figure 3: Logging System Class Diagram ... 7

Figure 4: Configuration System Class Diagram ... 9

Figure 5: RunFile System Class Diagram ... 11

Figure 6: Event System Core Class Diagram .. 13

Figure 7: Event Object Class Diagram ... 14

Figure 8: Analog Positioning Startup and Loop Sequence .. 17

Figure 9: AppManager System Class Diagram .. 17

Figure 10: Event Push to GUI .. 18

List of Tables

Table 1: Supported Commands... 15

Table 2: Response Characters ... 15

Table 3: Control Characters .. 15

List of Equations

Equation 1: Analog Positioning Scalar Equation ... 16

report.docx#_Toc248892216
report.docx#_Toc248892217
report.docx#_Toc248892218
report.docx#_Toc248892219
report.docx#_Toc248892220
report.docx#_Toc248892221
report.docx#_Toc248892222
report.docx#_Toc248892223
report.docx#_Toc248892224
report.docx#_Toc248892225

NRC-IOT SR-2009-30

1

Introduction

 The wake survey positioning application is responsible for interfacing with two Soloist

Motion Controllers from Aerotech. They control a stage which is used to position pressure

sensors at various locations within the wake of a vessel. A wake survey is design by specifying a

series of points within a file, called a runfile, that normally form a circle with a radius that is

proportional to the propeller radius. The software is responsible for parsing and executing this

file. The execution process involves moving to a point and then pausing to allow data collection.

In a typical wake survey there is not enough tank length to execute all points so they are broken

up into runs.

 The application consists of a main application, written in Python 2.5 and two supporting

applications, written in AeroBasic and run on the Soloists. The user interacts with the Python

application which uses the AeroBasic application for feature support. The main application

consists for three subcomponents, a backend, an event system, and a Graphical User Interface

(GUI).

 To assist in further development of the application this report is intended to assist in

understand the source code structure.

Application Backend

 The backend subcomponents contain the interface to the two Soloist, a logging system,

a configuration system, and the runfile system. The backed is designed to be GUI independent

which allows for easy GUI replacement.

NRC-IOT SR-2009-30

2

The Controller Backend

Overview

 This component is responsible for interfacing with the Soloists for command and

control. It provides both operation of the controllers and feedback of various controller status

information.

 The ASCII Command Interface is used to send motion commands to the controller. This

interface is provided by Aerotech as one of the interfacing options for the Soloist. To use this

interface AeroBasic commands are sent to the controller as ASCII encoded strings using

Ethernet communication interface. The Soloist acts as a TCP/IP server waiting for commands

from the client. The ASCII Command Interface uses the following syntax for commands and

responses.

 Commands: <AeroBasic Command><EOSChar>

 AeroBasic Command - An AeroBasic language command

 for the controller.

 EOSChar - End of Stream character specified in the controller

 configuration.

 Responses: <Response Char>[<Response Data>]<EOSChar>

 Response Char - Single character response code that indicates if

the command succeeded, failed, or there was a task fault.

 Response Data - Sent only if the command expects return data

 EOSChar - Normally only sent with response data but the

controllers are currently configured to alway send EOSChar in the

response

(Aerotech, 2008)

NRC-IOT SR-2009-30

3

 The Ethernet sockets provided by the Soloist and by the Python socket API are both very

low level. To deal with this a network layer is used for error handling and timeout management.

Design

 The primary set of classes for the controller backend interface with two Soloist

providing command and status feedback. This set of classes has the following structure.

Client access to the system is through the MotionManager class. Calls made are forwarded to

the correct lower level class, however if the system is experiencing a communication failure the

MotionManager will not attempt to forward a call. When MotionManager is created the

controllers are not connected automatically, instead the client must actively request a

connection. The purpose of this design is to allow the application to start in a no connection

Figure 1: Controller Interface Class Diagram

NRC-IOT SR-2009-30

4

state. Calls to the MotionManager either act on a single controller or both controllers. For calls

that act on a single controller the requested axis is passed in.

 SoloController class provides high level control of a single Soloist, the MotionManager

contains two SoloController instances. These calls are responsible for accepting logical motion

control and status requests and then making the correct calls to the backend layer responsible

for using the ASCII Command Interface. Once the call is made it is then responsible for

formatting the return values to a logical return value. Calls to the SoloController are forwarded

to the Commander class which is responsible for interfacing with the ASCII Command Interface.

Various string commands are implemented as function calls to reduce possibility of incorrect

string commands being sent to the Soloist. Responses from the Soloist are parsed and returned

to SoloController. Should a bad command be sent or a NAK returned by the Soloist, a command

error event is generated. The Commander will also generate a communication error event

should the connection fail.

 For status monitoring the SoloController uses the SoloControllerMonitor class to poll

the Soloist to get status and fault information. SoloControllerMonitor uses the Wake Survey

Feedback program running on the Soloist to obtain the various status and fault information. If

the return value changes then events are generated.

 The Soloist are a single axis motion controllers, therefore to allow multi-axes control the

application needs to control both Soloists to generate coordinated movement. This is done

through the DualController class. Using both SoloControllers this class allows for calls that affect

the system instead of a single Soloist. Motion calls are blocked until both Soloists are in position

thus providing basic coordinated motion. To generate system based events from two

SoloController, the event generated needs to be merged in the sense that a logical decision is

made to decide if the individual controller status change should be considered a system change.

For example, if only one of the Soloist is homed then the system should not be considered

homed. This merging task is the responsibility of the DualControllerMonitor class.

NRC-IOT SR-2009-30

5

 When motion operations are requested the MotionManager checks with LimitManger

to see if the requested position falls within a keepout region. This is an experimental system

and not fully implemented yet.

 To deal with low level Ethernet sockets on the Soloist and low level socket API provided

by Python, a networking layer was developed to be used by the Commander,

SoloControllerMonitor, and DualControllerMonitor classes. The network layer has the following

structure.

 Client code uses the NetworkEngine class to send requests to the Soloists and receive

responses. The Request and Response classes are used to package data to be sent and received

from the Soloists. When the client calls the request function, a request object is constructed

and passed to _doRequest function which then communicates with either the ASCII Command

Interface or WakeSurvey Feedback on the appropriate Soloist. The client specifies the request

destination using a channel concept. There are four channels, two per Soloist. One channel is

for the ASCII Command Interface the other for WakeServey Feedback. The channel actually

represent different ports on the Soloist.

Figure 2: Network Layer Class Diagram

NRC-IOT SR-2009-30

6

 Channels are implemented as instances of the SocketHandler class. SocketHandler

manages the Python socket that is connected to the Soloist. Python sockets operate at a lower

level then sockets of other similar languages such as Java. One issue to deal with is that Python

sockets deal with exceptions as either a general error or a timeout. The SocketHandler class

uses these simple exceptions to produce more meaningful exceptions using the

ConnectionException, NetworkExecption and TimeoutExecption classes. Concurrent access

control is provided by each SocketHander instance having its own lock.

 Another issue is that the connection on the Soloist side timeouts after a period of time

but the Python side doesn't become aware of this. One obvious solution is to open a new

socket when sending and then closing this socket when the response is received. It was

determined through an earlier implementation that the Soloist's Ethernet system can't handle

rapid open and closing of connections required by the application. Therefore the connection to

the Soloist is left open. Most ASCII Command Interface commands return a response within a

few milliseconds so the timeout on the Python socket is kept short to quickly detect failures.

However the HOME command does not return a response until the home cycle is completed

which can take several seconds depending on the travel distance and the home velocity. To

deal with this issue a long running flag can be passed into the request to lengthen the timeout

to prevent false errors. Additionally, a heartbeat thread is used to prevent timeouts due to

application idle.

Logging System

Overview

 The Logging System provides an abstraction layer for the underlying Python logging

system. This places all of the logging configuration in a single location and also exposes any

necessary logging support provided by the Python module without the need to directly import

NRC-IOT SR-2009-30

7

elsewhere in the application. The Logging System configures three logger, a general purpose

loggers, a logger for the controller system and a logger for the runfile execution system. These

loggers operate on a rotating log file system. A system for connecting external components to

the logging output is also provided. This is useful for GUI components.

Design

 The design of the logging system is relatively simple due to the fact that it relies heavily

on Python's logging module. This simplicity can be seen in the visual design shown below.

 The LoggingManager is responsible for configuring the loggers, the file rotation and log

record format. In addition to this the LoggingManager captures the three failure events from

the controller (Communication Failure, Command Failure and Axis Fault) and logs them

automatically. The client codes does not need to access the LoggingManger to get a reference

Figure 3: Logging System Class Diagram

NRC-IOT SR-2009-30

8

to a logger because the Python logging function getLogger is exposed through the module. For

the most part the logging system module can be used like the Python logging module without

the need to import.

 The other major feature provided is the AppHandler class. This class extends the Python

logging class Handler which allows direct interfacing with the Loggers. Classes that implement

the AppObject interface can then be passed into a AppHandler instance and then registered

with the loggers. When a log record is generated the logger calls emit on the AppHandler which

then calls write on the AppObject passing in the string form of the formatted log record. One

use case is connecting a GUI object to the logging system.

Configuration System

Overview

 The configuration system allows persistence of the various settings needed by the

application. These settings include the network address of the controllers. The format for

storing the configuration files was XML. This was done due to the standardization and human

readability of XML. Instead of manually constructing the XML from a Python class, the

configuration system allows the serialization of Python classes to XML. This allows quick

development of additional configuration files.

 To develop a configuration file first a Python classes is created which contains attributes

with associated setters and getters. Decorators are then applied to the setters and getters.

Once this is done the configuration system can now serialize and deserialize the class.

NRC-IOT SR-2009-30

9

Design

 This module is again of simple design, as seen below, given the user friendly features it

provides when dealing with the configuration file.

 The clients use the ConfigManager to access various configuration files. Calls in the

ConfigManager will initiate the serialization process. When the ConfigManager is constructed it

will attempt to deserialize the configuration files, if they are not present default files are

constructed. The ConfigFile class represents a configuration file. This can be any Python class

with the only condition that the class has a zero argument constructer and the appropriate

setters and getter are decorated.

 The main components of the system are the Persister, Config and Setter classes. The

Config and Setter classes are the decorators. Config is applied to the getter function and Setter

is applied to the setter function. These classes add metadata to the function by leveraging the

fact that in Python functions of a class are objects themselves and can have attributes added at

runtime. The metadata contains type of the function, either a setter or getter, plus additional

information for formatting the attribute value for serialization to XML. This additional

information is specified during the decorating process. Presister uses this metadata to either

Figure 4: Configuration System Class Diagram

NRC-IOT SR-2009-30

10

serialize or deserialize the configuration file. To serialize (write function) the Persister uses

reflection on the request class looking for functions that have the metadata with a type

"getter". It then calls that function to get the value and using the additional information in the

metadata converts the value to a XML version to write to the file. To deserialize (read function)

the XML is parsed into a data structure. The client passes in a blank instance of the

configuration file object which is inspected using reflection to find the functions with metadata

of type "setter". Additional information is used to format the XML data to match the type the

configuration class is expecting. The function is then called applying the data to object.

RunFile System

Overview

 The runfile contains all the points to visit during the wake survey. Additional information

such as velocity and acceleration are contained in the runfile (see Appendix A for sample

runfile). The runfile is stored in XML format like the configuration files, again because of

standardization and human readability. The runfile system is responsible for generation,

persistence and execution of the runfiles.

 Each point in the runfile consist of a x and y pair. For polar point the x value represents

the radius while the y value represents the angle. Also included is a lag time to determine how

long the stage is kept at that point for data to be collected. An executed flag in the point

indicates if the point has be executed.

 A separate application has been developed for the construction and editing of the

runfile. This application uses this system to work with the runfiles and support creation, editing

and saving of runfiles with a extension runx.

NRC-IOT SR-2009-30

11

 Typically there are more points to execute then travel distance available in the tank,

therefore the points are split into runs. The runfile system provides support for this

requirement.

Design

 The RunFile module is fairly complex, second only to the controller backend. As shown

below there are several major classes involved in the module.

 The Runfile class is the primary container that stores the runfile data. It contains several

Point objects which represents the points. The Point class contains all the data associated with

a single point. There are several functions in the Runfile class that are used to construct,

Figure 5: RunFile System Class Diagram

NRC-IOT SR-2009-30

12

serialize and deserialize the Runfile. These functions use the RunFileGenerator, RunFileReader

and RunfileXmlGenerator classes to perform these actions.

 The RunFileGenerator class is responsible for constructing a RunFile instance. The class

accepts data from a GUI which may be in string format and coverts the data to the correct

format for the runfile. It also generates a set of points based on a start/end angle, a delta angle,

and a set of radii. The generated points will form circles around the zero point with a radius

that fall in the set of radii provided. The RunFileReader deserialize the XML file to construct a

RunFile instance. The RunfileXmlGenerator class serializes the RunFile instance to XML and

stores it in a file location provided to it.

 To handle the splitting of points a run concept is used. The points are broken in to

groups called runs and are executed as a group. The Run class represents a single run and

contains a reference to all the points in that run. The process of execution occurs in two stages:

initialization and then execution. For initialization, the stage is moved to the location of the first

point, once at the location the system waits for an execution request. For execution the stage is

moved to the current point. Once in location that system pauses for the point lag time. During

this pause data it collected. This process repeats for the next point until all points have been

visited. Both stages of execution can be paused or halted. A pause waits until motion is

complete then pauses the execution or initialization process. A halt sends an abort to the

Soloists which stop motions regardless of location. A halted run should be reinitialized.

 To perform these stages, two runner classes are used _Initializer and _Executor. These

class are built to run within the ExecutorThread which is associated with the Run.

The Event System

Overview

 The event system allows for model decoupling and model event listening. The system is

separated from the model and can be used as a communication medium for intermodal and

NRC-IOT SR-2009-30

13

external communications. The event system is used heavily to broadcast Soloist status and fault

changes including position and velocity changes.

Design

 The event system is a fairly simple design which focuses on a single root class. The only

real complexity is dealing with threading issues. Shown below is the main class structure of the

event system.

 One of the design issue that the event system has to deal with is thread safety with the

GUI. Most GUI toolkits are not thread safe so components must only be updated on the main

GUI thread. The event system needs to be able to call the event handler using the correct

method depending on if the handler is a GUI component or not. The CallbackHandler class

performs this task. If the event handler is a GUI component the call is injected onto the main

GUI thread. The current implementation uses wxPython and uses the CallAfter function to

inject the handler call on the main thread.

 The EventHandler class contains the handler function pointer plus flags to indicate if this

is a GUI based handler and if the callback is event source dependent. EventHandlers are stored

in the EventTable class associated with a event type. The EventSystem class is the main class

and follows the singleton pattern. Clients use this class to register handler and push events.

Figure 6: Event System Core Class Diagram

NRC-IOT SR-2009-30

14

The event classes themselves have the follow structure:

All event classes extend a common base Event class. They are also generic in terms of which

event type sends them. For example a ValueEvent instance is sent for position, velocity,

position error, and velocity error events.

Soloist Based Programs

Wake Survey Feedback

 The Wake Survey Feedback is a TCP/IP server that runs in Task 1 on the Soloist. Clients

can send commands to obtain various status information on the controller. The rational for

developing this server was to remove status polling from the ASCII Command Interface. Earlier

version of the positioning software had issues with coordinating the rapid status polling and

motion operations occurring through the ASCII Command Interface. A first attempt at this

program was to have the client part on the Soloist and the server in the Controller Backend.

However, it proved difficult to get the Soloist to connect to PC as a client so the server was

developed on the Soloist. The server protocol is a follows:

Figure 7: Event Object Class Diagram

NRC-IOT SR-2009-30

15

Request: <Command><EOS>

 Response: <Response Char>[<Data>]<EOS>

Note: Data not present in event of error

Command Usage

POS Get axis position

PERR Get axis position error

VFBK Get axis velocity

VERR Get axis velocity error

AXISSTATUS Get the axis status value

AXISFAULT Get the axis fault value

Table 1: Supported Commands

Response Meaning

% Command success data will be included

! Command failure data will not be included

Table 2: Response Characters

Control Character Meaning

\n End of Stream (EOS)

Table 3: Control Characters

NRC-IOT SR-2009-30

16

Analog Positioning

 The Analog Positioning program runs in Task 3 on the Soloist. Its purpose is to output

current position to the analog out on the Soloist. This allows the data acquisition system to

sample this output for position recording, thus providing a replacement to the string

potentiometer on the stage.

 There are several issues that this software needs to handle for correct functionality. The

first is the limitation of the digital to analog converter (DAC) on the Soloist. It is a 16 bit DAC

with a recommended ±10V range, although the value is configurable through the Soloist

configuration file. The issue is that position can take values beyond this range and the

command AOUT which is used for output expects a voltage value. To solve this problem the

position from the PFBK command is scaled to convert it to the equivalent value that falls in the

±10V range. This scalar is generated by taking the maximum travel distance of the axis (dmax)

and applying the following formula:

Equation 1: Analog Positioning Scalar Equation

 The maximum travel distance is defined in the Soloist configuration file as UserDouble1

and therefore can be adjusted to match the stage dimensions. Once the scalar is setup the

program enters a loop where position is read, scalar is applied, and resulting value is outputted.

Controlling this loop is the second issue to deal with. There are two options: have it run

unbounded, regulated only by the Soloist task scheduler, or bound the loop using the sleep

command (DWELL). The first option was chosen because the Soloist is setup to provide equal

execution time to both the Analog Position and the Wake Survey Feedback program so an

unbounded loop would not dominate the CPU because the scheduler forces a fix 50% split in

execution time allotment. This means the output is updated as fast as the scheduler will allow

and the data acquisition is responsible for sampling the output.

NRC-IOT SR-2009-30

17

 The diagram below demonstrates the startup and operation cycles of the analog

positioning software.

Graphical User Interface Interactions

 The GUI interacts with the backend through the AppManager system. A visual design of

this system is shown below.

Figure 8: Analog Positioning Startup and Loop Sequence

Figure 9: AppManager System Class Diagram

NRC-IOT SR-2009-30

18

The AppManager classes is the root of the backend and implements the singleton pattern. It

allows access to the various backend managers plus a UnitConverter class which support unit

conversions. Although, only a few conversions are supported and the current GUI still only

operates using units of millimeters due to the Soloist being configured to operate in

millimeters. The GUI can access the AppManager with relative ease due to the singleton

implementation. However use of the singleton pattern was not for this reason but instead to

prevent more than one backend from been created which would prevent communication with

the Soloists.

 A second interaction pathway between backend and the GUI is through the event

system. Backend end events can be sent to the GUI without any knowledge of each other which

allows for effective decoupling between each other. In theory the event system could be used

to signal the backend as well. In the current implementation this is not used or supported. The

diagram below demonstrates how the event system interacts with the GUI.

Figure 10: Event Push to GUI

GUI Component

GUI Component

GUI Component

NRC-IOT SR-2009-30

19

Conclusion

 The various components of the Wake Survey Positioning Software are designed to

perform the necessary tasks needed for the execution of a wake survey experiment. The design

creates effective decoupling between the GUI and application backend. When combined with

the two AeroBasic programs the Wake Survey Positioning Software can interface with and

obtain status feedback from the Soloist Motion Controller.

Recommendations

 Attempt modifications of the Wake Survey Feedback program so the client exists on the

Soloist and the server in the Python application.

 Continue to use XML as a file format.

Works Cited

Aerotech. (2008). Soloist Help.

NRC-IOT SR-2009-30

20

Appendix A: Sample RunFile

NRC-IOT SR-2009-30

A-1

 Below is a sample runfile in XML format which the show the metadata and point XML

structure

<runfile title="test" units="mm">

 <diameter>212.0</diameter>

 <xvel>50</xvel>

 <xacc>50</xacc>

 <yvel>50</yvel>

 <yacc>50</yacc>

 <points numPoints="148">

 <point axis="P" executed="False" xvalue="31.8" yvalue="0.0" />

 <point axis="P" executed="False" xvalue="31.8" yvalue="10.0" />

 <point axis="P" executed="False" xvalue="31.8" yvalue="20.0" />

 <point axis="P" executed="False" xvalue="31.8" yvalue="30.0" />

 <point axis="P" executed="False" xvalue="31.8" yvalue="40.0" />

 <point axis="P" executed="False" xvalue="31.8" yvalue="50.0" />

 <point axis="P" executed="False" xvalue="31.8" yvalue="60.0" />

 <point axis="P" executed="False" xvalue="31.8" yvalue="70.0" />

 <point axis="P" executed="False" xvalue="31.8" yvalue="80.0" />

 </points>

</runfile>

Metadata

Points

