# NRC Publications Archive <br> Archives des publications du CNRC 

## Survey of the physical properties of hollow concrete blocks produced in Canada <br> Galbreath, M.

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

Publisher's version / Version de l'éditeur:<br>https://doi.org/10.4224/20358876<br>Technical Note (National Research Council of Canada. Division of Building Research); no. TN-404, 1963-09-01

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=c1ff9c9f-7436-40b3-9175-d8179a3b6e9f https://publications-cnrc.canada.ca/fra/voir/objet/?id=c1ff9c9f-7436-40b3-9175-d8179a3b6e9f

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.
Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

## TECHNICAL NOTE

DATE September 1963
National Concrete Products Association

A survey of concrete block production was undertaken because of a need for information on the composition, shape and size of hollow concrete blocks produced in Canada. The National Concrete Products Association whose nembers assisted in the survey wished to know more of the range of production of their members. The Building Structures Section of the Division of Building Research, which is studying the stability of hollow masonry walls, was interested in the strength and weight of the units. The Fire Section, Division of Building Research, wished to learn more about the size, shape and nature of aggregates used in the concrete blocks.

Full co-operation was provided by the Technical Committee of the NCPA who advised on the contents of the questionnaire, distributed the questionnaire to members, collected the replies and operated a coding system to preserve the anonymity of the contributors.

The questionnaire (Appendix A) was designed to obtain information on over -all dimensions of blocks, percentage of solid material in each block, face shell thickness, type of aggregate, and proportion of production devoted to each type of block. Some compromise was necessarily involved in order to keep the questionnaire to workable proportions.

## Extent of Survey

The questionnaire was sent to all producer members of NCPA (about 85 ), and 20 replies were received. Each company reported production in equivalent $8-\mathrm{in}$. units. Total annual production reported by the 20 companies covered $54,665,000$ units ( 8 companies produced $39,095,000$ units or 72 per cent of the total).

Total production reported represents 37 per cent of Canadian production for the same period as reported by Dominion Bureau of Statistics ( $146,363,000$ units). The DBS figure, however, represents only about 90 per cent of the total Canadian production because the DBS survey did not include the smaller producers. If this figure is correct, then this survey may be assumed to cover about 33 per cent of all Canadian production. Another report covering 1,000, 000 units was received subsequent to the preparation of this note. It was, however, presented in insufficient detail to add to this study.

## Use of Modular Sizes

Each company reported over-all size of blocks produced whether modular, i. e. $15-5 / 8$ by $7-5 / 8$ by $7-5 / 8$, or non-modular. All 20 companies produced modular blocks and 7 companies produced non-modular in addition to modular blocks.

## Nature of Coarse Aggregate Used in Blocks

Thirteen companies reported production in a manner that enabled the type of coarse aggregate used to be related to number of blocks produced. Table I shows the nature of the coarse aggregate used in the blocks and the annual production and compares these figures with the DBS figures for the same period. In the survey natural stone aggregates are included in 75 per cent of the blocks and lightweight aggregates in 25 per cent. The DBS figures for the same period are 70 and 30 per cent respectively.

## Description of Coarse Aggregates

The descriptions of the coarse aggregates included in the survey returns are set out in Table IX. In general they fall into one or other of the following categories.

1. Siliceous
2. Calcareous
3. Natural stone (not fully identified)
4. Lightweight
5. Mixed aggregates

## Granite

Limestone, dolomite limestone, calcareous gravel

Crushed stone, gravel, pit run
(a) Expanded blast furnace slag, rotary kiln expanded clay, pumice,
(b) Blast furnace slag cinders

Gravel and light aggregate pit run and lightweight (rotary kiln)

## Shape of Blocks

The number of cores in the block, the size of the cores, and the face shell thickness are significant factors in the fire endurance of a concrete block wall. In Tables II and III the shapes of $8-\mathrm{in}$. modular 2-core and 3-core blocks are analyzed in relation to annual production.

It can be seen that:
(a) In 2-core blocks 52 to 53 per cent solid represents 83 per cent of annual production.
(b) In 3-core blocks 58 to 60 per cent solid represents 76 per cent of annual production.

The figures for annual production are for the full range of block sizes and are not confined to the $8-\mathrm{in}$. blocks. This does, however, give some indication of the more common pattern.

In Tables IV and V the range of sizes and shapes of the 4-, $6-, 10-$ and $12-\mathrm{in}$. blocks linked to the $8-\mathrm{in}$. 2 -core 52 to 53 per cent solid blocks and the $8-\mathrm{in}$. 3 -core 58 to 60 per cent blocks are set out to illustrate the range of shapes that occur most commonly.

## Type of Cement

The questionnaire asked for a description of the type of cement used in the concrete mix and of the use of additives. Of 48 types of concrete block described,
(a) Normal cementitious material was used in
(b) Normal cementitious material plus silica flour was used in
(c) Block-type cement was used in 10
(d) High early-strength cement was used in 0

## Use of Additives

The use of cements and additives is shown in Table VI. The additives were in general described by trade name. So far as these can be identified it appears that they were all air-entraining agents or plasticizers. Additives were used in 30 of the 48 types of concrete blocks described. Nearly all concretes having natural stone aggregates used additives whereas the majority of the lightweight concretes contained no additives.

## Method of Curing

The survey returns on the means of curing blocks indicate that:

57 per cent of blocks are cured by low pressure steam,
40 per cent of blocks are cured by autoclave process.
In the remaining 3 per cent the means of curing could not be related to annual production.

Table VII shows the relationship between method of curing, type of aggregate and annual production.

## Block-making Machines

The survey returns described 35 block-making machines. These were $2-, 2 \frac{1}{2}$ - and 3 -pallet machines as follows:


All blocks were said to be vibrated. One company having 6 machines used both vibrating and tamping.

## Sample Blocks

Ten of the companies sent a total of 14 typical $8-\mathrm{in}$. blocks to the Division of Building Research. These may be used for further detailed study of block shape and dimensions.

## Detailed Summary

Table VIII is a summary of the block shapes reported.
Table IX and X present a summary of the aggregates and strength and weight of the blocks.

Table I Nature of Coarse Aggregates used in Blocks

| Description of Aggregate. | Annual Production |  |  |
| :---: | :---: | :---: | :---: |
|  | Equivalent 8 in. Units | Percent | $\begin{aligned} & \text { D.B.S. figures } \\ & \text { for same period } \end{aligned}$ |
| Granite | 1,700,000 |  |  |
| Limestone | 4,000,000 | 62\% | 70\% |
| Stone | 13,320,000 |  |  |
| Mixed Gravel \& Lightweight | 4,263,000 | 13\% |  |
| Lightweight other than cinders | 7,625,000 | 24 2 \% | 24 |
| Cinders | 146,000 | $\frac{1}{2} \%$ | 6\% |
| Total | 30,904,000 | 100\% | 100\% |

Table II Shape of 8 in . Modular 2 Core Blocks

| $\begin{aligned} & \text { Percent } \\ & \text { Solid } \end{aligned}$ | Face <br> Shell | Annual Production |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Eight in Equiv. | Total | Percent |
| 52\% | $15 / 16$ | 8,000,000 |  |  |
| 52\% | $1 \frac{1}{4}$ | 4,800,000 | 12,800,000 | 48\% |
| 53\% | $1 \frac{1}{4}$ | 9,460,000 | 9,460,000 | 35\% |
| 55\% | 1 $\frac{1}{4}$ | 2,220,000 | 2,220,000 | 8\% |
| 58\% | $1 \frac{1}{4}$ | 2,350,000 | 2,350,000 | 9\% |
|  |  |  | 26,830,000 | 100\% |

Table III Shape of 8 in. Modular 3 Core Blocks

| Percent <br> Solid | Face <br> Shell | Annual Production |  |  |
| :--- | :---: | :---: | :---: | :---: |
| $52.1 \%$ | Eight in Equiv. <br> Units | Total | Percent |  |
| $53 \%$ | $1 \frac{1}{4}-1 \frac{1}{2}$ | 600,000 | 600,000 | $5 \%$ |
| $55 \%$ | $1 \frac{1}{2}$ | $1,660,000$ | $1,660,000$ | $14 \%$ |
| $58 \%$ | 1 | $2,300,000$ | 450,000 | $4 \%$ |
| $58 \%$ | $1 \frac{1}{4}-1 \frac{1}{2}$ | 900,000 | $3,200,000$ | $26 \%$ |
| $60 \%$ | 1 | $150,250,000$ | $6,250,000$ | $50 \%$ |
| $75 \%$ |  |  | 150,000 | $1 \%$ |

Table IV
Range of Sizes in Modular 2 Core Blocks $52 \%$ to $53 \%$ Solid in 8 in. Block

| Code Number | 4 in nom thick |  | 6 in nom thick |  | 8 in nom thick |  | 10 in nom thick |  | 12 in nom thick |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \% Solid | Face Shell | \% Solid | Face Shell | $\%$ Solid | Face Shell | \% Solid | Face Shell | \% Solld | Face Shell |
| 1033 | 71 | 1-1 $\frac{1}{2}$ | 54 | $1-1-3 / 16$ | 52 | $1 \frac{1}{4}-1-11 / 16$ | 51.5 | 12 - 1-11/16 | 48.5 | 1衰 - 1-11/16 |
| 1031 | 76 | 1 | 62 | 1 | 52 | 1-5/16 | 51. | 17 $\frac{1}{2}$ | 50 | 1-7/16 |
| 1030 | 72.8 | 1 | 60 | 1 | 53 | $1 \frac{1}{4}$ | 51.8 | 1 $\frac{1}{2}$ | 48.7 | 1 $\frac{1}{2}$ |
| 1022 | - | - | - | - | 52.1 | $1 \frac{1}{4}$ | 48 | 1-3/4 | - | - |
| 1021 | 76 | 1 | 60 | 1 | 53 | 1-5/16 | 51 | 1) $\frac{1}{2}$ | 50 | 1-9/16 |
| 1020 | - | - | 54 | 1 | 52 | $1 \frac{1}{4}$ | 47 | 1-3/8 | 46 | 1 $\frac{1}{2}$ |
| 1015 | 72.8 | 1 | 54.5 | 1 | 53 | 12 $\frac{1}{4}$ | 51.8 | 12 $\frac{1}{2}$ | 48 | 12 $\frac{1}{2}$ |

Table $V$ Range of Sizes in Modular 3 Core Blocks $58 \%$ to $60 \%$ Solid in 8 in Block

| $\begin{aligned} & \text { Code } \\ & \text { Number } \end{aligned}$ | 4-1n. nom thick |  | 6-1n. nom thick |  | 8-in. nom thick |  | 10-in. nom thick |  | 12-in. nom thick |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \% Solld | Face Shell | \% Solid | Face Shell | \% Solid | Face Shell | \% Solid | Face Shell | \% Solld | Face Shell |
| 1028 | 73.5 | 1 | 58 | 1 | 58 | 1 | 54 | $11 / 8$ | - | - |
| 1025 | 74 | 1 | 58 | 1 | 58 | 12 ${ }^{\frac{1}{4}}$ - $1 \frac{1}{2}$ | 58 | 12-13/4 | 56 | 12-13/4 |
| 1022 | 76.9 | 1 | 58.9 | 1 | 58.6 | 1214 | 56.8 | 12 | 55.1 | 13 |
| 1019 | - | - | - | - | 60 | 12 - - ${ }^{\frac{1}{2}}$ | 58 | $13 / 4$ | 55.9 | $13 / 4$ |
| 1019 | 73.6 | 1 | 58.9 | $1 \frac{1}{4}$ | 60 | 13 - $1 \frac{1}{2}$ | 58 | $13 / 4$ | 55.9 | $13 / 4$ |

Table VI Use of Cements and Additives

| Type of Aggregate |  |  | Units |  <br> Units |  | 产 <br> Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Siliceous | - | - | 1 | 1 | - | 1 |
| Calcareous | 4 | - | 1 | 5 | - | 5 |
| Natural Store not fully identified | 14 | 2 | 4 | 16 | 4 | 20 |
| Lightweight | 14 | 2 | 4 | 6 | 14 | 20 |
| Mixed Gravel \& Lightweight | 2 | - | - | 2 | - | 2 |
| Total | 34 | 4 | 10 | 30 | 18 | 48 |

## Table VII Manner of Curing Blocks

| Curing | Annual Production | Percent of Total |
| :---: | :---: | :---: |
| 1. Low Pressure Steam <br> (a) Gravel Aggregate <br> (b) Lightweight Aggregate <br> (c) Mixed Aggregate <br> (d) Not possible to relate aggregate to production | $17,378,000$ $(56 \%)$ <br> $3,028,000$ $(10 \%)$ <br> $1,600,000$ $(4 \%)$ <br>   <br> $9,000,000$ $(30 \%)$ |  |
| Total Low Pressure Steam | 31,007,000 (100\%) | 57\% |
| 2. Autoclave <br> (a) Gravel Aggregate <br> (b) Lightweight Aggregate <br> (c) Mixed Aggregate <br> (d) Not possible to relate aggregate to production | $9,073,000$ $(43 \%)$ <br> $4,822,000$ $(23 \%)$ <br> $2,663,000$ $(12 \%)$ <br> $4,600,000$ $(22 \%)$ |  |
| Total Autociave | 21,158,000 (100\%) | 40\% |
| 3. Not possible to relate manner of curing to production | 2,500,000 | 3\% |
| Total | 54,665,000 | 100\% |


| $\begin{aligned} & \text { Code } \\ & \text { Number } \end{aligned}$ | Modular | No. of Cores | $\begin{aligned} & \text { 4-in nom } \\ & \text { Block } \end{aligned}$ |  | $\begin{aligned} & \text { 6-1n nom } \\ & \text { Block } \end{aligned}$ |  | $\begin{aligned} & \text { 8-in nom } \\ & \text { Block } \end{aligned}$ |  | $\begin{aligned} & \text { 10-1n nom } \\ & \text { Block } \end{aligned}$ |  | $\begin{aligned} & \text { 12-1n. nom } \\ & \text { Block } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\stackrel{\%}{\%}$ | face shell 1 in. | $\begin{aligned} & \% \\ & \text { Solid } \end{aligned}$ | $\begin{aligned} & \text { face } \\ & \text { shell } \\ & \text { in. } \end{aligned}$ | $\begin{aligned} & \% \\ & \text { Solid } \end{aligned}$ | face shell in. | $\begin{aligned} & \% \\ & \text { Solid } \end{aligned}$ | face shell in. | $\begin{gathered} \% \\ \text { Solid } \end{gathered}$ | facs shell in. |
| 1034 | Yes | 3 | 74 | $1 \frac{1}{4}$ | 60 | 1 | 75 | 1 | 65 | 12 ${ }^{\frac{1}{2}}$ | 65 | 1 $\frac{1}{2}$ |
| 1033 | Yes | 2 | 71 |  | 54 1-1 3 / 16 |  | 52 | 12-1 11/16 | 51.5 | 12-1 11/16 | 48.5 | 11 $\frac{1}{2}-111 / 16$ |
| 1032 | Yes | 3 | 70 | 1 | $\begin{array}{l\|l} 56 & 1 \end{array}$ |  | 53 | 12 | 53 | $1 \frac{1}{4}$ | 52 | $13 / 8$ |
| 1031 | Yes | 2 | 76 | 1 | 62 | 1 | 52 | $15 / 16$ | 51 | 13 | $\begin{aligned} & 50 \\ & 55.9 \end{aligned}$ | $19 / 16$ |
| 1030 | Yes | 3 2 | 73.5 72.8 | 1 | 62 | 1 | 57.4 | $1{ }_{1}^{1 \frac{1}{4}}$ | 5851.8 | 12 |  | 12 |
| 1029 | Yes | 3 | 68.8 | 1-1/8 | 60 | 1 | 53 | 1 $1 \frac{1}{4}$ |  | 12 | 55.9 48.7 |  |
|  | Yes | 2 | $-$ | 1-1/8 | 50 | 1-1/8 | 50 | $1 \frac{1}{4}$ | 49 | 13 $\frac{1}{2}$ | - ${ }^{-7}$ |  |
| 1028 | Yes | 3 | 73.5 | 1 | 58 | 1 | 58 | $1{ }^{1}$ | 54 | 1-1/8 | 46 | $1-5 / 8$ |
| 1027 | Yes | 3 | 60 | 1 | 60 | 1 | 60 | 12-1 | 60 |  | $52.2 \quad-1 / 8$ |  |
|  | Yes | 3 | 65 | 1 | - | 1 $\frac{1}{2}-1 \frac{1}{2}$ | 60 | $1 \frac{1}{4}-1 \frac{1}{2}$ $1 \frac{1}{2}-1-3 / 4$ |  | 1- $\frac{1}{4}-1 \frac{1}{2}$ | 60 | $\begin{aligned} & 1-1 / 8 \\ & 1 \frac{1}{4}-1 \frac{1}{2} \\ & 1=-1-2 \end{aligned}$ |
| 1026 | No | 3 | 60 | 1 | 60 | $1{ }^{1}$ | 60 | 11 $\frac{1}{4}-1 \frac{1}{2}$ | 60 14-1 $\frac{1}{2}$ |  | 60 $\quad 1 \begin{aligned} & 1 \frac{1}{4}-1-3 / 4 \\ & 1 / \frac{1}{4}-1 \frac{1}{2}\end{aligned}$ |  |
| 1025 | Yes | $\frac{3}{3}$ | 61.3 | 1 | 56.8 | $1 \frac{1}{4}$ | 52.1 | 119-1 $\frac{1}{2}$ | 59 1 1 年-1-3/4 |  |  |  |
| 1024 | Yes | 2 | 74 | 1 | 58 | 1 | 58 | 1 $\frac{1}{4}-1 \frac{1}{2}$ | 58 11-1-3/4 |  | $\begin{array}{lll}57.7 & 12 \\ 56 & 1 \frac{1}{2}-1-3 / 4 \\ 1-1-3 / 4\end{array}$ |  |
| 1023 | Yes | 3 | 73 | 1 | 64 | $1-1 / 8$ | 5 | $1 \frac{1}{4}$ | 52 17 |  | 49 19 4 年 |  |
|  | Yes | 2 | - | - | - | - | 58 | $1 \frac{1}{4}$ | 53 1-1 |  | 55 1 $1 \frac{1}{2}$ |  |
|  | No | 3 | 75 | 1-1/8 | 62 | - 16 | 56 | 119 | 5660 | 1-3/8 | $551-5 / 8$ |  |
| 1022 | Yes | 3 | 76.9 | ${ }_{1}^{1-1 / 8}$ | 58.9 | $1-3 / 16$ | 60 58.6 | 1 $\frac{1}{2}$ |  | 12 $1 \frac{1}{2}$ | 55 60 | 1-5/8 |
|  | Yes | 2 | - | 1 | 58.9 | 1 | 58.6 52.1 | $17 \frac{1}{4}$ | 60 56.8 |  | 55.1 | 12 |
|  | No | 2 | $\bigcirc$ | - | - | - | 52.4 | 12 | 47.4 | $1-3 / 4$ |  |  |
| 1021 | Yes | 2 | 77.2 | 1 | 59.9 | 1 | - |  | 51 | $1-3 / 4$ | $55.3$ | $1 \frac{2}{2}$ |
| 1020 | Yes | 3 | 70 | 1 | 60 | 1 | 53 | 1-5/16 |  | 12 ${ }^{2}$ | 50 | 1-9/16 |
|  | Yes | 2 | - 8 | - | 54 | 1 | 52 | 12 | 47 | 1-3/8 | 46 | 1 $\frac{1}{2}$ |
| 1019 | Yes | 2 | 72.8 | 1 | 55 | $1 \frac{1}{4}$ | - |  | - |  | 4 |  |
|  | Yes | 3 | 73 | - |  | - | 60 | $1 \frac{1}{7}-1 \frac{1}{3}$ | 58 | $1-3 / 4$ | 55.9 | 1-3/4 |
|  | Nos | 3 | 73.6 69 | 1 | 58.9 | 12 $\frac{1}{4}$ | 60 | 1 $\frac{1}{4}-1 \frac{1}{2}$ | $\begin{aligned} & 58 \\ & 61.6 \end{aligned}$ | $\begin{aligned} & 1-3 / 4 \\ & 1-3 / 4 \end{aligned}$ |  |  |
| 1018 | Yes | 3 | 60 | 1 1 | $\underline{-}$ | $\underline{-}$ | 62 | $1 \frac{1}{2}$ | $61.6$ |  | 59.5 | $1-3 / 4$ |
| 1017 |  |  |  | $1 \frac{1}{2}$ |  |  | - | - |  | $1-3 / 4$ |  |  |
| 1016 | Yes No |  | 55 | 1 | 55 | 1 |  |  | $\begin{aligned} & 55 \\ & 55 \\ & 51.8 \end{aligned}$ | $1 \frac{1}{2}$$1 \frac{1}{2}$$-2 \frac{1}{2}$ | $\begin{aligned} & 55 \\ & 55 \\ & -88 \end{aligned}$ | $\begin{aligned} & 1-3 / 4 \\ & 1-3 / 4 \\ & 1 \frac{1}{2} \end{aligned}$ |
|  | No | 3 | 55 60 | 1 | 55 | 1 | 55 | 1 $\frac{1}{2}$ |  |  |  |  |
| 1015 | Yes | 2 | 72.8 | 1 | 54.5 | 1 | 53 | $\overline{1} \frac{1}{4}$ |  |  |  |  |

Table IX Details of 8in. Gravel Aggregate
Concrete Blocks

| Code No. | Description of Aggregate | Type of Cement | Use of Additives | Modular | No. of Cores | Compressive Strength | Weight of 8in. block lb . |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1032 | Washed Granite Graded | B | Yes | Yes | 3 | 1400 | 40 |
| 1031 | Limestone | N | Yes | Yes | 2 | 1100 | 40 |
| 1021 | 1/4 to no 4 Crushed Limestone | N | Yes | Yes | 3 | 1200 | 40 |
| 1020 | Calcareous Gravel | N | Yes | Yes | 2 | 1600 | 38.5 |
| 1019 | Dolomite Limestone | N | Yes | Yes | 3 | 1800 | 43.5 |
| 1019 | Dolomite Limestone | N | Yes | Yes | 3 | 1800 | 45 |
| 1034 | Crushed Gravel | N | No | Yes | 3 | 2500 | 46 |
| 1033 | Buckshot | N | Yes | Yes | 2 | 1200 | 39 |
| 1030 | Washed blend of \#40 stone | Ns | No | Yes | 3 | 1600 | 41 |
| 1030 | Washed blend of \#40 stone | N | No | Yes | 2 | 1250 | 41 |
| 1028 | Gravel mix 3/8 round particles \& down | Ns | No | Yes | 3 | 1200 |  |
| 1027 | 90\% crushed 10\% rounds | N | Yes | Yes | 3 | 1200-1300 | $41-42$ |
| 1027 | 90\% crushed 10\% rounds | B | Yes | No | 3 | 1200-1300 | 42-45 |
| 1026 | Washed \& screened coarse gravel | N | Yes | Yes | 3 | 1400 | 40 |
| 1025 | Crushed Stone | N | Yes | Yes | 3 | 1400 | 42 |
| 1024 | Natural gravel - crushed | N | Yes | Yes | 2 | 1100 | 39 |
| 1023 | $3 / 8$ in stone | N | Yes | Yes | 2 | 1200 | 38 |
| 1023 | $3 / 8$ in stone | N | Yes | No No | 3 | 1400 1400 | 44 |
| 1023 | $3 / 8$ in stone | ${ }_{N}^{N}$ | Yes | No | 3 | 1400 | 47 |
| 1022 | $3 / 8$ in stone | N | Yes | Yes | 2 | 1423 | 36.5 |
| 1022 | $3 / 8$ in stone | N | Yes | No | 3 | 1124 | 38.25 |
| 1018 | Crushed stone | B | Yes | Yes | 3 | 1230 | 4 |
| 1016 | Water washed stone | B | Yes | Yes | 3 | 1400 | 42 |
| 1016 | Water washed stone | B | Yes | No | 3 | 1400 | 47 38 |
| 1015 | Pitrun washed \& screened | N | Yes | Yes | 2 | 1000 | 38 |

* $N=$ Normal cementitious material

Ns $=$ Normal cementitious material plus silica flour
$\mathrm{B}=$ Block type cement

Table X Details of 8 in. Lightweight Aggregate
Concrete Blocks

| Code Number | Description of Aggregate | Type of Cement | Use of Additives | Modular | No. of Cores | Compressive Strength P.S.I. | Weight of 8 in. block Ib. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1033 | Laylite | N | Yes | Yes | 2 | 1000 | 26 |
| 1032 | Haydite AA | B | Yes | Yes | 3 | 1100 | 25 |
| 1031 | Pumice | N | No | Yes | 2 | 1200 | 26 |
| 1031 | Pumice | N | No | Yes | 2 | 750 | 18 |
| 1030 | Haydite FF | Ns | No | Yes | 3 | 1250 | 24 |
| 1028 | Expanded Slag | Ns | No | Yes | 3 | 1000 | 31 |
| 1027 | Coarse Expanded Slag | B | Yes | Yes | 3 | 1000-1200 | 30-32 |
| 1025 | Slag | B | Yes | Yes | 3 | 1200 | 30 |
| 1024 | Coated Expanded Slag | N | Yes | Yes | 2 | 1100 | 26 |
| 1023 | Slag | N | No | Yes | 2 | 1000 | 28.5 |
| 1023 | Slag | N | No | No | 3 | 1100 | 36 |
| 1023 | Cinders | N | No | Yes | 2 | 1000 | 28.5 |
| 1023 | Cinders | N | No | No | 3 | 1100 | 34 |
| 1023 | Cinders | N | No | No | 3 | 1100 | 36 |
| 1021 | Italian Pumice | N | No | Yes | 2 | 750 | 20 |
| 1021 | Italian Pumice | N | No | Yes | 2 | 1100 | 29 |
| 1020 | Rotary kilm expanded clay | N | Yes | Yes |  |  |  |
| 1019 | Blast Furnace Slag | N | Nos | Nos | 3 | 1250 | 31 |
| 1019 | Haydite FF | N | No | No | 3 | 1250 | 30 |
| 1016 | Expanded Slag | B | No | Yes | 3 | 1200 | 35 |
| 1017 | Gravel and Light |  |  |  |  |  |  |
|  | Aggregate | N | Yes | Yes | 2 | 1230 | 24 |
| 1015 | (Rotary kilm) | N | Yes | Yes | 2 | 1000 | 26 |

## APPENDIX A

## SURVEY OF THE PROPERTIES OF HOLLOW CONCRETE BLOCKS

## To Members of N.C.P.A.

Your co-operation is solicited in the gathering of information on concrete block production in Canada. This information is desired by the Division of Building Research, National Research Council to assist in planning studies and research of concern to this industry. It is believed that it will also be of direct value to the Association, but in any event will be a contribution to the co-operative study programmes which are now being developed between DBR/NRC and NCPA. The questionnaires attached have been reviewed by your Technical Committee and the project has their full approval. Every effort. will be made to protect individual interests by suitable coding of the results at the NCPA head office and by careful handling of the results.

The questionnaires, when completed, should be returned to the
(Auditor)
(National Concrete Products Association)
who will be responsible for protecting the anonymity of the information and will assign and retain the code identification in his office. All information obtained fram this survey will be treated in the strictest confidence and no publication will be made without the permission of the N.C.P.A.

The amount of detail called for on the questionnaire has been kept to a minimum. Additional information, particularly about block shape may be required. To assist in providing this it is suggested that each manufacturer send to the Division of Building Research one $8-i n$. block which is most typical of his production. These samples should be identified as to Company and forwarded to

> Division of Building Research, Attention of Mr. G. Wh. Shorter,
> Montreal Road Laboratories,
> National Research Council, Ottawa, Ontario.

Attached to this letter are one copy or Sheet One, "Block Size", five copies of Sheet Two "Concrete Mix" and one copy of Sheet Three "Annual Production".

## BLOCK SHAPE

Identify your submission in a covering letter only. Do not otherwise identify these sheets. All sheets in one submission must be securely fastened together.
(1) For each block shape employed by your company enter the appropriate details in (a), (b) or (c) below. If your production covers more than three block shapes additional sheets may be obtained from N.C.P.A.

(2) Block Making Machine. Describe block making machine used for each of:

(b) Shape 2
(c) Shape 3

## SHETET TWO

## GONCRETE MIX

Identify your submission in a covering letter only. Do not otherwise identify these sheets. All sheets in one submission must be securely fastened together.
(3) For each concrete mix used insert details in (a) and (b) below. If more than five concrete mixes are used additional sheets may be obtained from N.C.P.A. Check A, B, C, D or E to correspond to entries relating to production on Sheet Three.

Concrete Mix,
A

B

$C \square$
D $\square$
$E \square$
(a) Material -
(i) Cement.
Normal
Block Type $\square$
High Early Strength $\square$
Other
$\square$
$\square$
(ii) Coarse Aggregate. Describe

> Size max
> in.
> min. in.
(iii) Fine Aggregate. Describe

Size max..........sieve no. Fineness Modulus...... if known
(iv) Additives......................................... if any.
(b) Mix. Show quantities per batch.
(1) Cementitious Material................................................... $1 b$.
(1i) Coarse Aggregate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 ib.
(1i1) Fine Aggregate................................................................. $b$ b.
(iv) Additives

## SIFT THREE

## ANNUAL PRODUCTION

Identify your submission in a covering letter only. Do not otherwise identify these sheets. All sheets in one submission must be securely fastened together.
(4) For each combination of block shape, concrete mix and method of curing used insert in the Table below the approximate percentage of your total production, (8 in. equivalent) between list January 1961 and list January 1962. Shapes 1, 2 and 3 should correspond to details in Sheet One. Concrete Mix A, B, C, D or E should correspond to the description on Sheet Two. If your production covers more than three block shapes or five concrete mixes additional sheets may be obtained from N.C.P.A.

(5) Show approximate total Annual Production in number of units ( 8 in. equivalent) between list January 1961 and list January 1962.

