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Spatial Data Analysis in Cancer Epidemiological Study 
 
Abstract: 
 
Recently we planned to conduct a project which applies GIS technologies with region-level 
statistics to map the incidence and mortality of cervical cancer, as well as Pap smear test results 
in certain regions of New Brunswick, Canada. By integrating GIS with other analytical 
technologies such as data mining, spatial analysis and case-control study, we will demonstrate 
the disease spatial clusters and discover the etiologic hypotheses and significant disease risk 
factors. Based on our project objectives, the purpose of this literature review is to provide an 
extensive review and comparison study on existing methodologies used in detecting disease 
clusters under cancer epidemiological domain and to conclude feasible methodologies for our 
project. This paper is organized following a study path: (1) data acquisition – issues in cancer 
data collection; (2) methodologies in data mapping; (3) methodologies in data analysis. It should 
be noted that this literature review is mainly based on review papers in recent past on following 
domains: cancer data, disease mapping, statistical methods in spatial analysis, space-time 
clustering, spatial data mining, and cluster analysis software. The conclusion we made after this 
extensive review is that spatial data mining is a new, promising way to detect clusters.  
 

1.0 Introduction 
 
The essence of epidemiology is to study the distribution and determinants of diseases in 
populations, and the frequency and type of illnesses in groups of people and factors that 
influence their distribution [35]. In epidemiologic study – including cancer epidemiologic study, 
there are two distinguished studies generally; one is descriptive studies, and the other is analytic 
studies. Ecologic studies occupy an intermediate position between descriptive and analytic 
investigation. “In descriptive studies, the frequency of occurrence (incidence) or death from a 
disease (mortality) in a population – stratified by time, place and/or group characteristics - is 
documented, and socio-demographic risk indicators are estimated. In contrast, the objective of 
analytic studies is to document causation from the pattern of association between interrelated 
exposures and conditions, on the one hand, and a particular disease, on the other. [1]” As a 
consequence, descriptive studies explore and generate hypothesis, whereas analytic studies 
ascertain the relationship between exposure and disease outcomes in individuals. “The concepts 
of person-time and study base are fundamental to the design and analysis of epidemiologic 
studies. [1]” Namely, there are two key components which are the number of people and the time 
to follow. “The study base is simply the disease experience over time of a population of 
individuals at risk of developing a disease under study. Defining the study base is the crucial step 
in designing and conducting an epidemiologic study. [1]”  
 
“Geographic Information Systems (GIS) are automated systems for the capture, storage, retrieval, 
analysis, and display of spatial data [9].” In GIS-based disease epidemiologic studies, the above 
epidemiologic principles and methods are applied in formulating study questions, testing 
hypotheses about the relationship between disease outcomes and exposure, and critically 
evaluating how data quality, confounding factors, and bias may influence the interpretation of 
results [42]. A number of studies have used GIS to study disease patterns and identify possible 
causes of mapped patterns. Openshaw et al. in 1987 introduced a new spatial analysis device 
called a Geographical Analysis Machine (GAM) to detect childhood leukemia clusters [40]. In the 
study of geographical patterns of cancer mortality in China, it highlights the etiologic findings of 
certain cancer sites produced by mapping and spatial autocorrelation analysis and factor analysis 
[32]. Gatrell and Senior indicated GIS is perceived to have a significant role on 
mapping/visualization, exploratory spatial data analysis (ESDA) and model building [10]. With its 
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data capture, storage, retrieval and display capabilities, GIS offers much more than simple 
mapping. GIS visualization and mapping functions enable users to display spatial database and 
to report the results of statistical analysis in cartographic and other graphic displays. ESDA allows 
analysts to identify unusual spatial patterns, to search high disease prevalence areas and 
formulate hypotheses to guide future research [9]. “Model building includes procedures for testing 
hypotheses about the causes of disease and the nature and processes for disease transmission. 
It involves the integration of GIS with standard statistical and epidemiologic methods [5].” In 
general, GIS are useful for exploratory spatial analysis but not meaningful for confirmatory 
analysis [25]. In this context, confirmative statistical tools and a number of epidemiological 
analytical techniques (e.g. classification, clustering, correlation, Bayesian estimation, case-control 
study and regression models, etc.) have been integrated into GIS in the disease clustering study. 
 
Recently we planned to conduct a project which applies GIS technologies with region-level 
statistics to map the incidence and mortality of cervical cancer, as well as Pap smear test results 
in certain regions of New Brunswick, Canada. By integrating GIS with other analytical 
technologies such as data mining, spatial analysis and case-control study, we will demonstrate 
the disease spatial clusters and discover the etiologic hypotheses and significant disease risk 
factors.  
 
 
Based on the project objectives, the purpose of this paper is to provide an extensive review and 
comparison study on existing methodologies used in detecting disease clusters under cancer 
epidemiological domain. In this context, we restudied our research domain and concluded a study 
path (See Figure 1). Along the path, we know the destination of this study is to detect disease 
clusters. In order to get there, there are three preparation steps. This paper is organized based 
on this study path.  
 

 
 

Figure 1: Study path 
 
In the first section, we will discuss the characteristics of cancer data. From it, we are able to 
decide what kind of corresponding spatial data type we need in consistence with cancer data. 
After data acquisition step, we want to transform data on the map – Making Map. In the second 
section, we will talk about the methods of disease mapping and their roles for future analytic 
investigation. In the third section - data analysis, we will discuss visualization, exploratory spatial 
analysis and model building, and explanatory data analysis respectively. We will provide an 
overview of each field with respect to disease clustering. The focus of this review paper is on 
methodologies in data analysis, especially the role of Spatial Data Mining in Epidemiological 
study. At the end, we conclude by identifying future directions in the GIS-based cancer 
epidemiology. It should be noted that this literature review is mainly based on review papers in 
recent past on following domains: cancer data, disease mapping, statistical methods in spatial 
analysis, space-time clustering, spatial data mining, and cluster analysis software.  
 
2.0 Cancer Data 
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Usually cancer data in a given population are based on either new cancer cases (incidence) or 
cancer deaths (mortality). Those cancer data is collected by population-based cancer registries. 
Cancer registries can be either country-wide or region-wide. Most cancer data include 
identification data for the patients (date of birth, identification number, address or place of 
residence), information about the tumour (date of diagnosis, primary site, method of verification of 
the diagnosis, histological type, stage, and treatment), and follow-up data (date and cause of 
death, date of emigration). [39]

 

 
From the GIS point of view, mapping disease aims to reveal cancer causation, to detect cancer 
patterns, and to measure carcinogenic environmental effects. In this GIS analytical process, 
cancer data would be used to integrate with spatial data and presented on simple maps. 
Therefore, cancer data on patient residence are crucial since they are the only connection to the 
spatial location. No doubt, if data on individual cancer patient are accurate and detailed enough, 
their use for epidemiological research and for various geographical analyses can results in 
interesting and useful findings in terms of cancer etiology.

 

 

But as mentioned in [39], several problems should be taken into account and merited the 
attention by those who use the cancer data. During the diagnostic phase, the less-symptoms and 
different diagnostic standards result in uncertainty diagnosis. There always are a lot of individuals 
in the population with undiagnosed cancers. Cancer incidence collected by cancer registries   
refer only to diagnosed cancers. In data collection, cancer data on patient residence are collected 
at the time of the diagnosis of cancer without considering a long latency period of carcinogenic 
process. This means that the residence of the patient at the time of diagnosis is not very relevant 
in term of cancer causation. Population migration might involve exposure to different 
environmental factors. Small numbers of cases for many of the cancer sites present a statistical 
problem [49]. 

 

 

Despite above shortcomings, “the diagnostic criteria of cancer are much more well-defined and 
reproducible than those of other diseases [39].”  The existence of those cancer data provides 
researchers an opportunity to use those registry information collected during decades. With the 
enhancement of geographical approaches and statistical methodologies, researchers can take 
those shortcomings into account and overcome them. 
 
3.0 Disease Mapping 
 
Mapping is the basic approach of medical geography, disease ecology, and spatial epidemiology. 
By illustrating disease distributions over time-period or non-random space, disease mapping – 
including cancer mapping – can reveal the formation of causal hypotheses. Therefore, disease 
mapping is a starting point for further spatial analysis of areal patterns of mortality and/or disease 
incidence.  
 
In order to cartographically representing both illness and death, one has to know the exact 
location as well as the amount of disease cases [49]. Two approaches have been developed [20]: 
the first category is a dot or spot map. Here cases are treated as points. For instance, 
Clemmesen (1986) used a dot map to indicate lung cancer cases in the town of Fredericia in 
Denmark (Figure2) [8]. However, because of the characteristics of cancer data such as individual 
case data restriction and privacy protection, some cancer information may not contain actual 
address information, but instead have information at larger, or aggregate, geographical areas, 
such as block groups, census tracts, districts, or counties. The direct consequence is that dot or 
spot maps are rarely produced. This problem is commonly tackled by the second approach. In 
this category, case counts are produced for areas. Here absolute numbers are usually converted 
into rates or ratios, which are then represented on choropleth maps by means of colors or black 
and white shading [49]. The cartogram is introduced to equalize density of the population at risk. 
As stated in [49], the cartogram technique has two advantages in comparison with traditional 
methods. First, complete geographic detail is preserved in the analysis; with no need to arbitrarily 
combine areas having small numbers of cases; second, the cartogram transformation preserves 
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adjacency relationship, so that information from adjacent areas can be visually or mathematically 
integrated in an interpretive model. Therefore, a demographic cartogram is popularly used as a 
base map for a choropleth map. It not only symbolizes absolute numbers, but also provides more 
demographic information such as the size of the population at risk. Figure 3 illustrates a 
demographic cartogram has been used by Verhasselt and Timmermans (1987) in male cancer 
(due to trachea, bronchus, and lung) distribution [49]. As we noticed in Figure 3, ranked rates are 
subdivided into 7 classes. A question may be arisen: how to define the number of classes with 
the purpose of mapping a maximum amount of information. An equal class range is one of the 
options, but it has the risk to produce non-case class interval. An equal number of case data in 
each class is another option, but it has the risk to bias the areal pattern [49]. The best way is to 
define natural breaks as class limits. If the classification scheme is inappropriate, the distribution 
on the map may give a false impression [49].  
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Figure 2: A sample dot map (Global geocancerology 1986: lung cancer cases in Fredericia 
1968-1972) 
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Figure 3: A sample choropleth map: Distribution of mortality in males due to cancer of the 
trachea, bronchus, and lung 
 
 
Statistically, rates for small areas, such as census blocks, are unstable in comparison with large 
areas. A solution to this is to aggregate data into larger geographic areas. It is called Spatial 
Aggregation [37]. For rare disease such as cancer, when actual number at certain level of spatial 
area is small, it makes more sense to calculate and map disease rates at higher-level large scale 
areas. However, High-level aggregation has its trade-off, which is the loss of local-level 
information. Statistical tests for randomness are meaningful to evaluate the possibility of random 
rate difference across areas. 
 
As stated in [37], one limitation of cholopleth maps is that they assume uniformity of features 
within each observed polygon even though there may be extreme variation. Also high-level 
aggregation will result in the loss of local-level information. For instance, suppose we have a 
disease cluster that includes four adjacent census-block groups. And each census block belongs 
to a different census tract. As we know, census tract is a high level aggregation of census block. 
In this case, if census tract is the baseline level of aggregation, then we will miss census-block 
information and lose the underlying cluster. The only solution for this is to create a smoothed rate. 
Creating smoothed rates starts with collecting information at lower-level of aggregation, follows 
with calculating rates for overlapping areas rather than non-overlapping areas. The result is a 
map with smoothed rates. 
 
In disease epidemiological study, sometimes we are interested in tracing whether there is a 
significantly increased incidence rates in specific areas. The solution for this is probability maps. 
The probability map is generally applied on choropleth maps, with each polygon representing a p 
value. It tests whether the observed number of cases in each area is significantly greater than the 
expected number of cases [11].  
 
All in all, disease mapping involves a series of options with respect to the choice of scale and 
base map, the number of classes, and the cancer data to be represented. The comparability of 
projection, scale, class intervals, colors and / or shading, size of spatial units and of population at 
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risk, total population and/or sex, age groups, method of standardization, and period should be 
taken into account. 
 
4.0 Spatial Analysis in disease clusters 
 
“A cluster is an excess of cases in space (a geographic cluster), in time (a temporal cluster), or in 
both space and time. [28]” There are two different types of clusters: one is “true cluster”; the other 
is “perceived cluster”. True clusters occupy less than 5% of all reported clusters. True clusters 
can be distinguished from perceived clusters based on following domains (refer to table 1).  
 
Table 1: True Cluster vs. Perceived Cluster [28] 
 

Cluster type Common 
etiology or 
cause 

Health outcome Potential 
exposure 

Exposure-
health link 

Statistically 
significant 

True Cluster Yes Cases with 
specific diagnosis 
or a set of 
symptoms related 
to a common 
exposure or 
etiology 

Common 
exposure 

Identified Yes 

Perceive 
cluster 

No (some due 
to chance) 

Cases of 
unrelated illness 

Common 
exposure is 
absent 

Unknown No 

 
Obviously, chance can play a role in the way disease occurs in a population. However, the 
objective of analysis of disease clusters is to find the true clusters. According Gatrell and Bailey 
(1995), there are three general types of spatial analysis: visualization, exploratory data analysis 
and model building [17]. During most analysis, a combination of techniques will be used with the 
data first being displayed visually, followed by exploration of possible patterns and possible 
modeling. 
 
4.0.1 Data Visualization 
 
The first step in any data analysis is to inspect data. Visual displays of information using dot/spot 
maps or cholopleth maps will provide the epidemiologist with the basis for generating hypotheses.  
 
Map overlay operations allow analyst to display more than one attribute on a map at a time. Since 
it can visually display locations that meet specific criteria, map overlay operations are applied to 
look for potential carcinogenic risk factors. Besides the visual presentations, GIS can facilitate a 
multilayer geographic analysis [37]. For instance, suppose that we want to identify individual 
newborns with the greatest risk of nuclear exposure, which might be a risk factor for childhood 
leukemia. The birth certificates include residential address of the mother. Through overlay 
operations, we could link the data layer with residential address location of newborn with another 
layer containing the block group information. After multilayer geographic analysis, we could 
generate a list of names and addresses of newborns living in the census block groups with 
elevated risk of nuclear exposure. 
 
Measurement allows the analysts to calculate straight-line distances between points and areas. 
Distance as a measure of separation in space is a key variable used in many kinds of spatial 
analysis. For instance, in the environmental exposure study, the distance measurement from a 
household to the nearest toxic dump site is critical.  
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Buffering is another powerful spatial analysis tool. GIS can create polygons and analyze the 
spatial relationships among units of observation. Buffers are particularly useful in identifying 
people at risk of exposure to environmental hazards. 
 
4.0.2 Exploratory Data Analysis and Modeling 
 
Spatial analytical methods can be divided into two categories: one is exploratory analytical 
techniques, which are used to describe the locational characteristics; the other is explanatory 
analytical techniques, which are used to analyze spatial inter-relations [38]. Exploratory data 
analysis aims to identify space-time clusters and to develop hypotheses. Openshaw’s geographic 
analysis machine (GAM: see detail below.) is an example of exploratory data analysis. 
Exploratory data methods are also valuable in searching areas with high prevalence rates. The 
probability maps, as we discussed in disease mapping section, have long used to identify 
statistical significance of prevalence rates. But the trade-off of this method is that it doesn’t show 
actual rates and population statistics. An alternative method is Empirical Bayes Smoothing, in 
which the smoothed rates are adjusted according to the size of the population [9, 33]. As a result, 
it represents a compromise between probability mapping and choropleth mapping of rates [11]. 
Because the rates of small areas are smoothed more than those for large areas, it conquered the 
small numbers problem [11].  
 
In Modeling, specific hypotheses are formally tested or predictions are made. “In general, 
modeling involves the integration of GIS with standard statistical and epidemiologic methods [8]”. 
Spatial interaction and spatial diffusion models are of particular relevance to the infectious 
diseases. Spatial interaction models analyze and predict the movement of people from place to 
place. By accurately modeling these movement flows, it is possible to identify areas at risk for 
disease transmission and thus target intervention efforts [9]. Spatial diffusion models analyze and 
predict the spread of phenomena over space and time and have been widely used in 
understanding spatial diffusion of disease [9]. Modeling is more suitable to diseases with short 
latencies [9]. 
 
 In general, GIS are useful for exploratory spatial analysis but not meaningful for confirmatory 
analysis [25]. In order to analyze spatial inter-relations, confirmative statistical tools and a number 
of epidemiological analytical techniques have been integrated into GIS in the disease clustering 
study. In the following sections, we will talk about statistical methods in spatial analysis, methods 
in space-time clustering and Data Mining in spatial analysis. 
 
4.0.3 Explanatory Data Analysis 
 
Statistical Methods in disease clusters 
 
From statistical point of view, “clustering is usually considered in terms of local high rates, the 
occurrence of foci of particularly low local rates – negative clusters – also has aetiological 
significance [35].” Statistical analysis is meaningful since it has usually consisted of a significance 
test to identify those high rates that were likely to have occurred from influences other than 
random fluctuations. Based on this principle, Warterberg and Greenberg indicated four steps to 
define a cluster in [50] (refer to figure 3). This analytical procedure aims to evaluate how unusual 
the observed pattern of cases is relative to the patterns that would be expected in the hypothesis 
model. The objective of testing for clustering is to tackle two issues.  
 

§ Is there a general tendency for clustering to occur and where? 
§ Do clusters occur in specific areas such as suspected environmental hazard? 
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Figure 3: Define a cluster 
 
There are a number of statistical methods on the tendency analysis of clusters detection. Cuzick 
and Edwards categorized them into three general methodological groups: methods based on cell 
counts, methods on autocorrelative adjacencies of cells with high counts, and methods on 
distance between events [11]. Based on [35], we concluded those methods into table 2. Here we 
want to emphasize three commonly-used methodologies. They are nearest neighbor analysis, 
quadrat analysis (cell count analysis), adjacency clustering analysis and spatial autocorrelative 
analysis. 
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Table 2. Testing methods for a tendency to cluster 
 
Year/ 
Author 

Method Short Desp. Primary Limitation Spin-offs 

1970: Mantel and Bailar 
1987: Whittermore et al 

Clustering 
Statistic 
(No population 
statistics) 

xij
: the distance between area centroids 

y
ij

: the numbers of cases in area i and j. 

 

When areas are large with small 
population, small clusters may be 
masked. 

N/A 

1979: Ohno et al.  
1981: Ohno and Aoki 
1981: Grimson et al 
1985: Kemp et al 
1987: Barnes et al 
1987 : Able and Becker 

Adjacency 
statistics 
(T-type 
statistics) 

xij
: a binary indicator of adjacency 

y
ij

: a measure of concordance of rates 

or Poisson p-values in area I and j. 

When areas are large with small 
population, small clusters may be 
masked. 

Risk adjacency statistic, 
D: 
A measure of the 
average absolute 
difference in ranks of all 
adjacent areas. 

1967: Mantel Space-time 
clustering 
statistic 

xij
and y

ij
are space and time measures 

of separation of cases I and j. 

The actual addresses of cases must be 
known 
Intercase distance statistics is difficult 
as population density is non-
homogeneous. 

N/A 

1987-1988: Selvin et al Equalize 
population 
density 

Instead of measuring intercase distance, 
total distance between all pairs of cases is 
measured.  

Distorted maps are produced. N/A 

1990: Cuzick and 
Edwards 

Case-control 
(Nearest 
neighbour 
analysis – See 
below) 

T is a count of the number of cases among 
its k-nearest neighbours, for both cases 
and controls. 

No way to measure the proximity of 
cases unless the population density is 
uniform. 

1989a: Besag 
1991: Besag and 
Newell 
Test a given case is one 
of a cluster of cases 
1990: Turnbull et al 
The neighborhood with 
most cases is used to 
test for clustering. 

1987-1988: Openshaw et 
al 
1988: Openshaw and 
Craft 
1989a,b: Openshaw 

Geographical 
Analysis 
Machine(GAM) 
(Quadrat 
analysis or cell 
count method) 

Used to detect deviations from Poisson 
distribution and to attach significance in 
overlapping or concentric circular areas[36] 

Its statistical properties are difficult to 
assess.  

1991: Besag and 
Newell 
Detect clusters of rare 
disease over a large 
area by subdividing into 
smaller areas.[6] 
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Nearest neighbor analysis is one of commonly-used methodologies in detecting point patterns. It 
uses inter-case distance to represent the strength of point patterns [38]. Significance tests are 
used to evaluate the overall tendency toward clustering. However, nearest neighbor analysis has 
its own problem. For instance, it fails to distinguish between homogenous and random patterns. 
Also different results will obtained if different size areas are analyzed with the same data [38]. In 
order to overwhelm its shortcomings, several alternatives to the nearest neighbor analysis have 
been invented and used in cancer epidemiological studies. Bithell (1990) estimated a relative-risk 
function for childhood leukemia in Cumbia, England [6]. Gatrell and Bailey (1996) estimated k 
functions for randomly selected cases and controls of childhood leukemia in Lancashire, England 
[17]. A common approach based on nearest neighbor analysis is developed by Cuzick and 
Edwards. It is called the kth nearest neighbor approach [12]. Instead of actual intercase distances, 
it used relative distances. The procedure of the kth nearest neighbor approach derives from a 
case-control paradigm - sampling non-cases from the population at risk. The statistic tests are 
developed based on the number of cases among the kth nearest neighbors of each case and the 
number of cases nearer than the k nearest control [12]. The attractive feature of this approach is 
that it accounts for the problem of geographic variation in population density.  
 
Another commonly-used methodology in detecting point patterns is quadrat analysis or cell count 
method. It is used to “test for complete spatial randomness” [38]. Quadrat count methods that 
compare observed and expected distributions of cases over a number of small areas. It tests for 
the presence of clustering in general. Openshaw et al. developed GAM (see figure 4 [40]), which 
is based on quadrat analysis, to test the significance of childhood leukemia cancer clusters. An 
alternative method which is based on quadrat analysis and similar to GAM is called the spatial 
scan statistic. Kulldorff, Feuer, Miller, et al. used the spatial scan statistic with multiple testing on 
the clustering study of breast cancer mortality in the northeast United States [33, 27].  
 

 
Figure 4: The results of an analysis of clustering of childhood acute lymphoblastic 
leukemia in a study region in England using GAM.  
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Adjacency clustering analysis is used to evaluate the similarity of adjacent areas. The general 
form of adjacency clustering is: 
   

  yx ij
i j

ij
T ��=  

where xij
 and y

ij
 are measures of similarity, or separation, of observational units i and j [35]. 

Within this category, the Ohno method was developed to evaluate clustering of areal data on a 
large scale. Areas are compared with respect to concordance; adjacent areas are concordant if 
they have the same category and are discordant otherwise [38]. The Ohno method has its 
potential shortcoming: all dissimilar joins are treated alike [38]. The alternative to Ohno method is 
rank adjacency statistic D. Since it measures the average absolute difference in ranks of all 
adjacent areas, D test can be used when population density is heterogeneous. The limitation of D 
test is that it only applied to non-parametric data [36]. Both Ohno and D test are used to evaluate 
areal clustering of cancer mortality. Geary’s c and Moran’s I are two commonly used methods for 
areal patterns. By comparing adjacent area values, they would assess the level of large scale 
clustering. They have been frequently applied to examine areal clusters, including cancers [38]. 
Monte Carlo simulation model and hierarchical clustering structure can be used to assist 
adjacency analysis. Monte Carlo techniques can be used as a tool to simulate some random 
process whereas hierarchical clusters of high risk areas can be constructed by ranking disease 
rates for high-ranking units from high to low [38].  
 
Spatial autocorrelation analysis includes a class of methods which measure spatial dependence, 
the association between a value at a particular location and values for nearby or adjacent areas. 
It is useful for finding disease clusters based on area data [11]. Glick used spatial autocorrelation 
analysis to analyze sex-specific cancer mortality rates among 67 counties of Pennsylvania [22] 
and skin cancer mortality in United States [23].  
 
The methods we discussed so far are used to detect spatial disease clusters in one dimension. 
As we know, carcinogenic process is a long latency period. Hence, in cancer epidemiological 
study, we have to synthesize person, place, and time and consider them as three basic elements.  
 
Space-time clustering 
 
The detection of clusters of disease in space, time, or in both space and time is important to 
epidemiologist. An aggregation of cases over time and over space may provide a clue to 
generate causative hypotheses. “Space clustering is a non-uniform distribution of the cases over 
the area relative to the underlying population. Time clustering is a non-uniform distribution of the 
cases over the duration of the study. Space-time clustering is an interaction between the places 
of onset and the times of onset of the disease. [52]” In [52], Williams reviews various methods for 
detecting clustering in both space and time. Here we discuss some commonly-used methods 
used in cancer epidemiological study (See Table 3). Within above methods, Ederer’s method has 
been the most popular one [52]. Many these methods have been conducted on case-clustering 
studies of leukemia, Hodgkin’s disease or Burkitt’s lymphoma. Studies of space-time clustering 
on leukemia and Hodgkin’s disease have not yielded convincingly positive findings. Although 
there is a strong evidence for clustering of Burkitti’s lymphoma in Africa, further investigations are 
necessary to determine whether case-to-case transmission may take place [52]. In addition, most 
of common cancers show some degree of familial clustering. In cancer epidemiological study, a 
variety of associations with potential environmental factors and personal attributes of individuals 
have been demonstrated. Various statistical methods have been used to test for familial 
aggregation.  
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Table 3: Methods in Space-Time Clustering [52] 
 
Year Author Methods/ 

Extension 
Short Description 
& Primary Strength 

Primary Limitation Use in Cancer Epidemiological 
Study  

1963, 
1964a 
 
 
 
 
 
1968 

Knox 
 
 
 
 
 
 
Pike and 
Smith 

Knox’s method 
 
 
 
 
 
Pike and Smith’s 
Extension 

Knox takes all possible disease cases and 
evaluates whether there is some positive 
relationship between temporal and spatial 
distance, between the members of a pair. 
Pike and Smith’s extension can handle 
the cases with long latent period, while 
Knox cannot. 

1. Sensitive to space-time 
clustering, insensitive to purely 
space or time clustering. 
2. Difficult to specify critical 
times and distance for an 
unidentified disease process. 

1. Used in epidemiological study in 
Burkitt’s lymphoma study. (Doll, 
1978) [14] 
2. Used in detect time-space 
clustering in Hodgkin’s disease 
(Chen et al, 1984) [8] 

1967 
 
 
 
 
 
 
 
 
1971 

Mantel 
 
 
 
 
 
 
 
 
Klauber 

Mantel’s 
Generalized 
regression 
method 
 
 
 
 
 
Two Sample 
Problem / 
Several Samples 
(Extension of 
Mantel’s method) 

yx ij
ji

ij
z ��

<

=  where xij
is a spatial 

measure between points I and j and 

y
ij

is a temporal measure. 

It emphasizes the effects of large space 
and time difference. 
 
Two Sample Problem method deals with 
the situation when two sets A and B of 
distinguishable cases with space 
coordinates and time coordinates. 

Still cannot avoid the need for 
identifying critical times and 
distances. 
 
 
 
 
 
 
 
 
For two sample problem, 
randomization experiment is 
recommended to perform. 

1. Test for space-time clustering for 
childhood leukemia in San 
Francisco during the 20 year 
period.(Klauber and Mustacchi, 
1970) [26] 
2. Used in detect time-space 
clustering in Hodgkin’s disease 
(Chen et al, 1984) [8] 
 

1974 Pike and 
Smith 

Pike and Smith 
Case Control 
method 

Using case-control approach to ascertain 
relevant contact from person to person. 

Need to define critical times 
and distances, as well as 
critical control group. 

Detect clustering of leukemia, 
Hodgkin’s disease, and other 
lymphoma’s in Bahrain (Hamadeh 
et al, 1980) [19] 

1964 Ederer, 
Myers, 
and 
Mantel 

Ederer’s Method Instead of using paired distance 
technique, it examines the distribution of 
cases within a time-space unit. 

Data have to be examined to 
see which is occurring. 

1.Test time-space clustering of 
leukemia cases (Ederer, Myers and 
Mantel, 1966) [15] 
2. Used in detect time-space 
clustering in Hodgkin’s disease 
(Chen et al, 1984) [8] 

1966 David and 
Barton 

David and 
Barton’s Method 

It applies a test for studying the 
randomness of points on a plane. It gave 
the exact mean and variance of the 
statistic. 

A statistical weekness: multi-
degree of freedom character. 

It has been used in the cancer 
literature. 
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Spatial Data Mining 
 
Statistical spatial analysis is widely used technique for analyzing spatial data [35]. Statistical 
analysis handles well with numerical data, and enables optimization and building models [32]. 
Nevertheless, it has some shortcoming such as poor dealing with symbolic data, high 
computational complexity and others [32]. Especially statistical analysis usually requires the 
assumptions regarding to statistical independence of spatial data. Such assumptions are often 
unrealistic since they ignored the influence of neighborhood relationship. In addition, with 
advancement in computerization and data collection, large and continuously growing amount of 
data makes it impossible to interpret all data manually. To overcome these weaknesses of 
statistical analysis, spatial data mining has been proposed to analyze data from large spatial 
database. 
 
“Spatial data mining is the process of discovering interesting and previously unknown, but 
potentially useful patterns from large spatial datasets [45]”. The complexity of spatial data and 
intrinsic spatial relationships limits the use of conventional data mining techniques. The data 
inputs of spatial data mining consist of two distinct types of attributes: non-spatial attribute and 
spatial attribute. Spatial attributes have the following features: (1) rich data types (including 
extended spatial objects such as points, lines, and polygons); (2) implicit spatial relationships 
among the variables (including overlap, intersect, and behind); (3) observations are not 
independent; and (4) spatial autocorrelation among the features [44]. Quinlan (1993), Barnett & 
Lewis (1994), Agrawal & Srikant (1994), Jain & Dubes (1988) propose one possible way to deal 
with implicit spatial relationship. That is materializing the relationships into traditional data input 
columns first and then applying classical data mining techniques. However, it is criticized for 
losing information [45]. Another way, as stated in [45], is to develop models or techniques to 
integrate spatial information into the spatial data mining process. Here we want to cover several 
models in spatial data mining. 
 
Spatial Classification Models 
 
“Given a set of data (a training set) with one attribute as the dependent attribute, the classification 
task is to build a model to predict the unknown dependent attributes of future data based on other 
attributes as accurately as possible [44]”. Decision Tree Approaches is proposed in [17]. It 
employs neighborhood relationship and considers not only attributes of the classified object, but 
also the attribute values of neighboring objects. Objects are considered neighbors if they satisfy 
some neighborhood relations such as overlap close-to, etc. Figure 5 depicts a sample decision 
tree. The limitation of this approach is that it doesn’t take into account spatial autocorrelation [44]. 
Logistic Regression Modeling is a classical classification approach. The fundamental limitation of 
this approach is that it assumes that the sample observations are independently generated. It 
ignores spatial data property: observations are not independent. Spatial Autoregression model 
(SAR) introduces a parameter ρ which reflects the strength of spatial dependencies between the 

elements of the dependent variables. When ρ = 0, it collapses to the logistic regression model [43, 

45]. The benefits of SAR in comparison with logistic regression model are: (1) the residual error 
will have much lower spatial autocorrelation, i.e., systematic variation. (2) If the spatial 
autocorrelation coefficient is statistically significant, then SAR will quantify the presence of spatial 
autocorrelation. (3) SAR will have a better fit, i.e., a higher R-squared statistic [43, 44]. Another 
model used for spatial autocorrelation is called Markov Random Fields (MRFs). It generalizes 
Markov chains to multi-dimensional structures. It has been applied in image processing and 
spatial statistics, where they have been used to estimate spatially varying quantities [44].  
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Figure 5: A sample decision tree 
 
 
Detecting Spatial Outliers 
 
Spatial outliers are observations that are inconsistent with those in their neighborhood. The 
identification of spatial outliers can lead to the discovery of unexpected knowledge. It has a 
number of practical applications in the fields of transportation, epidemiology, precision agriculture, 
weather prediction, etc [44]. Spatial outlier detection approaches can be classified into three 
categories: set-based outliers, multi-dimensional space-based outliers, and graph-based outliers. 
A set-based outlier is a data object whose attributes are inconsistent with attribute values of other 
objects in a given data set regardless of spatial relationships while both multi-dimensional space-
based outliers and graph-based outliers are based on spatial relationships. However, spatial 
outlier detection is challenging to perform since (1) the choice of a neighborhood is critical. (2) 
statistical tests for spatial outliers have to consider not only the distribution of the attribute values 
at various locations but also the distribution of aggregation function of attribute values over the 
neighborhoods. (3) the computational cost of determining parameters for a neighborhood-based 
test can be high [44].  
 
Spatial Co-location Rules 
 
Spatial co-location rules are a generalization of association rules to spatial datasets. 
Conventional association rules are widely used in finding items frequently bought together in 
market basket study. On a map, there are a number of variables collected to define a specific 
location. A set of events, i.e. Boolean spatial features define and identify different variables. Co-
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location patterns represent frequent co-occurrences of a subset of Boolean spatial features [43]. 
(Refer to Figure 5 [45])    
 

 
Figure 5: (a) Illustration of Point Spatial Co-location Patterns. Shapes represent different spatial 
feature types. Spatial features in sets {‘+’, ‘x’} and {‘o’, ‘*’} tend to be located together. (b) 
Illustrate of Line String Co-location Patterns. Highways, e.g.: Hwy100, and frontage roads, e.g., 
Normandale Road, are co-located. 
 
There are three different models to detect spatial co-location patterns. The reference feature 
centric model is focusing on a specific Boolean spatial feature. The interest of this model is to find 
the co-locations of other relevant features to the reference feature [44]. The window centric model 
focuses on land-parcels. The interest of this model is to discover some other features in a given 
land parcel [44]. The event centric model, its interest is to find subsets of spatial features to occur 
in a neighborhood [44]. Refer to Figure 6 [44] to tell the differences of these three models. 
 

 
Figure 6: (a) Reference feature centric model. The instances of A are connected with their 
neighboring instances of B and C by edges. (b) Window centric model. Each 3X3 window 
corresponding to a transaction. (c) Event centric model. Neighboring instances are joined by 
edges. 
 
Spatial Clustering 
 
Spatial clustering is a process of grouping a set of spatial objects into clusters so that objects 
within a cluster have high similarity, but are dissimilar to objects in other clusters [44]. Spatial 
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clustering focuses on discovering hot spots, where there are unusual dense event clusters across 
time and space.  
 
There are three distinguished types of clusters [45]. Complete spatial randomness cluster, its 
distribution patterns are random. Spatial objects within this cluster are independent with each 
other. Spatial clusters and declusters are two different non-random patterns. Spatial clusters are 
aggregated patterns whereas declusters are uniformly spaced patterns. 
 
Statistical methods are applied to test significance of spatial clusters and to quantify deviation of 
patterns. One type of statistics is based on quadrats i.e. well defined areas; the other type of 
statistics is based on distances (Ripley’s K-function) [45].  
 
Knowledge Discovery in Database 
 
Knowledge discovery in database (KDD) is a non-trivial exaction process of discovering implicit, 
unknown, and potentially useful patterns from database [16]. The process of KDD involves data 
selection, data reduction, data mining and the evaluation of the data mining results. The core of 
the process is data mining, which consists of data analysis and discovery algorithm [16]. There 
are a wide variety of algorithms used in KDD. The objectives of these algorithms are to fulfill the 
following generic tasks [17]: 
 

§ Class identification: grouping the objects of the database into meaningful subclasses 
§ Classification: finding rules that describe the partition of the database into a given set of 

classes 
§ Dependency analysis: finding rules to predict the value of some attribute based on the 

value of another attribute 
§ Deviation detection: discovering deviations from the expectations such as outliers in a 

class of object. 
 
According to the features of spatial data, spatial database system is defined as relational 
database plus a concept of spatial location and spatial extension. The explicit location and spatial 
extension form implicit relation of spatial neighborhood [17]. And most KDD algorithms for spatial 
databases will make use of neighborhood relationships, in which the attributes of neighbor 
objects may have an influence on the observed object [17]. Thus, the basic framework for spatial 
data mining is based on the concepts of neighborhood graphs and neighborhood paths which are 
defined with respect to neighborhood relations between objects [16]. Spatial data mining serves 
as an analysis process in KDD for four main tasks: spatial clustering, spatial characterization, 
spatial trend detection and spatial classification.  
 
In [32], Koperski and Han (1996) investigated and implemented a number of algorithms which are 
based on knowledge discovery techniques for large databases. The study is focused on mining 
strong spatial association rules in geographic information databases. In the first stage-attribute-
oriented induction, knowledge is summarized in a form of relationships between spatial and non-
spatial attributes at generalized high concept level. Combination of attribute-oriented induction 
with clustering analysis provides a possibility of describing spatial behavior of similar objects or to 
determine characteristics of distinct clusters. At the end, spatial association rule is applied to 
indicate certain strong association between a set of spatial and non-spatial predicates. As a 
closing statement, Koperski and Han points out that discovery of spatial association rules is a 
new and promising direction in spatial data mining. 
 
Forgionne, et al (2000), in [18], introduces a prototype of Cancer Surveillance System (CSS). 
CSS consists of a geographical information system (GIS), an executive information system (EIS), 
and a decision support system (DSS). The prototype GIS is used to extract data, create thematic 
maps and provide inputs for the EIS. EIS will provide a database management system (DBMS) 
and an intelligent decision support system processor (IHP). DBMS will store all the spatial and 
non-spatial data into data warehouse. The IHP captures the DBMS’s data, updates the DSS’s 
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spatial and temporal statistical models, performs DSS analyses and evaluations, and generates 
detailed reports of the results. Data mining techniques will be employed to extract cancer patterns 
from the data. Descriptive modeling or predictive modeling will be involved in the process of 
spatial data mining analysis. Descriptive modeling serves as an exploratory tool in discover 
previously unknown patterns, trends, and associations in the data. Predictive modeling allows 
testing specific hypotheses. Certain artificial intelligence technologies, such as neural networks 
and genetic algorithms, and statistical methodologies will assist spatial data mining analysis. As a 
whole, this DSS will be available to deliver the methods, techniques, and developed models to 
the interested domains (cancer care, cancer surveillance, and cancer prevention). 
  
4.1 Cluster Analysis Software 
 
In [5], Anselin (2004) reviews four free software packages that can be used in a spatial analysis 
of cancer clusters: CrimeStat, GeoDa, SaTScan, and packages developed in the open source R 
programming environment. The software are evaluated with respect to their abilities to answer the 
following questions: 
 

§ Given a data set, where are the potential cancer clusters? 
§ Given that there may be a cluster, what is its statistical significance? 
§ Given a suspect location, is there a cluster found around it? 
 

These four software have been developed to implement methods for spatial data analysis. Hence, 
these cluster analysis software should have an efficient interface to the GIS which can provide a 
connection. With two-way connection, GIS can input the extracted data to cluster analysis 
software whereas the software can feed back results for map display. In addition, a software tool 
for cancer clusters analysis should take into consideration these essential requirements: 
 

1. Effective data input: spatial data features (stated in spatial data mining section), cancer 
data features (stated in using cancer data in GIS section); 

2. Spatial information: distance measurements 
3. Descriptive statistics: identification of extreme high or low disease incidence, outlier 

detection, smoothing rates. 
4. Point pattern analysis: distance or quadrat based statistics to identify the clusters and test 

the null hypotheses. 
5. Spatial autocorrelation analysis: measures of global and local spatial autocorrelation and 

to identify areas with elevated risk with similar area surrounded, or to identify spatial 
outliers 

6. Visualization of the results: maps and / or graphs indicating outliers and significant 
clusters. 

7. Program output: an effective interface to the GIS to present output on maps. 
 

In general, none of above free software satisfies all these criteria. And also there is no single 
commercial alternative that meets all these criteria. For details, please refer to Appendix for 
features of four free software [5]. 
  
4.2 Discussion 
 
Up till now, we did an extensive methodological review on spatial analysis. We followed this 
backbone: start with simple data collection (using cancer data in GIS), follow by complex disease 
mapping and then more complicated spatial analysis for detecting disease clusters. In spatial 
analysis, we cover commonly-used methodologies in both exploratory data analysis and 
explanatory data analysis. Now it is useful to outline some of the main issues in the analysis of 
cancer clusters in order to put all above methodologies into right position in the procedure of 
analysis. 
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The first issue to consider in the analysis of cancer clusters is the type of spatial data to be 
analyzed. There is an important difference between point data and areal data. Data on individual 
events such as the exact addresses of patients represents as points. Aggregated data such as a 
count of events or a rate are treated as areal data. As we mentioned before, because of individual 
case data restriction and privacy protection, some cancer information may not contain actual 
address information, but instead have information at larger, or aggregate, geographical areas, 
such as block groups, census tracts, districts, or counties. In this case, areal data are commonly-
used in analysis of cancer clusters. 
 
The second issue to consider in the analysis of cancer clusters is the type of analysis. For areal 
data, a cluster refers that an areal unit is surrounded by other similar areas. In other words, the 
analysis focuses on finding an area with high risk which is surrounded by other similar areas with 
high risk, rather than by chance. There is another situation where an area with higher risk than 
other neighboring areas. We call it as spatial outlier. Both cluster and outlier are non-random. 
Spatial randomness means uniform distribution or points could be anywhere with equal 
probability. Usually spatial randomness needs to be specified in null hypothesis. The observed 
values will be tested for compatibility against this null hypothesis.  
 
The third issue to consider in the analysis of cancer clusters is heterogeneity of area size and 
population. For instance, when the risk is estimated for areal data for small area or with different 
population, the precision of the estimate is affected. Case-control approach could overcome this 
shortcoming by comparing the observed pattern to control group. Another alternative is to smooth 
the observed rates. 
 
The fourth issue to consider in the analysis of cancer clusters is to distinguish global tests and 
local tests. Global tests are designed to test against the null hypothesis of spatial randomness for 
the data set as a whole. The objective is to find significant patterns. In contrast, local tests are 
designed to identify the locations of clusters or spatial outliers. Among local tests, focused tests 
aim to find the causative clusters. For instance, clusters of cancer around a source of 
carcinogens. Inter-case distances and quadrat cell counts are two basic methods for point data. 
The distances or the density of points in a quadrat area are compared to the null hypothesis of 
spatial randomness. Significant tests are performed to indicate the true clusters. We indicated 
some major statistical methods which belong to this category, such as nearest neighbor analysis, 
GAM, etc. For areal data, cluster tests can be classified into two broad types. First, the centroid of 
an area can be represented by a point and all events within this area unit are associated with this 
point. Quadrat analysis can be applied to collect individual points. Spatial scan statistics is one of 
them. Alternatively, areal clusters can be detected from spatial autocorrelation analysis and 
adjacency analysis. They consist of evaluation of adjacency similarity and attribute similarity. 
However, the difficulty of these two methods is how to properly define neighbor areas. 
 
The fifth issue to consider in the analysis of cancer clusters is long latency of carcinogenic 
process. It is not enough to detect cancer clusters in one dimension.  Spatial-time clustering 
analysis is proposed to detect clusters of disease in space, time, or in both space and time. An 
aggregation of cases over time and over space may provide a clue to generate causative 
hypotheses.  
 
All statistical analysis handles well with numerical data, and enables optimization and building 
models. Nevertheless, it has some shortcoming such as poor dealing with symbolic data, high 
computational complexity and others. Especially statistical analysis usually requires the 
assumptions regarding to statistical independence of spatial data. Such assumptions are often 
unrealistic since they ignored the influence of neighborhood relationship. The sixth issue to 
consider in the analysis of cancer clusters is to overcome those weaknesses of statistical analysis.  
The solution is spatial data mining. It provides a flexible way to integrate all spatial data and non-
spatial data into data mining process. It can develop models or techniques to perform spatial 
autocorrelation analysis, spatial randomness tests, and spatial co-location (spatial association) 
tests in order to discover spatial clusters or spatial outliers. Several knowledge discovery systems 
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have been designed using spatial data mining as a core component. The results show that spatial 
data mining is a new, promising way to detect clusters. There are not much studies of using 
spatial data mining on detecting disease clusters. In addition, there is no software has been 
developed using spatial data mining to detect disease clusters. We believe using spatial data 
mining in detecting disease clusters would be a ‘’hot” research spot in the near future. 
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Appendix I: Summary Overview of Four Cluster Software Functionality 
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Appendix II: Overview of Specific Cluster Statistics in Each Package 
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