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ON THE MOTIONS AND INTERNAL FORCES
OF A CONSTRAINED FLOATING BODY IN LINEAR WAVES

SUMMARY

The rigid body motions of floating offshore structures can be modelled as ex-
ternally constrainted floating bodies. This report centres on the calculation of the
induced internal forces in these structures in regular waves as well as their motions. A
floating body is assumed to consist ;fwo parts rigidly connected to each other. By as-
suming small amplitude body motiéns, detailed derivations are presented of the body
motions, external and internal forces. Results from application of the formulations to
the case of a semi-submersible platform are presented and compared with those from
experiments. The formulation provides a useful tool for full-scale computations and
model test design of several types of floating offshore platforms.
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1.0 INTRODUCTION

Unlike seagoing ships, floating offshore structures are usually positioned at a
given location at sea. Typical examples are semi-submersible platforms, TLPs, and
moored tanker based floating offshore production systems. The positioning mecha-
nism used on these structures may vary widely, but there is one thing in common, i.e.,
the motions of these structures at sea are externally constrained by the positioning

mechanism.

The motions of a ship in waves as a rigid and freely floating body are among
the most widely studied areas in ship hydrodynamics. The most frequently used
approach is to assume small amplitude motions and considerable simplifications are
then made to derive the linearized equations of motion. A number of publications can
be referred to on this!=3. The formal derivation of the linearized equations of motion
of a constrained floating body can also be found in a number of publications®~®. The
linearization is achieved by perturbation in terms of the wave slope, kA, where k is
the wave number and A is the amplitude. The hydrodynamic computations are usu-
ally done numerically by a three dimensional source distribution technique (or surface
panel method)?. Comparatively speaking, studies on the induced internal loads are
limited, mostly to the types of structures such as SWATH (small water-plane area
twin hull) ships and other catamaran forms for which the induced internal loads are

of prominent concern®.

In what follows, a detailed formulation of the linearized motion equations and
internal forces for a constrained floating body in regular waves is presented. In this,
the body was divided into two parts without losing generality. The external forces
and motions of each part were considered separately in a common reference frame
and then combined to arrive at the motion equations of the whole body. Both the
external and internal forces were decomposed into a constant component and a lin-
earized motion dependent component. Having obtained the whole body motions, the
internal forces between the two body parts were derived by considering the motions
of one of the body parts only. This systematic approach providés great expedience in

calculating the internal forces.
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Application was then made of the formulations to the case of the motions of the
semi-submersible, Glomar Arctic III. Model tests on the semi-submersible have been
done at IMD? in which the motions of the semi-submersible in regular waves and
the induced internal forces were measured. Correlation results between the measured
‘motions and forces from model tests and those of the present numerical predictions

are presented.

The present formulations are applicable directly to a wide range of floating
offshore structures in waves, freely floating or constrained. The program will also
be useful for model testing of these structures in the future. To facilitate use of
the computer program, an auxiliary computer program is also written to compute
the hydrostatic characteristics of these structures as documented in Appendix D. In
it, these structures are regarded as consisting two basic mass elements: columns (a
distributed mass model) and concentrated masses (a lumped mass model). While
hydrostatic calculation can be done directly with concentrated masses, columns are

divided into thin strips and integration is then carried out along the column length.

2.0 LINEARIZED EQUATIONS OF MOTION
2.1 The Dual Coordinate Systems

For convenience of derivation, two sets of coordinate systems are used. The mo-
tion of the fluid is more easily described in an inertial system fixed in space, whereas
the geometrical configuration of the body in motion is more easily described in a
system fixed in the body.

Referring to Figure 1, let the inertial coordinate system be ozyz with oz oppos-
ing the direction of gravity and ozy lying parallel with the undisturbed free surface.
Let o'z'y’'z’ be fixed in the body. For simplicity, it is assumed that the three axes of
o'z'y'z’ being parallel with, and pointing in the same direction as, those of the ozyz
system when the body is in the static equilibrium position. P symbolizes presence
of external constraints. Denote 7 as the position vector of an arbitrary point on the
body as viewed in the ozyz system. The distance vector from o’ to this point is

denoted as §. When viewed in the o'z'y’'z' system, this point has a position vector of
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Figure 1 A constrained floating body and the dual coordinate systems (P represents
external constraints).

x

. In addition, the position vector of o' in the ozyz system is denoted as 7.

The rigid body motions of a constrained floating body as shown in Figure 1 can

be described in terms of the six-degrees-of-freedom motion of the body at point o’ on
the body. Let

7= (=, 9ur 9:) = (01,92, 93) (1)
a@= (a:nay, C!,) = (QMQS:‘IG) (2)

be the translational and angular displacement vector of the body at ¢’ in the ozyz
system respectively with

{Q} = {'?1: rery QG}T (3)

denoting the total displacement vector. The components represent surge, sway, heave,
roll, pitch and yaw of the six-degrees-of-freedom motions of the body respectively and
correspond to indices j = 1,2, ...,6. The superscript T denotes transpose of a matrix.
In what follows, a similar indicial notation such that 7 = (z,y,z) = (r1,72,73) =

(21, Z3,%3) is used interchangeably without being mentioned explicitly. The above
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indicial notations are very useful as will become clear later.

Assuming that the motions are small then the two coordinate systems are related
to each other by .
F=fo+ R=Fo+d+r+axr (4)
where overline is placed on top of a vector in the ozyz system to represent the cor-

responding vector when the body is at its undisturbed position. The position vector
of the body CG, 7¢ can now be expressed as

fo =7 + Rg (5)

where Eg represents the directional distance from point o' to the body CG in the

ozryz system.

It is noted that the rigid body motions can be described with respect to other
reference points. In some literature, this reference point is taken to be the origin
of the inertial coordinate system. In some other cases, the centres of rotation and
gravity of the body have been used. Use of the origin of the o'z'y’z’ system as the
reference point results in a mass matrix that is most sparse when points ¢ and o'
coincide at the undisturbed position of the body, but choice of the reference point is
often made as a matter of convenience. The motion equations with respect to any

other reference point can be obtained in a similar manner.
2.2 Conservation of Momentum

The equations of motion of the floating body in Figure 1 can be derived by
considering conservation of the linear and angular momentum. For the purpose of
computing the internal forces, the floating body may be decomposed into a number
of rigidly connected parts. At present, it is divided into two parts without losing
generality, namely, parts A and B as shown also in Figure 1. Their mass centres in
the inertial coordinate system are 74 and 73 respectively. In the following derivation,
superscripts A and B are used to denote quantities related to body part A and B

respectively.
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The two conservation of momentum equations can be expressed as follows

d -

Fo= 2 d
Fo= o faye?TdV | (6)
- d =
= = =% Ud
o= 5|, .o x v (7)

In the equations p is the density of the body mass and VZ means integration over the
body volume of part B. U is the velocity vector at point 7 of the body. According to
equation (4), it can be written in terms of the velocity at point o' of the body as

U=G+axR (8)

where the dots represent differentiation with respect to time. Substitution of equation

(8) into equations (6) and (7) and the subsequent expansions are done in Appendix A.

Let {F} = {F,..., Fs}7 be the extended force vector corresponding to equation
(3) with {F, R, i3} = {F., F,,F.} and {F, Fs, Fe} = {M;, My, M.}. The equa-
tions defining the conservation of momentum can be rewritten, according to equation
(A.12), as
{F} = [M]{g} (9)
where [M] = [M]4 + [M)? is the total mass matrix equalling the sum of that for part
A and B and is given by

m 0 0 0 mz'g -my'g |
0 m 0 —mz'q 0 mz'q
0 0 m my’ —mz'c 0
M]= » e G 10
[M] 0 -mzZg mMye Iu+Ju Tae+Jiz ha+Jis (10)
mze 0 -mZe In+Jn Tn+Ja la+Ja
| mTg —~miyg 0 Iy +Jn s+ J32 Taa + Jaa |

In the equation m = mA + m? is the total mass of the body; Ijx = J’J‘-‘}c + IJ—B}C are
the second moments of inertia of the total body mass with respect to the body fixed
coordinate system as defined in equation (A.10). J;x = J# + Jf} are defined similarly
to I in equation (A.11). It is noted that when 7, = 0, J;zx = J4 + J;j1 = 0 holds.
and the mass matrix is symmetric. J; = 0 also holds when rig = 0, i.e. when the

origin of the body fixed coordinate system is at the body CG.
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Next the force vector {F} needs to be calculated. The total forces and their
overturning moments about ¥ = 0 are written in general as

AN 7dS — kdV + D 1
F -t _/wwapgkd + (11)

—

M= - "“'d—/ Fx kdV + B 12
sA+SBp’rxn S VA+VBpgrx + (12)

In the above equations 7 is the unit outward normal vector to the body surface. k is
the unit vector in the z-axis direction. The surface integrals represent contribution of
the pressure force over the surface of the body. It mainly comes from the hydrody-
namic pressure on the submerged part of the body. Perturbation of the hydrostatic
pressure due to the body motions will give rise to a restoring force component whereas
the dynamic part can be further divided into two components. The first one is the
effect of motion of the body in otherwise still fluid and is usually expressed in terms of
‘an added hydrodynamic mass and a damping matrices. The second is the combined
effect of the fluid motion in the absence of the body and diffraction of the fluid by
the body when it is fixed.

The volume integrals represents contributions from the the gravitational force
of the body mass. D and E are the external constraining forces and their moments

about 7 = 0 respectively. They are dealt with in Section 3 below.
2.3 Velocity Potential and Hydrodynamic Pressure

Without introduction to the background, a velocity potential can be defined to
describe the field of fluid motion in the presence of a floating body. The assumption

of small amplitude motions enables the potential to be decomposed as follows

¢ = Re { [(‘Pn +07) + i QJ“P:] e'-”‘} (13)

=1
where Re means the real part of the complex formula. 1 is the complex unit. ¢ and
¢7 are the amplitude of the incident and diffraction velocity potential respectively.
The remainder are the radiation potentials due to the six-degree-of-freedom motions
of the body. @; ( = 1,2,...6) are the complex motion amplitudes defined from
equation (3) as

{g} = Re{{Q}e"} (14)
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This assumes that any transient motions have disappeared and the body is in a steady

state of oscillation.

The above potentials satisfy the governing Laplace equation and other relevant
boundary conditions. Computation of the velocity potentials is known as the wave
diffraction and radiation problem. A brief statement of the problem is presented in

Appendix C.

The velocity potentials, once obtained, are used to compute the fluid pressure

according to the linearized Bernoulli's equation as

a
P = —pug(z—h)— p..,—é% (15)

6
= —puwg(z = h) = puRe { [(soo + 1) + Z: Q;%‘] iwei“”}

=
where p,, is the density of the fluid and z = h defines the height of the mean water
level. The terms inside the curly bracket represent the dynamic pressure, whereas the
first term in equation (15) is due to changes in the hydrostatic pressure component.
Substitution of this equation into equations (11) and (12) yields the forces. Appendix
B details the integration of the hydrostatic pressure force over the instantaneous
submerged surface of the body. In Appendix C, the hydrodynamic pressure forces
are computed. According to the appendices, the total force can be rewritten in matrix

notation as
{F} = —[c{a} +{G} +{D} + Re {{F}e™'} - [~w’[a] + iwft] {Q}™*  (16)

In the above equation [c] is known as the restoring stiffness matrix and is given,

according to equation {B.19), by
[d] = [d* +[d]® (17)

The {G} vector contzins the static terms related to the body without external con-

straints. It is written according to equation (B.18) as
{G}={G} +{G}® (18)

{D} combines D and E in equations (11) and (12). As is shown in Section 3, it can
be written in the following form

{D} = {D} + {D)} (19)
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with
{D(OJ}_ — {D(O)}A + {D(O)}B

being the static component when the body is in its undisturbed position, and
{D"} = {DW} + {DM}? = [c1){q}

being the motion dependent component. By equating equation (16) with equation
(9) and rearranging terms, the hydrostatic and dynamic equilibrium equations are

obtained as follows.

{G}+{D} =0 (20)
[M + a] {¢} + [b]{d} + [c — cu]{q} = {F*}e™ (21)

in which Re{} is dropped, but is implied from now on. Equation (20) yields the
sufficient (but not necessary!) static stability condition, which can be easily verified
for a free floating body. That is, ng = pgV, which is the Archimedes’ Principle, and
z'y, = z'c and ¥, = y', which means that the centre of buoyancy lies on the vertical
axis through the body CG.

All the terms except [cx] are known to the case of a freely floating body. For a
externally constrained floating body, {D} is treated in Section 3. In this case, equa-
tion (20) yields six static equilibrium equations, from which the static components of
the unknown constraining forces and moments involved in [c4] of equation (21) above

can be computed.

To improve the numerical predictions, especially in the frequency range in which
resonant responses occur, viscous effect may be included. The viscous effect is es-
timated according to a linearized form of Morison’s equation!®. It gives rise to two
terms, namely, drag exciting force and viscous damping. More details are presented

in Appendix E.
3.0 EXTERNAL CONSTRAINING FORCES

Take for example a constraining force, P , that is applied to the body at point
7p on the body (T‘-;p with respect to the body fixed coordinate system). In terms of
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the rigid-body motions of the body, the force is equivalent to it being applied at point
7 = 0 plus an overturning moment about # = 0, denoted as Mp. If it is assumed that
P is linear in terms of the body motions, it can then be decomposed into a constant

term and a linear term as
P = PO 4 B0 = BO 4 [T){q} (22)

where the first term is the constraining force when the body is at rest. [T])is a 3 x 6
matrix containing the linear force coefficients. For the case of external constraining
forces exerted by a linear elastic spring attached to the body, the matrix [T] can be
easily derived as presented in Appendix F.

By neglecting the nonlinear terms, Mp is given as

—

Mp = 7px PO (23)
+ 1;“}: X ﬁ(l)
+ (§+&xrip)x PO

The first term is constant and the remaining terms in the equation are of first order,

which represent contributions from perturbation of the force and motions respectively.

By defining a matrix [A] in terms of a vector 4 = (A1, Ag, A3) as

0 -4 A
Al=| 42 0 -4,
—4A; A 0

force P and its moment can be written in more concise terms as
R 1 0],5
P} = {BipT=]| ! © 0}
wy = ey = | [ 0] 50,0 (24
7]
* [[—P“”],[P("’][r'PH [Fp)[T] {a}

= [TPHF®,0)7 + [T{q}

where [I] is the 3 x 3 identity matrix.

An external overturning moment, N can be decomposed into two components

similar to equation (21) as

N = N 4 N = O 4 [Tyl{q} (25)
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It can then be combined into equation (24) directly. Now the external constraining
force vector {D} is the sum of all the external forces and moments (on body parts A

and B, separately calculated and then added) and is decomposed in a similar manner
{D} = {D}+{DW} (26)
= S {B9,F x PO 4 §O)T

+ | [ o || e

which, when compared with equation (19), gives

=3 10+ 5y ]] @

4.0 COMPUTATION OF INTERNAL SPLITTING FORCES

To compute the internal forces, the total rigid-body motions have to be obtained
first. To do this, simple notations are used and the motion equations (21) can be

expressed as
[~ (M + a) + iwb + (c - )] {Q} = [K*{Q} = {F7) (27)

This equation leads to

{Q} = K7} {F} (28)

To calculate the internal splitting forces between part A and part B, isolate
part B and replace the effect of part A on part B by an unknown force vector F,
(including the unknown moment components) applied at point 7,. Let the unknown

moment and force

M, = MO 4 M (29)
A, o= FO 4 B (30)
Dropping the second order terms, the following are obtained
(PP} = (RO, AT (31)
{(FE9} = {0, A0+ (@ x ) x FOY = [I0O1Q)e™  (32)

{FOV} = (DRt xFD 4 FEY = [T (33)
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11-4"(,0) and ﬁ"f’) are computed from the static equilibrium equations of body B, given
now by
{G}? + {DO}* + {F} =0 (34)

{F{®)} is therefore known. {F{!®} is also known. The only unknowns are F() and
MY in {F{EVY,

The equations of motion of part B can now be obtained similarly as

[~w?(MP + o)+ iwb® + (cF - )| {Q} = {F}? + [TV FL} + (TEVHQ)
(35)

The unknown force vector is then compuied from

{FEDY} = (TE0)7 {[-w(M® +a®) +iwb® + (7 - cf - T{V)]| {Q} - {F*}7}
(36)

5.0 MOTIONS OF A SEMI-SUBMERSIBLE MODEL

In the following, the formulations presented above are applied to the predic-
tion of the motions of a semi-submersible and the induced internal forces in regular
waves. Model test was done with a 1:36 scale model of a Glomar Arctic III semi-
submersible at IMD. A sketch of the model is shown in Figure 2. In the model tests,
the six-degrees-of-freedom motions and internal splitting forces (and moments) at the
mid-deck level in regular waves were measured. Further details of the model tests are
found in ref. [9]. This section presents the correlation study between the test results
and those from present numerical prediction. In addition, the effect of varying some
of the design parameters on the motions and internal forces are investigated. The
test results used here are those under condition 6 (50ft draught, regular waves, beam
seas) of ref. [9]. Maximum design loads at mid-deck elevation occur in beam seas.
In the numerical computations, the mooring lines were modelled as simple massless

springs. The spring stiffness was obtained from model test measurements.

Before going on detailed computations, it is useful to qualitatively analyse the
experimental results on the body motions and internal forces as contained in ref. [9].
For this, the body can be regarded roughly as having two planes of symmetry. The



IR-1993-08 13

slender nature of the two half bodies in the longitudinal direction indicates high de-
gree of directional dependence of the body motions. The body undergoes little yaw
motion when the wave direction is in either plane of symmetry. It is only significant in
the vicinity of quartering seas. In contrast, pitch and surge motions become more sig-
nificant as the wave direction approaches the longitudinal plane of symmetry, whereas
roll and sway motions decrease. Comparatively speaking, the heave motion is not as
direction dependent. Nonetheless, a higher heave motion in head seas occurs than in
other directional seas due to decoupling of heave and roll. Separation of the two half
bodies generally means that there will exist a cancellation frequency (in the practi-
cal wave frequency range) in the sway motion in directional seas, the effect of which
becomes more pronounced as the wave direction approaches beam seas. This cancel-
lation frequency occurs in the neighbourhood of a 4:1 wave length/beam ratio, which
means that the cancellation is relatively high. Similarly use of separated columns on

each half body accounts for existence of a cancellation frequency in surge in head seas.

The slender nature of the two half bodies also means that the wave exciting
forces and the induced internal forces are relatively small in head seas in general.
The internal loads (shear/tensile force and bending/torsional moments) in beamn seas
are of primary concern. In the present case, the bending moment M{!) and tensile
(compressional) force F{Y), which are the two critical internal load components from
the structural strength point of view, are also the largest. The vertical shear force
F{) is higher in beam seas than in other directional seas which is in contrast with
the vertical motion. The longitudinal (horizontal) shear force, F{!), torsional moment
M&) and bending moment M} are practically zero in beam seas, but become domi-
nant in quartering seas. Their combined effect may be significant, but their individual
amplitudes are much less than those of F,g) and M{!) in beam seas. It is therefore
concluded that from the structural design point of view, the transverse tensile force

F&:) and bending moment M(!) are the critical internal loads at the mid-deck level.
5.1 Motions

In Figures 3 to 5, the measured and numerically predicted body motions in
beam seas are compared. Very good agreement is obtained for the sway motion. The

same can be said about the heave motion except in the resonant frequency range
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(around T = 20.5 seconds). Addition of linearized viscous damping as calculated in
Appendix E improved the numerical results in this frequency range, but the linearized
equations of motion are not entirely valid in the vicinity of the resonant frequencies.

All the nonlinear effects would have to be included.

The measured roll motion is lower than numerically predicted. This is thought
to be attributable to the insufficient resolution of the optical tracking system arrange-
ment used in the tests to measure the roll motion. The optical tracking system had
a resolution of 0.5°. The roll motion amplitude, which decreases as the wave period
increases, was about 1° at frequencies between 9 and 19.5s and dropped below 1°

quickly at long wave periods.
5.2 Wave Induced Internal Forces

For the present model in beam seas, the longitudinal surge splitting force, the
pitch moment (torque) and the yaw moment (transverse bending) of the internal
splitting force vector are near zero. Comparisons on the the remaining three force
components are presented only. The results are shown in Figures 6 to 8. Again very
good agreement is obtained between the numerical and model test results for the
internal heaving shear force, F{!), and rolling overturning moment, M{l). Relatively
abrupt changes occurred in the computed rolling overturning moment in the vicinity
of heave resonant frequency as expected. A similarly abrupt change was also found
for the transverse swaying force, F‘(,;), at these frequencies. The agreement on the
sway force at other frequencies is generally good. The relatively large discrepancies
between the numerical and the measured results of the sway force at high frequencies
is attributed to the numerical exciting force computation. A single node Gaussian
quadrature was used on each panel, which is expected to be acceptable at low fre-
quencies, but is inaccurate at high frequencies. For the present structure with a
longitudinal centre plane of symmetry, it can be easily shown that the internal trans-

verse sway force is the difference between the sway exciting forces on the two half
bodies.

5.3 The Mooring Effect
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Results obtained with and without the mooring lines showed that presence of
the mooring lines only affected the sway motions in relatively low frequency range
(wave periods above 15s). Also, the peak of the internal force and moment RAOs
(response amplitude operator) occurred at relatively high frequencies. In the prac-
tical wave frequency range up to 18 seconds, the mooring line effect can be safely
neglected. This is expected as in this frequency range, the bulk of the total resistance
to the wave exciting forces is from the inertia force. It is only in the very low drift
wave frequency range, in which the response is largely quasi-static, that the restoring
force contribution from the mooring lines becomes important. An interesting discus-
sion was given by Miller and Wilson!! on the effect of moorings and relevant design

criteria.
5.4 Effect of Body Mass Distribution

Additional numerical computations were done to investigate the effect of struc-
tural mass distribution on the overall motions and internal forces of the semi-submersible.
This was done in two separate ways: one with a vertical shift of the body CG only
and one with a transverse shift of the CGs of the two half bodies. The geometrical

dimensions were kept unchanged.

In the case of a 10% (9ft in absolute terms) downward shift of the body CG,
the roll RAO was decreased slightly. The heave and sway RAOs were even less af-
fected above the heave resonant frequency. The internal sway force was unchanged as
expected. It can be shown theoretically that the internal sway force at the mid-deck
level in the longitudinal plane of symmetry is the difference between the external
sway exciting forces on the two half bodies. However, reduction of about 10% (or
0.3MN/m) was found in the maximum value of the internal roll moment RAO, which
occurred at a wave period of around 9 seconds. At other wave periods outside this
peak RAO range (see Figure 8), the change was much less significant. Similar changes
in the internal heaving force were found. From practical design point of view, these

changes do not substantially affect safety factor level.

In the case of transverse shift of the CGs of the two half bodies, a 2.0m maxi-

mum shift (representing a change of about 10%) for both half bodies away from the
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centre line was considered. This resulted in an increased roll mass moment of inertia,
and consequently a reduced roll RAQ, but the sway and heave RAOs were not prac-
tically affected. The internal roll moment RAC was more or less unchanged in the
peak frequency range, but increased at lower frequencies with a maximum of about

5%. The same was found with the internal heaving force.

In practice, variation of the body CG is limited. It is therefore concluded that
variation of the body CG does not affect the body motions and internal forces signif-

icantly.
6.0 CONCLUSIONS

Detailed formulation of the motions of an externally constrained floating body
and the induced internal forces in regular waves has been presented. The formu-
lation was based on the assumption of small amplitude body motions. It included
detailed treatment of the external constraining forces and calculation of the internal
forces in the body, and was done systematically by decomposing the body into sev-
eral rigidly connected parts. Application of the formulation to the case of the moored
semi-submersible, Glomar Arctic III, indicated very good agreement between the nu-
merical results on body motions and internal forces and those from model tests. The
present formulation is directly applicable to full-scale study and model testing of a

wide range of floating offshore structures.

Numerical results for the semi-submersible obtained with and without the moor-
ing lines indicated that the mooring effect on the body motions and internal forces

were practically insignificant in the wave frequency range.

Examination of the effect body mass distribution showed that due to limited
variation of body CG in real design, the body mass distribution does not affect the
body motion and internal forces at the mid-deck level substantially in the wave fre-

quency range.

This report was prepared while Shukai Wu was visiting the Institute for Marine Dy-
namics — NRC as a NSERC Visiting Fellow. Assistance from staff of the Computational
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Hydrodynamics Laboratory in providing access to the WAMIT computer program is grate-
fully acknowledged.
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APPENDIX A DERIVATION OF THE MASS MATRIX

Al. Body Motions

In the dual coordinate systems defined in Section 2.1, the following relationships

from equation (4) are repeated

F = fthR (A.1)
R = r4+axs (A.2)
r, = ?-:o +q (A.3)
F = U=¢+dxR (A4)
A2. Linear Momentum
Now the linear momentum of the body mass of part B is
L= d = Udm (A.5)

va vE
= mB cj’ +ax j Rdm
vE
= m® é’ +m? & x R.g
where Eg is the directional distance of the body CG from point o' and is given by

=L

mb8 Jve

Rdm (A.6)

Conservation of linear momentum of the body is then expressed as

ﬁB=E=m‘Bé’+mEé‘xég+mczix(c:z'xég) (A7)

A3. Angular Momentum
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The angular momentum of the body about the origin of the inertial coordinate

system, denoted as {1, is written as

Om = fVBFx dL (A.8)

Conservation of angular momentum is then expressed as

3 3
M2 = Q=mP7E x 7+ 3 SUIB + JB)asi + 0(¢?) (A.9)

k=1j=t%

In the equation, ix = i,j,k for k = 1,2,3 respectively; 0(g?) indicates the sum of

terms that are of at least second order with respect to {q}; Iﬁ: and Jﬁ_ are given by
g = jv _p(r - Gy — v’ )dV (A.10)
Jg = fv P(Fa - Py — T3 )AV (A.11)
= mf[F,. 1326_.,-,: — Fokr'gk
where &;; is the Kroenecker § function; and r = (z,¥',2') = (r'y,7'2,7'3). j,k =
1,2,3. Jf}c is similar in form to Iﬁ:.

A4. The Mass Matrix in the Linearized Equations of Motion

By neglecting all the second and higher order terms with respect to the body
motions, {g}, The two conservation of momentum equations above are then combined

in matrix form as follows.

[ m 0 0 0 mz'g -my'e | a
0 m 0 —mz'g 0 mz'g
0 0 m my' —mz'g 0
M)B = _ _ ¢ A.12
[M] 0 -mzg mygs Ju+hy Juzthy Jiz+ s ( )
mig - 0 -mZTg Jun+ly Jaatlha Ja+ Ixn
| —mye mig 0 Ju+hy Ju+ Iy Jad4 I

which are all zero if 7, = 0 is chosen, i.e. the inertial and body fixed coordinate

systems coincide in the undisturbed position of the body.
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APPENDIX B DERIVATION OF THE RESTORING STIFFNESS MATRIX

When equation (15) is substituted into equation (11), the first term is an in-
tegral of the form puwg fsa,s8 (2 — h}{n}dS which represents the force vector due to
hydrostatic pressure over the submerged body surface. Carrying out the integration

for part B and denoting also as F2 for simplicity

FB B
;‘E = jsan z — h)dS (B.l)
- f 7zdS — [ K(z - h)dS
58 S8

where S5 indicates the waterplane area of body part B. By virtue of Gauss’ theorem

f;ﬁde:fvﬁ V fdS (B.2)

in which V represents the gradient of a scalar function. The surface integral over S5

is zero in equation (B.1). Therefore,

ﬁ"B
o= v (B.3)
ngk VGB—AVB

where V represents the mean submerged volume and AV represents the difference

between the mean and the instantaneous volume of submergence of body part B.

dV = Azda'dy’ = g3 + (G x 7)adz'dy’ = (g2 + any’ — @p2')dz'dy’ (B.4)
7B
F oo vB—f dv (B.5)
pugk ave

= [VH — (Swqa + Sz — ale)]

where V72 is the displacement of part B. The above equation can be written in matrix

00 0 0 0 0 8
00 0 0 O 0}{:;}} (B.6)

005, S5 -5 0

form for part B of the body as

FB =png{V—

where
S8 — .[55 ¢ ,dz’ dz’, (B.7)

7

w
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is the polar moment of the waterplane area of part B defined in terms of the body

fixed coordinate system.

In a similar manner, the moment integration can be expanded as follows

MB

— = fsa;xﬁ(z-h)ds (B.8)

fssrxn(z—h)dS—Lgrxn(z—h)dS
- _LBVxﬂz-h)dv-jsgrxk(z-h)ds

-
»

= - A (—yr-l- zj)dV
L]

according to Gauss’ theorem
){ Fx fizdS = [ V x 72V (B.9)
5B v

From equation (5) of Section 2.2

Y=Y+ Y +q+ a3z’ — 2 (B.10)
=2z, + o +q + 2z — azy’ (B.11)
./‘I,B —yde = —fVB [y,, + y';, + g2 + (.!3:1:';, - alz'b]B (B12)
0
T Jave —yidV = i [vo(Swas + 1 Sz — a5y) (B.13)
+(qaS2 + @152 — 02512)18
./VOB zjdV = j'VB [zo + 2y + @1 + @22’y — a;,y'b]B (B.14)
=L zjdV = —j(z.(Suas + 152 — az$)) (B.15)
+(g35 + a1 512 — azsn)]B
ji? ) -
g T {-T[V(¥a + ¥ + g2 + caz’y — e 2y) (B.16)

_yo(S\uQZi + a5, — azsl) = (‘1352 + a5y — 02512)]
43 [V(zo + T + @1 + @22’y — aay'y)
~Zo(Sws + @152 — @251) — (351 + 1512 — 02511)]}3
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~B
!, represents the position vector of the centre of buoyancy of the submerged volume
of part B in the body fixed coordinate system. Sﬁc is defined as

S.ﬂt = ,[sn m’jm’kdmlldflz k3 =1,2,3

w

The second term in equation (12) of Section 2.2 represents the moment of the

gravitational force and can be caculated for part B of the body as follows

ﬂjw g7 x KdV = pgl/;m(—;—y +32)dV (B.17)

7 B B B
= "lmBg [y,, +ye+q@taszc - o

4 FnPg[oat o 4 0 ape — a2
Combine the hydrostatic terms into {G} to obtain, for body part B,
T
{G}® = ¢{0,0,(V®p, - m®),(VEpu3f - mP78), (V7 pu2) - mP2E),0  (B.18)

where V2 now is the displaced volume of body part B when it is at its undisturbed

position. The motion dependent terms in equations (B.6), (B.16) and (B.17) can
be written in the form of —[c]®{q} in which [¢]? is known as the restoring stiffness
matrix and is given as

C 0 0 0 0 0 o 1°
0 0 0 0 0 0
0 0 Sw S, -5 0
1B
(? 0 -V wSu+S V-PEE -5y -5, -V
—— m¥ mBx'B (B.lg)
Pwd e +522 + 5290 +=.8
18

V 0 -Su2.-S5 -Sm0-Si Vi-TXa vy,
1 B
-z +5u+ 51z, +2MA

0 0 0 0 0 0

=B = -B o
where 7 =7, + r'; is the position vector of the CG of body part B.
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APPENDIX C STATEMENT OF THE RADIATION & DIFFRACTION
PROBLEM

Denote P = P(=z,y, z) as the field point off the body surface ( and P(z,y,2) =
p(z,y,z) on the body surface) and ¢ = (£,{,n) as the source point on the body
surface. The source potential at point P(z,y, z) due to source distribution on the
body surface (rigid) is

#(P) = [ o(a)G(P,q)d$ (C.1)
The gradient of ¢(P) at P in the direction of 7i,, when P outside the body surface is
allowed to approach p on the body surface is then
@Lzl = P-.l;i:fn.-.u -[s,+s. a(Q)aG( —) a5 mednalpd + .[ 6G(p, Q) (C2)

Ony Ong Ty

where S = 5, + S, is divided with S, being the indented hemi-sphere at p. Upon
imposing the body boundary conditions, the left-hand side of the equation is known.

The equation is solved numerically to obtain the source density.
Let the total potential be

= Z $; = [(‘Pu + 7)) + i Q:“PJ] ekt (C.3)

3=0 =1

where j = 0,1,...,7 represents the incident, radiation and diffraction potentials re-

spectively; k =< or —i may be used. Now the diffraction potential satisfies

po + 97)
o =0 (C.4)
which leads directly to 5
97l = 0o
n = " on (C.5)
Let
n; = Ty
for 7 =1,2,3 and
TI.J' = (T'-; X ﬁ)j-:i

for j = 4,5,6. Applying the flow tangency condition on the body surface leads to
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This gives

Gp; _ _
B = kwn; (C.6)

for j = 1,2,...,6. Equations (C.5) and (C.6) are then substituted into equation
(C.2), which is solved numerically for the source density function 0. Now the total

potential amplitude can be obtained according to equation (C.1) on the body surface.

The dynamic pressure is then

a .
p:—,?,,,:a—*{i = —kpywpe (C.7)

6
= —kpuw(po + p1)e" — kpuw Y Q ;6™
i=1

The pressure force and moment about a given point in the global coordinate system

with position vector 7, are then computed as

1
= jspﬁds = js {kpww(tpo +w7) — [*kpww > Q;‘%] } Aek*dS (C.8)
1=1

M o= - js pF = Fn) x AdS (C.9)

F

I

/s {kpww((po + ) — [—kpww > Q_,-c,aj] } (F — 7)) x Reb*dS

i=1
Define m; = n; for j = 1,2,3 and m; = [(7 — 7n) x 7i];_5 for j = 4,5,6. This enables

the above equations to be simply written as

Fg= /s {kpww(lpo +¢7) = [—kpww Z Q;%] } mgedS (C.10)

for B = 1,2, ...,6 representing the dynamic pressure forces and their moments about
the given point. Fj is usually further decomposed into a wave exciting force (mormnent)
component due to the combined incident and diffracted velocity potentials and a

component directly proportional to the motion amplitudes as

6
Fa= |Ff-3" ngj] ekt
=1
with
o FS = kpow fs (0 + wr)madS (C.11)

Fy, = —kpyw fs mgep,dS (C.12)
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The part due to the incident and diffracted potentials in the first equation is referred
to as the Froude-Kryvlov Force and diffraction force respectively, whereas the second

equation is further decomposed into the following form
Fp; = k*w?ag; + kwbg; (C.13)

where ag; and bg;, both real are known as the added mass and damping respectively.
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APPENDIX D A HYDROSTATICS COMPUTER PROGRAM

To calculate the motion response ans internal forces of floating offshore struc-
tures such as TLPs and semi-submersibles, it is necessary to obtain the hydrostatic
characteristics for part and/or the whole of the structure. Most offshore structures
consists of column members. The cross-sectional shape of these column member may
be circular, rectangular (or square), elliptic or triangular. In addition, the cross sec-
tion may be hollow or solid. For the present purpose, it is sufficient to divide the
structure into column members and lumped masses. Here “column” is used broadly
as a mathematical model to represent any structural components having a mass dis-

tribution that cannot be regarded as lumped masses.

The definitions are well known. The algorithm is based on dividing each col-
umn into a number of segments (thin strips) and summation of the characteristics is

carried out over all the segments to arrive at the total for the column.

In the case of a hollow column filled with ballasting material inside, for ex-
ample, sea water, the column may be decomposed into two concentric columns: the
hollow column itself and a solid column of the ballasting material. From the point
of view of computing the hydrostatics of the structure, it is sufficient to consider the
hydro-statics of a single column. Those for the whole structure is the sum of all the

individual columns.
D1. Specification of a Column

A column is completely defined by the position vectors of of the column axis at
its two ends, ¥} and 73, the cross-sectional shape and orientation. The cross-sectional
shape are defined in terms of four parameters in general, s, for n = 1,2,3 and 4.

They are as follows,

For a circular section:
s; = R is the radius;
s4 =t is the shell thickness for a hollow section; and

for a solid cross section 54 > s, Is set.
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For a rectangular section:

81 = a is the length of the cross section;

83 = b is the breadth of the cross section;

84 = t is the shell thickness for a hollow section; and

for a solid cross section s4 > s, is set,

For an elliptic section:

s; = a 18 half the major axis of the cross section;

83 = b is half the minor axis of the cross section;

34 = t is the shell thickness for a hollow section; and

for a solid cross section s4 > s, is set.

For a triangular section:

3; = a is the bottom length of the cross section,;

s3 = b is the isolateral of the cross section;

34 =t is the shell thickness for a hollow section; and

for a solid cross section s4 > maxz(s;,s,) is set.

The orientation of the cross section can be defined in terms of the directions
of its three principal axes. If the column axis passes through the centroid of the

cross-section, then a unit normal of the cross section can be chosen as

e, = o0
* |T‘2—T1|

In this case, only one more principal axis of the cross section needs to be specified. Let

€z be the the unit vector along this principal axis. For a column of circular section,

€z is quite arbitrary. For convenience, € is defined as
(D.2)

For other cross-sectional shapes, €, is assumed to be as follows: €, is paralle] with the
longer lateral of the rectangular section, the major axis of the elliptic section, and the
bottom of the triangular section. In the latter cases, &, needs to be specified. The

unit vector along the third principal axis of the cross section is then

&, =& X & (D.3)
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D2. Cross-Sectional Characteristics

These include the area and the second moments of inertia about the principal
axes of the cross section. By definition, the polar moments of inertia of the cross
section are identically zero. For convenience, let o, and g, be the area enclosed by
the outside and inside peripherals of a hollow cross section respectively. For a solid

cross section, o3 = 0. The solid area of the cross section is therefore

g =0, — 03 (D.4)

The second moments of inertia of the solid area of the cross section are computed

as follows. ) ( 2
g 81 — 54
I,,: = Iyy = Ul.‘f — 02—14— (D.5)
for circular section.
s? sy — 2s4)?
I:::: = alﬁ - cr2( : 12 4) (Dﬁ)
s3 (52 — 234)?
Iy = alé - D : (D.7)
for rectangular section.
I::z = 0153/4 . 02(52 e 54}2{"4 (DS)
Iyy = 0'1.5‘?/4 s 0'2[:.51 = 34)2/4 (D.g)
approximately for elliptic section.
Iz = 0152/24 — 05 (s, — 254/ tan(8/2))* /24 (D.10)
I, = 01h2 /18 + +01Ah} — a3kl — 02AAR3 (D.11)
For triangular section where
6= =L (D.12)
= 5, €05 25, .

hy = s;siné (D.13)
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1. + cosé

hz = hl - S4 Ahl = hl - h (D.14)
cosf
Ahz - hz + S4 — h (D.15)
o= Ulhl“dg(h2+34) (Dlﬁ)
Ty = O3
In all the cases, the cross terms are zero and
AmAlP

= 1

Izz 12 (D 7)

where Al is the length of each segment and Am = poAl is the structural mass of the
segment. If sufficient number of segments are used for each column, I,; = 0 can be

set for the segment.

The above moments of inertia are w.r.t. the principal axes fixed on the cross
section of the column and have to be trasformed into those with respect to the global
axes. If (X, Y, Z) are the axes that are through the centroid of the cross section and
are parallel with the global axes, then the second moments of inertia of the solid cross

sectional area about X, Y and Z axes are

3 3
IX.‘X:‘ = PAIZ Z tlktjm-[zh::m (DIB)

k=1m=1

where {;; are the elements of the transformation matrix [¢]

€x1 €y1 €1

[t]=] ex2 ey es (D.19)
€3 €y3 €3

E: = {e:l:ll €x2, e:c.'!} (DZO)

Denote 7§ as the position vector of the centroid of k** segment, i.e.
(2k — 1)Ale,

2
for £ = 1,2,..,n. The polar and second moments of inertia of the column with

Tk =71

(D.21)

respect to a specified point 7, are given by

W, = dm 327 - ) (D.22)
k=1
I‘}:f.-x,- =nixx; + Am Z(ﬁi — )Tk — 7o) (D.23)

k=1
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fori,7 = 1,2,3.

30
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APPENDIX E DRAG FORCE

For semi-submersible structures, which have a large displacement but relatively
small water-plane area, the damping due to viscous drag force on the structure may

become important relative to the radiation damping, especially at low frequencies.

Neglecting any lifting forces that may exist, the sectional drag force on any

column member of the body is expressed as
1 =
Fy = 5CqAlIVIIY; (E.1)

where
F, is the sectional drag force;
7 = 1,2,3 indicates the three translational modes of motion;
Cy; is the drag coefficient;
A; is a characteristic cross sectional dimension corresponding to the 7** mode of
motion;
V is the total relative velocity normal to column axis; the relative velocity is between
water particle velocity in waves, U, and that of the moving column, cj; taken at a
reference point on the cross section; and
V; is 7** component of V;
V can be written as

V=Uu-q.—-(0,-q)f (E2)
where £ is the unit vector along the column axis. It is implied in the foregoing equa-
tions that the body cross-sectional dimension is small in comparison with the wave
length so that the velocities of water particles do not change significantly within the
cross section. This requirement is practically acceptable as the primary concern here

is the viscous effect in the low frequency range.

Before the sectional force in equation (E.1) is integrated over the column length,
it is linearized. The ways in which this is done are discussed by Chakrabarti®.
Equation (E.1) becomes after linearization

FY = E‘ér-cdm,-nﬁwun (0u -4

3

(E3)

ny
in which n indicates the direction normal to the column axis. The relative velocity

amplitude is approximated by that of the wave motion under the assumption of small
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amplitude motions of the body. Set A; = D with D being a characteristic dimension
of the cross section. Assume that the body is composed of slender columns. If the
axis of a column is in line with the translational motion of j** mode, it does not
induce any drag. The force in equation (E.3) is now integrated to arrive at the total

force on the body
FY = '[! Frdz, (E.4)

The moments of FJ-V are calculated acoordingly as

2

MY = _L (7. x F*). da; (E.5)

It is noted that F¥ and MV, when substituted into the equations of motion of
the body, contribute a viscous damping term to the left-hand side and a drag force
term to the right-hand side.
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APPENDIX F THE FORCE COEFFICIENTS FOR AN ELASTIC SPRING

In the case of an external force exerted on the body by a simple massless linear
elastic spring, let one end of the spring of unstretched length I, be fixed at point
(z%,23,23), and the other end be connected to the body at point (z;,z;,z3). The
point of connection on the body is denoted as (%;,%;,%3) when the body is in its

undisturbed position such that ¥ — Iy > 0 where

= (& — 20 + (T2 — =iy + (T3 — 20)is (F.1)

T; = T (F.2)

b

=3l

with i; 7 = 1,2, 3 being the unit vectors along the three coordinate axes respectively.

Similarly, denote 7 as

T, = Tej (F.4)

2

with

being the directional cosines of 7.

Let the spring force at an offset position of the body be F such that

F = -Fé (F.5)

F = —Pe=Fy+ 5 2m (F.6)

P { Ig(r — lo) iffrr>sl?o 1)

%ﬁf ZTF:ZZ: ez = Tii (F.8)
8 -

F o= ;(Ej-l-drj—z?)i,- (F.9)

dr = §+&x(F—) (F.10)

?a% = [Th] = —1__% (BloT; + (7 — lo)76,4) (F.11)
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or 1006 0 Xs —-X,
olee=(TE =010 =X 0 X (F.12)
% 001 X; -X, 0

so that [T] = [TY)[T?). X; = % — zo. F; for j = 1,2,3 correspond to the static

components, namely, the pretension.

The above simple spring model is frequently used to represent the restraining
forces of mooring lines attached to the floating body. The mooring lines are often
of catenary type and their characteristics are known to be nonlinear in terms of the
end displacement. Nonetheless, the above simplification is usually justified under the

assumption of small amplitude motions of the floating body.
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Figure 2 A sketch of the model of the Glomar Arctic III semi-submersible.
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Figure 3 Measured and numerically predicted sway RAO at body CG in beam seas.
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Figure 4 Measured and numerically predicted heave RAQ at body CG in beam seas,
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Figure 5 Measured and numerically predicted roll RAO in beam seas.
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Figure 6 Measured and numerically predicted internal sway force (F{})) RAO in

beam seas.
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Figure 7 Measured and numerically predicted internal heave force (F{V) RAO in

beam seas.
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Figure 8 Measured and numerically predicted internal roll moment (M{!)) RAQ in

beam seas.
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