| hd |

NRC Publications Archive
Archives des publications du CNRC

Firewall Log filter.
Jiang, Peng

For the publisher’s version, please access the DOI link below./ Pour consulter la version de I'éditeur, utilisez le lien
DOl ci-dessous.

Publisher’s version / Version de I'éditeur:
https://doi.org/10.4224/18253434
Student Report; no. SR-2009-20, 2009-01-01

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=a89e9e70-2196-474a-8292-8f8dae2f21d0
https://publications-cnrc.canada.ca/fra/voir/objet/?id=a89e9e70-2196-474a-8292-8f8dae2f21d0

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’accés a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la
premiére page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

 Ld

National Research Conseil national de C d
Council Canada recherches Canada ana a

I*I National Research ~ Conseil national
Council Canada de recherches Canada

Institute for Institut des
Ocean Technology technologies océaniques

SR-2009-20

Student Report

Firewall Log filter.

Jiang, P.

Jiang, P., 2009. Firewall Log filter. St. John's, NL : NRC Institute for Ocean
Technology. Student Report, SR-2009-20

Canada

DOCUMENTATION PAGE

REPORT NUMBER NRC REPORT NUMBER DATE
SR-2009-20 December 2009
REPORT SECURITY CLASSIFICATION DISTRIBUTION
Unclassified Unlimited

TITLE

FIREWALL LOG FILTER

AUTHOR(S)

Peng Jiang

CORPORATE AUTHOR(S)/PERFORMING AGENCY(S)

National Research Council, Institute for Ocean Technology, St. John’s, NL

PUBLICATION

SPONSORING AGENCY(S)

I0T PROJECT NUMBER NRC FILE NUMBER

KEY WORDS PAGES FIGS. TABLES
Firewalls, Networks, Security, Logs, OpenBSD, PF 27, 4

Filter App. A-G

SUMMARY

The need for Firewall Log Filter. In many cases, it is possible to detect patterns by browsing
the log data but unfortunately it is also tedious. For example, a clever attack against a
firewall cluster of an enterprise is scattered over all of its firewalls and executed slowly from
several different IP addresses using all the possible protocols alternately. In such situation,
we have to use the log filter to collect the correlated IP addresses. The typical size of the
firewall log entries was more than 100,000 lines, which were collected during a period of a
day. From these entries, with the frequency of equal or greater than 5,000 the FLF was able
to identify the pattern and was able to generate a summary. When the frequency was
lowered to 50, the FLF also has the ability to ignore generating summaries in order to save
computation and analyzing time.

ADDRESS National Research Council
Institute for Ocean Technology
Arctic Avenue, P. O. Box 12093
St. John's, NL A1B 3T5
Tel.: (709) 772-5185, Fax: (709) 772-2462

i

National Research Council
Canada

Institute for Ocean
Technology

Conseil national de recherches
Canada

Institut des technologies
océanigues

Firewall Log Filter

SR-2009-20

Peng Jiang

December 2009

Executive Summary

Firewall Log Filter (FLF) is a scripting application, where network packets were captured
from the network interface controller by means of “tcpdump”; then FLF could parse,
filter and summarise the logged entries without losing any important information. By
combining log entries with their frequencies and identifying recurring patterns, FLI was
able to separate correlating entries from infrequent ones and display them with
accompanying information. Thus, the administrators can have a more predicted outlook
of the logged eniries and can identify suspicious network activities. For example,
Administrators can trace the source IP addresses by means of programs such as

LI 19 i

“nslookup”, “whois”, “fraceroute”, etc.

The need for Firewall Log Filter was also the motivation of this project. In many cases, it
is possible to detect patterns by browsing the log data but unfortunately it is also tedious.
For example, a clever attack against a firewall cluster of an enterprise is scattered over all
of its firewalls and executed slowly from several different I[P addresses using all the

possible protocols alternately. In such situation, it can use the log filter to collect the

correlated TP addresses,

The firewall logs contain information about the IOT's network traffic flow. The log
entries provide a non-continuous flow of data, which means, it is not occasional bursts. If
there are fragmented log entries that escaped from the firewall listening device, the FLF

is able fo either ignore those entries or list them for post analysis.

The typical size of the firewall log entries were more than 100, 000 lines, which were
collected during a period of per day. From these log entries, with the frequency of equal
or greater than 5, 000, FLF was able to identify the pattern and was able to generate a
summary. When the frequency was lowered to 50, the FLF also has the ability to ignore

generating summaries in order to save computation and analyzing time.

Table of Contents

1.0 INrOdUCHON ... 2
1.1 NEIWOIKS ..o et e e 2
1.2 FIrEWAIIS ...cooiiiiiiiiie et e et et e s 3
1.3 0penBSD and BPF ... e 6
1.4 BPF LOQGING oottt e 9

2.0 Code Development ...t 10
2.1 Design OVErVIEW ...ttt e 10
2.2 TCPAUMP oo e et e e 11
2.3 TheFirewall Log FIRer......ouvvereii i 11
24 Flowchartofthe Codeccoiiiiiiiiii e 11

2.3.2 USA0C.... oo e 12

3.0 Program EXecutioncccciiiiiiiiiie e 13

4.0 CONCIUSIONS ... e e re e 14

5.0 RecommendationsS..........cccceeiiiiiiiei et 14

6.0 Refer@nCeS ..o 16

Appendix A — Firewall Log Filter Source Code..............ccoo v 17

AppendiX B —API Code ... 20

Appendix C — Typical PF LOg EXCarpl.......ccccooiiiiii e 23

Appendix D — Firewall Filter Script Qutput 1. 24

Appendix E — Firewall Filter Script OQutput 2. 25

Appendix F — Firewall Filter Script Output 3 ..., 26

Appendix G — Firewall Filter Script Qutput 4.......ccoooiiiiiiie e, 27

List of Figures

Figure1 Simple NetWOIK oo 3

Figure 2 JOT NetWOTK ... e e e e e e aaees 3

Figure 3 Overview of BPF ... 8

Figure 4 OOP Class Method Parsedata Code Flow chart..............cccoc oo 12

1.0 Introduction

Firewall Log Filter (FLF) is a log filtering application developed for use at the
Institute for Ocean Technology (IOT). The motivation for the development of a
firewall-filtering program is to filter the firewall logging information, which was
captured from the pf (packet filter) device. Then it is desirable to generate a
report to show the network traffic activities. Firewall Log Filter currently has one
main function, which is to generate a list of source 1P address that is sorted in

descending order by frequency.

11 Networks

If the 18" Century was the time of the great mechanical systems accompanying
the Industrial Revolution, and if the 19" Century was the age of the steam
engine, and then the key technology for the 20" Century has been information
gathering, processing, and distribution. The question then came up: “ How is

information being shared and distributed?” Networks. !

A computer network is a simply two or more computers connected together so
that they can exchange information. A small network can be as simple as two

computers linked together by a single crossover cable as shown in Fig 1:

Figure1 Simple Network

A more complex network is 10T's, which is composed of multiple routers,
switches, firewalls, and other network devices. Figure 2 shows the simplified

network configuration.

Patkets Out

w

Routef

10T Firewall

Figure 2 10T Network

1.2 Firewalls

NRC-IOT uses Packet Filter as its firewall. It is easier to set up and configure,
more flexible and efficient to implement. Furthermore, the firewall failover is
another important reason why OpenBSD Packet Filter or “BPF” has been chosen

for the implementation.

It is necessary to have redundancy that the OpenBSD offers. For example, 10T's
firewall machines, one of the hosts becomes “Master” of a pre-assigned IP

address, while the other will go into “Backup” mode. If the master machine fails to

operate after a certain period of time, then the backup machine will automatically

assume the master is down and finally take over as master to operate.

A firewall is a part of a computer system or network that is designed to block
unauthorized access while permitting authorized communications. It is a device
or set of devices configured to permit, deny, encrypt, decrypt, or proxy all (in and
out) computer traffic between different security domains based upon a set of
rules. Firewalls can be implemented in either hardware or software, or a

combination of both.

From the above definition of a firewall, firewalls can be summarised as frequently
used to prevent unauthorized Internet users from accessing private networks
connected to the Internet, especially intranets. All traffic entering or leaving the
intranet must pass through the firewall. The firewall examines each message and
blocks those that do not meet the specified security criteria. It acts like a gate to
protect assets, fo ensure that nothing private goes out and nothing malicious

comes in. Figure 2 shows the placement of a firewall.

There are several techniques of firewalling: Packet filter, Application gateways,

Circuit-level gateway and proxy servers.

Packet filtering inspects each packet passing through the network and accepts or

rejects it based on user-defined rules. Although it is difficult to configure, it is

fairly effective and mostly transparent to its users. Packet filters can also be
implemented as network layer firewalls, because they operate at a relatively low
level of the TCP/IP protocol stack. Most often, the network administrators define
the rules, as sometimes using the default rules are not safe enough. Packet filter
techniques can be further divided into two categories, stateful and stateless. The
difference between those two is that stateful technique maintains context about
active sessions and uses that state information to speed up the process of

packet filtering.

For example, 10T's network connection can be described by several properties
from the BPF logging fields, including source and destination IP address, UDP or
TCP ports, and current stage of the connection's TTL (Time To Live), which
includes session initiation, handshaking, data transfer, or completion connection.
That means, if a packet doesn’t match an existing connection, it will be evaluated
based on the rule-sets for new connections. However, if it matches an existing
connection based on comparison with the firewall's state table, then it will be
allowed to pass without further processing. On the other hand, stateless firewall
requires lower system memory and can be faster for simple packet filters that

require less time to filter than to loock up an entire session.

Application gateway applies security mechanisms to specific applications, such

as FTP and Telnet servers. This is very effective, but can create performance

degradation. In essence, application gateways can prevent all unwanted outside

traffic from reaching protected machines.

Circuit-level gateway applies security mechanisms when a TCP or UDP
connection is established. Once the connection has been made, packets can
flow between the hosts without further checking. Proxy server intercepts all

messages entering and leaving the network. The proxy server effectively hides

the true network addresses.

The major difference between ALG (Application Level Gateways) and Circuit-
level Gateways (CLG) is the way they handle information. While a circuit level
gateway only examines the address and port information contained in data it
receives, not the content, the ALG is more in-depth of handling data. A firewall
using ALG runs proxy applications to view common types of data before it is
allowed through the firewall, for examples, web-pages, FTP, SMTP or POP3 for

email, etc.

1.3 OpenBSD and BPF

A number of questions may come to mind from the reading of the last section:
What is OpenBSD, why had that operating system been chosen for IOT's firewall
system, what is the relation between OpenBSD and BPF, as well as what is BPF
and how has it operate inside of the OpenBSD? OpenBSD is a free, multi-

platform BSD-based Unix-like operating system. The main reasons that 10T’s

computer systems group uses OpenBSD are: it provides fail-over function in
order to double secure the system and it runs on many different hardware
platforms, for example, the alpha, the amd64, and the hppa, etc. it integrates
cutting-edge security technology suitable for building firewalls and intranet like
I0T’s network. It provides the best development platform for building firewalls. It

pays lots of attention to security problems and fixes.

OpenBSD's Packet Filter is OpenBSD’s firewall system for filtering TCP/IP traffic
and doing Network Address Translation. BPF under OpenBSD is also capable of
normalizing and conditioning TCP/IP traffic and providing bandwidth control and
packet prioritization. Additionally, OpenBSD also offers fools like Tcpdump for
user-level packet capture and makes it possible the use of generic purpose of
network monitoring. BPF, as the internal firewall of the OpenBSD, has two main
components: the network tap and the packet filter. The network tap collects
copies of packets from the network device drivers and delivers them to a listening
program. The filter in the firewall then decides if a packet should be accepted or
not according to rule sets and it also determines how many packets are going fo

be copied to a listening program.

Figure 3 shows an overview of BPF [2]. In the figure, it illustrates the BPF's
interface with the rest of the system. When a packet arrives at a network
interface the link level device driver normally sends it up the system protocol

stack. And when the BPF is listening on this interface, the driver first calls BPF

and it feeds the packet to each participating process’s filter. For each filter that
accepts the packet, BPF copies the requested amount of data to buffer
associated with that filter. Then, the device regains the control again. It operates
and listens over and over like the picture shows. All in all, the combination of
OpenBSD and its BPF is the most secure and powerful operating system that
packet filter can run on. And that's why IOT chose that system to protect and

operate its network.

HESBE
I ™
protocal
shtack
link—level fimk—lovet tink—lowat
clriver dever whrtwar

S s S,

Figure 3 Overview of BPF

1.4 BPF Logging

BPF log entry is a snapshot of the packet that was either passed or blocked by
the BPF rule-sets. The log files filtered by the rules could be the net flow of the
network traffic, such as the source and destination IP, protocols information.
Normally BPF is enabled when firewall machine is booted, and then there is an
interface called pflogd, which logs traffic and firewall actions, like Tcpdump, to
examine BPF’s logging data from the kernel. When a packet is logged by PF, a
copy of the packet header is sent to a pflog interface along with some additional
data such as the interface the packet was transmitting, the action that BPF takes
(pass or block), etc. By default, the pflogd daemon listens on the pflog1 interface
and writes all logged data to the /Nvarflog/pflog file. There are two ways of
dumping the logging information to the output, which are reading and parsing
from the Linux console and redirecting the output to a log file. From the log file,
you will find different fields, for example, source and destination IP address, UDP
or TCP ports, and current stage of the connection’s TTL. The fields that are listed
are typical outputs of Tecpdump, but the administrators can choose different flags

and will get different outputs.

The log file written by pflogd is in binary format and must be decoded. It is

necessary to use a program called, Tepdump, to sort this out.

This is how to dump the traffic to a human-readable text file: on any console
terminal type “tcpdump —netttr /varflog/pflog”. These ASCII format firewall logs

are then sent to a remote logging server for further information processing.

2.0 Code Development

2.1 Design Overview

Firewall Log Filter was developed to be able to parse the log data and finally fo
generate a report to show the simple statistics of the data. These statistics can
be used to find what is the most popular source |P address in the PF log. That is,
why there should be two stages of project development. The first stage would be
for opening the files, while the second stage would be for processing this data.
Then questions arose regarding what to use to open the log files, how to parse
the data, and which form of the data would be processed? Additionally, how
secure and efficient was opening and processing the log data. With these
guestions in mind, it is worthwhile to consider what would be necessary in
developing new code for the first stage or to use an open source program like
Tepdump or Wireshark. While the answer was obvious, it is still worth
investigating because in order to open the encoded raw binary pcap format log

files, Tcpdump has to use libpcap library as library support.
It would be convenient and useful o find an Application Programming Interface

like Pcapy, which is a Python extension module interface with the libpcap packet

capture library, as a wrapper to implement the underlining libpcap functions,

10

pcap_open_offline as one of the most important functions used to open the

offline pcap files.

2.2 Tcpdump

For the current project stage, it is hecessary to use Tcpdump as an intermediate
method to open the binary log files to convert to ASCIl based text files so that it
would be easier to parse the information. Before touching any log entries, it was
necessary to know how to use Tcpdump to open and read log files. Tepdump
prints out the headers of packets on a network interface that match the Boolean

expression.

2.3 The Firewall Log Filter

Firewall Log Filter is a Python script program for use at IOT. Python was used
because it is platform independent and is dynamic and efficient. Additionally, it is
also a standard language for software development at NRC-IOT. Most
importantly, it is easier to learn and write while being used in a wide variety of
application. Parsing the contents of Tcpdump log-files in /var/log/ is probably not
the most efficient way of converting data, however, it is a very simple and easy-

to-code approach.

2.4 Flowchart of the Code

Figure 4 shows the logic of the parsing function in the script.

11

dafparsedatalsalf)y

eDatisianinputs
gelfusingsidin

iy

Vi

and Baflingsiliangpe/Deskiop

pllog = opsnCfDocuments
fpfieg.35,64, 1)
L

— IEnd for]

7

ey

L - -
for logline in print ‘Cannot
plog.readilnesg open’, selfinfile

o
NEN

i

selt.dictionary(loglisy)

loglist= self
.choplinefiogtine)

<Decisioninpus
loglist

salf.summah
flog.closed:

Figure 4 OOP Class Method Parsedata Code Flow chart

2.3.2 Usage

The current stage of development of Firewall Log Filter program evaluates basic
statistic summary. It offers a preliminary review and general statistics of BPF
logs. Further development of the Firewall Log Filter program will be much easier
based on the code, because it was programmed using OOP (Objective Oriented
Programming) class, which had has been developed methods such as:

chopline”, “dictionary”,

“parsedata’”, summary”, and “the_main_function”. Figure

12

If you're under Windows, which means, you have already had the text version of
the log files, in this case, you don’t need to use Tcpdump, but you have to point
to where the log files locates on Windows. Open up Python shell and run

BPFparse.py under windows.

4.0 Conclusions

Network traffic are filtered by the BPF and logged. The log files needed to be
parsed so that administrators can review the traffic patierns and then predict the
trends of the network traffic while analyzing packets activities for auditing the
network activities. As mentioned in the previous sections about what and why it is
needed to monitor and filter firewall log files and what is the best and efficient
way of predicting network traffic and any suspicious activities, it is necessary to
have a filter program for getting the particular statistics of the network activities
Firewall Log Filter script came up with the idea of getting the frequency of the
most popular source IP address so that administrators can monitor and manage

~ the network more efficiently.

5.0 Recommendations

In order to efficiently audit and manage the network packet activities, firewall log
filtering plays a very important role in network management. It is recommended
that network monitoring and logging automation of every step would save time
and human resources. Therefore, it is recommended to have a log file server that
is exclusively targeted to manage and meonitor log files. This can be

accomplished by using standard applications. Further recommendations would

14

fully develop the Firewall Log Filter program; for example, add more functions to

the existing code to give a GUI interface for user-friendly interactions.

15

6.0 References

[1] Andrew S. Tanenbaum, Computer Networks 3™ ed. Prentice Hall PTR Upper
Saddle River, New Jersey 1996

[2] Steven McCanne and Van Jacobson (1992, December 19). The BSD Packet
Filter: A New Architecture for User-Level Packet Capture. Lawrence
Berkeley Laboratory. Retrieved from http://www.tcpdump.ora/papers/bpf-

usenix93.pdf

[3] OpenBSD software team (1999, October 20) PF: The OpenBSD Packet
Filter. Retrieved from htip:/iwww.openbsd.orgffag/pf/logging. html

[4] Wikipedia team. Science and Technology. (2009, December). Retrieved from
hitp://fen.wikipedia.org/

[5] Tepdump software team (2001, September 30). PCAP Manual Page.
Retrieved from http://www.tepdump.org

[6] Python docs team. Documentation. Retrieved from http://python.org/doc

[7] Tcpdump software team (2001, September 20). BPF Usenix. Retrieved from
http://www.tcpdump.org/papers/bpf-usenix93.pdf

[8] Wong, Gilbert. Computer Services Group. Institute for Ocean Technology.
St. John's, NL, Canada. Personal Correspondence. 2009.

[9] Walsh, Doug. Computer Services Group. Institute for Ocean Technology.
St. John's, NL, Canada. Personal Correspondence. 2009.

[10] Elms, Wayne. Computer Services Group. Institute for Ocean Technology.
St. John'’s, NL, Canada. Personal Correspondence. 2009,

[11] Lutz, Mark and David Ascher. Learning Python. 2" ed. Sebastopol, CA, United
States: O’Reilly Media, 2003.

16

Appendix A — Firewall Log Filter Source Code

Note: The code in these appendices was not formatted very nicely by the word
processor. For a serious look at the code one should load the files into a code
editor {Python IDEL works well).

MAIN.PY
import sys
import os
import re
import string

import time
class BPFfilter:

def _init_ (seld):
self pfdict = {}
self.usingstdin = False

self.infile ="

def parsedata(self):
if self.usingstdin:
for logline in sys.stdin:
loglist = self.chopline(logline}
if loglist:
self.dictionary(loglist)
self.summary()

else:

try:

17

pflog = open('C:/Documents and
Settings/Jiangpe/Desktop/pflog.35.txt, 'M#Give the location of log file on your
system.
except |IOError;
print 'Cannot open’, self.infile
else:
for logline in pflog.readlines():
loglist = self.chopline(logline)
if loglist:
self. dictionary(loglist)
self.summary()

pflog.close()

def chopline(self, logline):

pattern = re.compile(\s(block).*\s(\d{1, 3/ \d{1,3N\d{1,3/\d{1,30\d{1,5})\.*}
#Change 'pass’ to 'block’ or vice versa will generate pass or block with sorted
port numbers.

#pattern = re.compile(\s(block).*\s(\d{1,3\\d{1,30 {1, 3NNI{1,3}\.*)#This
gives you 'pass’ or 'block’ srcip without port numbers.

if not pattern.search(logline):

return []
logtuple = pattern.search(logline).groups()
loglist = list(logtuple)

return loglist

def dictionary(self, loglist):
netflow = loglist[Q]
srcip = loglist[1]
if not netflow in self.pfdict:
self.pfdict[netflow] = {}

if not srcip in self.pfdict[netflow]:

I8

self.pfdict[netflow][srcip] = 0
self.pfdict[netflow][srcip] = self.pfdict[netflow][srcip] + 1

def summary(self):

print’ '
print 'List of pfLog SrclP Activities:'
print ' '

for netflow in self.pfdict:
print netflow
print ' Total of len(self.pfdict[netflow]), 'scrip{non-
repeats);'
srclist = self pfdict[netflow].keys()
getmode =[]
for srcip in self.pfdict[netflow]:
getmode.append((self.pfdict[netflow][srcip], srcip))
getmode.sort()
getmode.reverse()
for x in getmode:
print "%3d : %s" % (x[0], x{1])
if name_ =='_ main__ "
logobj = BPFfilter()
logobj.parsedata()

19

Appendix B —API Code

Note 1: The code in these appendices was not formatted very nicely by the word
processor. For a serious look at the code one should load the files into a code
editor.

Note 2: The code below is for the first stage of development of the Firewall Log
Filter Program. It is partially completed. But it was worth the effort to further dig

into it. The reference can be found from the Reference List entry 12.

#include <stdio.h>

#include <stdlib.h>

#include <pcap.h> /* GIMME a libpcap plz! */
#include <errno.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpafinet.h>

I*

* gee ttt.c -Ipcap
*f

int

main(int ac, char *av[])

{
pcap_t *handle; f* Session handle */
char *dev, 1* The device to sniff on */
char errbuf[PCAP_ERRBUF_SIZE]; * Error string */
struct bpf_program fp; ¥ The compiled filter */
char filter_exp[] = "port 23"; /* The filier expression */
bpf_u_int32 mask; * Our netmask */
bpf_u_int32 net; ~0ur 1P *f

struct pcap_pkthdr header; /* The header that pcap gives us */

const u_char *packet; f* The actual packet */

20

f* Define the device ¥/

dev = pcap_lookupdev(errbuf);

if (dev == NULL) {
fprintf{stderr, "Couldn't find default device; %s\n", errbuf);
return(2);

}

/* Find the properties for the device */

if (pcap_lookupnet(dev, &net, &mask, errbuf) == -1) {

fprintf(stderr, "Couldn't get netmask for device %s: %s\n", dev,
errbuf);

het = 0;
mask = Q;
}
/* Open the session in pramiscucus mode */
handle = pcap_open_live(dev, BUFSIZ, 1, 1000, errbuf);
if (handle == NULL} {
fprintf(stderr, "Couldn't open device %s: %s\n", somedev, errbuf);
return{2);
}
f* Compile and apply the filter */
if (pcap_compile(handle, &fp, filter_exp, 0, net) == -1){
fprintf(siderr, “"Couldn't parse filter %s: %s\n", filter_exp,
pcap_geterr(handle)};
return(2};
}
if (pcap_seffilter(handle, &fp) ==-1){
fprintf(stderr, "Couldn't install filter 9%s: %s\n", filter_exp,
pcap_geterr(handle));
return{2);
}
f* Grab a packet */
packet = pcap_nexi{handle, &header);
/* Print its length */
printf("Jacked a packet with length of [%d]\n", header.len);
f* And close the session */
pcap_close(handle);

21

return{0);

char errbuf[PCAP_ERRBUF_SIZE];
struct bpf_program bpfprog;
pcap_t* pt;

int status;

pt = pcap_open_offline("pflog", errbuf);
status = pcap_compile(pt, &bpfprog, "tcp”, 1, 0);
if { status) {
printf("err %s\n", pcap_geterr(pt));
}

return O;

22

Appendix C -

15:00:02.170620 rule O/(match) block in on em0: 220.163.158.217.17972

Typical PF Log Excerpt

192.75.14.246.60522: udp 104
15:00:02.209833 rule O/(maftch) block in on em0: 89.27.236.16.11846
192.75.14.246.55491: udp 103

15:00:02.353265 rule O/(match) block in on emO: 116.11.159.217.7684
192.75.14.246.53289: udp 104

15.00:02.387372 rule O/(match) block in on em0Q: 125.110.192.188.57917

192.75.14.246.56294: udp 104

15:00:02.396973 rule O/(match) block in on em0: 125.110.192.188.57917

192.75.14.246.56294: udp 227

15:00:44.654377

239.255.255.250:

15:00:44.654387

239.255.255.250:

15:00:44.658237

239.255.255.250:

15:00:44.658246

239.255.255.250:

15:00:44.654377

239.255.255.250:

15:00:44.654387

239.255.255.250:

15:00:44.658237

239.255.255.250:

15:00:44.658246

239.255.255.250:

15:00:44.835776

rule 20/(ip-option) pass in on
igmp nreport 239.255.255.250 [ttl 1]
rule 20/(ip-option} pass in on

igmp nreport 239.255.255.250 [tt! 1]

rule 20/(ip-oplion) pass in on

igmp nreport 239.255.255.250 [ttl 1)
rule 20/(ip-option) pass in
igmp nreport 239.255.255.250 [ttl 1]
20/(ip-option) pass
igmp nreport 239.255.255.250 [ttl 1]
20/(ip-option) pass
igmp nreport 239.255.255.250 [ttl 1]

rule

on

rule in on

rule in on

20/(ip-option) pass in
igmp nreport 239.255.255.250 [ttl 1]
rule 20/(ip-option)

on
pass in
igmp nreport 239.255.255.250 [ttl 1]

rule O/(match) block in on emO:

on

192.75.14.246.56294: udp 98

23

em2: 10.20.0.1
em2: 10.20.0.1
em2: 10.20.1.2
em2: 10.20.1.2
em2: 10.20.0.1
em2: 10.20.01
em2: 10.20.1.2
em2: 10.201.2

121.32.2.184.27436

v

v

v

v

v

v

Appendix D - Firewall Filter Script Output 1

Note 1: The most important code line in the script to get the output 1(with port
numbers):

#pattern = re.compite(\s(block).*\s(\d{1,3\\d{1,3\\d{1,3N\d{ 1,30 \d{1,5})\.*)

Note 2: Explanations of the log file output:

Total of X scrip: The X stands for the sum of each distinct source P
address.

Y: Source IP: The Y stands for the sum of that particular source IP
address.
Note 3: It is easy to figure out that the sum, which is quite a big number, of Y
would be the total number of entries that pf captured.

List of pfLog SrclP Activities:

block

Total of 41645 scrip (non-repeats);
7226 :61.139.219.200.80
4454 :61.139.219.214.80
4396 :61.139.219.215.80
2142 ;24 47.153.27.6654
1942 ; 123.197.64.75.11205
1765 : 123.112.1.196.7129
1753 : 24.34.56.192.5156
1123 :222.71.163.66.7124
1097 : 60.50.2.101.4679
1088 : 61.51.202.228.5150
1069 : 222.88.99.194.7566

24

Appendix F — Firewall Filter Script Output 3

Note: The most important code line in the script to get the output 2(with port
numbers):

pattern = re.compile(\s(block).*\s(\d{1,3}\\d{1,3\d{1,3\\d{1,3P\.*")

List of pfLog SrclP Activities:

block

Total of 23004 scrip(non-repeats);
8726 :192.75.14.245
7226 :61.139.219.200
4454 :61.139.219.214
4396 :61.139.219.215
2142 : 24 47.153.27
1942 : 123.197.64.75
1765 :123.112.1.196
1753 : 24.34.56.192
1617 : 122.193.12.8
1305 :219.147.212.186
1143 : 122.225.55.40
1123 : 222.71.163.66
1097 : 60.50.2.101
1094 : 93.86.17.147
1088 : 61.51.202.228
1069 : 222.88.99.194
1037 : 174.49.74.140
974 :118.180.237.55
818 :58.214.0.46

26

Appendix G — Firewall Filter Script Output 4

Note: The most important code line in the script to get the output 2(with port
numbers):

pattern = re.compile(\s(pass). *\s(\d{1,30\d{1,30\\d{1,30\\d{1,3}*)

List of pfLog SrcIP Activities:

pass

Total of 269 srcip (non-repeats);
2134 :10.20.01
1446 : 10.2.2.33
982 :10.20.5.2
836:192.168.0.7
822:10.1.2.234
810:10.3.1.13
772 :10.1.1.81
766 : 10.1.2.225
764 :10.20.0.8
764 :10.20.0.7
758 :10.1.2.124
754 :10.1.1.82
748 :10.3.1.18
720:10.2.3.98
668 : 10.20.1.2
439 :211.157.102.228
352:10.1.2.165
308 : 10.1.3.22
234:10.1.2.183
226:10.1.2.106
192 :192.168.0.2

27

