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Adaptive Network-Fuzzy Inferencing to Estimate 

Concrete Strength Using Mix Design 

S. Tesfamariam
1
 and H. Najjaran

2

Abstract 

Proportioning of concrete mixes is carried out in accordance with specified code information, 

specifications, and past experiences. Typically, concrete mix companies use different mix 

designs that are used to establish tried and tested datasets. Thus, a model can be developed based 

on existing datasets to estimate the concrete strength of a given mix proportioning and avoid 

costly tests and adjustments. Inherent uncertainties encountered in the model can be handled 

with fuzzy based methods, which are capable of incorporating information obtained from expert 

knowledge and datasets. In this paper, the use of adaptive neuro-fuzzy inferencing system 

(ANFIS) is proposed to train a fuzzy model and estimate concrete strength. The efficiency of the 

proposed method is verified using actual concrete mix proportioning datasets reported in the 

literature, and the corresponding coefficient of determination r
2
 range from 0.970-0.999. Further, 

sensitivity analysis is carried out to highlight the impact of different mix constituents on the 

estimate concrete strength.  

CE Database subject headings: Fuzzy logic, Adaptive neuro-fuzzy inferencing; Compressive 

strength; Concrete mix proportioning. 
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Introduction 

Concrete is one of the oldest materials in the construction industry. The concrete mix 

proportioning method has evolved from a simple arbitrary volumetric method (1:2:3 – 

cement:sand:coarse aggregate) to the present-day mass and absolute-volume method (ACI 211.1-

91 1991). A four-step mix design procedure is illustrated in Fig. 1. Step 1 entails specifying 

exposure condition, workability of freshly mixed concrete, and strength and durability 

requirements of hardened concrete. Once this is specified, Step 2 follows code specified design 

procedures to satisfy minimum/maximum requirements, i.e. maximum water cement ratio (w/c  

ratio), minimum 28 days specified strength ( ), minimum entrained air (EA), maximum slump, 

and maximum coarse aggregate (CA). Step 3 entails computing the required unit water content, 

coarse aggregate and consequently the fine aggregate (FA). Finally, Step 4 specifies the final 

water, cement, coarse aggregate, fine aggregate and admixture content. Typically, the mix design 

is verified in the laboratory through trial mix, and adjustments are made accordingly. The final 

proportioning of the mix design has to be verified through concrete mix made in the field, since 

variation may arise due to different mixers, pumping properties and wall effect (Neville 1997). 

Moreover, the quality of the final in-place concrete is determined by the prevalent construction 

quality. Hence, from batching to concrete placement, stringent control has to be exercised as any 

deviation may compromise the structural integrity and durability of the structure. As shown in 

Fig. 1, there is an infinite possibility of obtaining the desired mix design specification, however, 

the desirable one is the one that satisfies the design constraints at minimal cost. 

'
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The mix design involves a complex and nonlinear procedure that is influenced by the material 

interaction and culture of construction quality. Hence, it is difficult to develop a comprehensive 

analytical model by considering all design variables. Typically, concrete mix companies have 

extensive records of their past mix proportions, which can be used to develop a model for the 

design procedure. Automation of the mix proportioning can be carried out with different soft 

computing techniques. Soft computing is a conglomerate of computing techniques that include 

fuzzy-based methods, neuro-computing, genetic computing, probabilistic reasoning, genetic 

algorithms, chaotic systems, belief networks, and learning theory (Zadeh 1997). The soft 

computing techniques effectively explore the relationship among independent and dependent 

variables without any assumptions about the relationship (e.g., a linear relationship) between the 

various variables. 

Various authors have used a standard multilayer feedforward artificial neural network (ANN) to 

predict the compressive strength of concrete (e.g. Lai and Serra 1997; Yeh 1998; Oh et al. 1999; 

Ni and Wang 2000; Hong-Guang and Ji-Zong 2000; Lee 2003; Kim et al. 2004; Chiang and 

Yang 2005) where a back propagation algorithm (BPNN) is used to train the network existing 

datasets. Kim et al. (2005) have further enhanced the previously reported (Kim et al. 2004) ANN 

using probabilistic neural network method to handle uncertainty and save computational time. 

Jain et al. (2005) forwarded further insight into the implementation and discussions on the 

efficiency of neural network models for concrete mix. 

The main advantage of using ANN is their flexibility and ability to model nonlinear 

relationships. However, the ANN models have often been criticized for acting as a “black box.” 

The knowledge contained in an ANN model is maintained in the form of a weight matrix that is 
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hard to interpret and can be misleading at times. In other words, the ANN models do not have 

the ability to incorporate additional knowledge or expertise into the model. Although qualitative 

modeling methods can be used to capture human knowledge, such models will naturally suffer 

from subjective human judgments. One way to overcome many of these shortcomings is to use 

fuzzy models or fuzzy inference systems (FIS) that can handle the uncertainties arising from 

insufficient knowledge, partial truth and vagueness  (Zadeh 1973). These models combine the 

transparent linguistic representation of expert knowledge with the ability to learn from datasets. 

Various fuzzy modeling techniques have been presented in the literature (e.g., Sugeno and 

Yasukawa 1993, Klir and Yuan 1995, and Emami et al 1998). Jang (1993) proposed an adaptive 

network-based fuzzy inference system (ANFIS) to constructs a fuzzy inference system (FIS) in 

which membership functions is adapted using a back propagation algorithm in combination with 

the least-squares optimization.  

ANFIS has recently been used in civil and environmental engineering applications. Akbuluta et 

al. (2004) used ANFIS for data generation of shear modulus and damping ratio in reinforced 

sands. Chau et al. (2005) used ANFIS and ANN for comparison of flood forecasting models and 

reported that ANFIS obtained optimal results. Chang and Chang (2005) utilized it to build a 

prediction model for reservoir management. Vernieuwe et al. (2005) applied it to the modeling 

of rainfall–discharge dynamics. Nayak et al. (2004) applied it to model hydrologic time series, 

and reported that ANFIS was superior to ANN and other statistical methods. 

In this study, ANFIS is introduced as a tool to develop a fuzzy model that can estimate 

compressive strength of concrete given its mix proportioning. Previously reported data (Kim et 

al. 2004, 2005) are used to train and validate the fuzzy model. The estimated strengths are 
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compared with the reported concrete strengths. The results highlight the utility of ANFIS in the 

construction industry. The outline of the paper is as follows. First, the concept of fuzzy based 

methods, including fuzzy inference systems and fuzzy modeling is explained briefly. Second, the 

implementation and derivation of an ANFIS based model is discussed. Third, ANFIS is used to 

develop a FIS model for estimation of concrete strength. The results are verified using actual 

concrete mix proportioning datasets reported in the literature, and the corresponding coefficient 

of determination r
2
 are computed. Finally, sensitivity analysis is carried out to highlight the 

impact of each mix constituents on the estimate concrete strength. 

Fuzzy modeling methods 

Fuzzy logic was initially used to formulate linguistic information (Zadeh 1965). Later its 

potential to model complex multi-input-multi-output systems, where classical mathematical 

methods failed, is realized. This is followed by the use of fuzzy inference system (FIS), also 

known as fuzzy rule-based systems or fuzzy models, in control and modeling problems in which 

there is usually some numerical information available, although incomplete and uncertain. A key 

feature of the FIS is that it can readily integrate expert knowledge in the form of linguistic 

information and uncertain numerical data in the form of input-output records into a model and 

then use it for approximate reasoning. According to Zadeh (1973), the FIS contains three 

features: 

• linguistic variables instead of, or in addition to numerical variables; 

• relations between the variables in terms of IF-THEN rules; and 

• an inference mechanism that uses approximate reasoning algorithms to formulate 

complex relationships. 
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These features can be explained using the notion of fuzzy sets. A fuzzy set is a collection of 

ordered pairs that describe the relationship between an uncertain quantity and a membership 

function )x(μ , where 10 ≤≤ )x(μ . A fuzzy number is a normal and convex fuzzy set in a 

continuous universe of discourse in which the variable is defined. Figure 2 shows the commonly 

used fuzzy numbers including triangular, trapezoidal, and Gaussian shape fuzzy numbers. 

Finally, a linguistic variable can be regarded as a variable whose value is a fuzzy number, but 

fuzzy numbers can also represent numerical variables without being firmly connected to 

linguistic terms. An excellent introduction to the fuzzy set theory and fuzzy logic can be found in 

(Klir and Yuan, 1995; Lee, 1990a, b). In this section, the components of the FIS and the methods 

for constructing a FIS are explained. 

Fuzzy inference system (FIS) 

The information of the FIS is encapsulated in two modules: a fuzzy knowledge base and an 

inference mechanism. The former is a model developed based on expert knowledge and/or input-

output data. The inference mechanism then uses the knowledge base to estimate the output of the 

system for given inputs. A modularized design of the FIS enables it to maintain a generic 

processing structure that is capable of dealing with various systems in different application 

domains (e.g., physical, medical, financial) as long as a relevant knowledge base is defined. 

Also, the FIS can be readily updated by modifying the knowledge base using new information as 

it becomes available. 

Knowledge base - The knowledge base defines the relationships between the input and output 

parameters of a system. The most commonly used representation of the input-output 
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relationships is Mamdani type fuzzy models (after Mamdani, 1977). In this type of fuzzy models, 

linguistic propositions are used both in antecedent and consequent parts of the IF-THEN rules. 

Another type of representing the input-output relationships is Takagi-Sugeno-Kang (TSK) 

(Takagi and Sugeno 1985) fuzzy models in which the antecedent part of the rules is composed of 

linguistic propositions, but the consequent parts is defined by either a constant number (0
th

 order) 

or linear equations (1
st
 order). A 1

st
-order TSK model of a multi-input-single-output system may 

be represented by a set of linear subsystems (rules) each of which defined by a linear consequent 

statement, 

iR : IF is AND … is  THEN 1x 1iA mx imA mimiii xbxbby +++= K110 , ni ,,1K=  
(1)  

where  represents the iiR
th

 rule, n is the total number of rules, ),,1( mjx j K= are the input 

variables, is the output variable,  is an input fuzzy set defined in the input space , and 

 are the consequent parameters. Thus, every rule is a local fuzzy relationship that maps a part 

of the multidimensional input space U  into a certain part of the output space V .  

iy ijA jU

ijb

It has been demonstrated (Sugeno and Tanaka 1991) that the TSK models can accurately 

represent complex behavior with a few rules. Although the TSK fuzzy models are 

computationally less involved than the Mamdani type fuzzy models, the difficulty in defining a 

numerical function for the output propositions has often made them less attractive in fuzzy 

applications. This problem is resolved when the model is constructed automatically based on 

input-output data acquired from the systems. Another problem with the TSK models is that it is 

difficult to assign an appropriate linguistic term to the consequence propositions of the TSK 

models, but this will not be a problem if a qualitative model of the system is not required. 
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The rule base of a complex system usually requires a large number of rules to describe the 

behavior of a system for all possible values of the input variables. This is referred to as the 

“completeness” of a fuzzy model. The aggregation of the rules described in (1) forms a rule base 

that is valid over the entire application domain. The aggregation is obtained using the union of 

the rules or subsystems as, 

U
n

i
iRR

1=
==   ALSO  ALSO … ALSO  1R 2R nR

(2)  

Inference mechanism – The inference mechanism of Mamdani type and TSK fuzzy models are 

slightly different. Mamdani’s inference mechanism (Fig. 3a) consists of three connectives: the 

aggregation of antecedents in each rule (AND connectives), implication (i.e., IF-THEN 

connectives), and aggregation of the rules (ALSO connectives). The operators performing the 

connectives distinguish the type of fuzzy inferencing. The AND and ALSO connectives are 

chosen from a family of t-norm and t-conorm operators, respectively. Comprehensive 

discussions on t-norm (e.g., minimum and product operators) and t-conorm (e.g. maximum and 

sum operators) can be found in (Lee, 1990a, b). The implication (IF-THEN connective) also uses 

t-norm operators, but not necessarily identical to the ones used for the AND connectives. 

The inference mechanism of TSK models (Fig. 3b) is more straightforward than the more 

common Mamdani’s type because the outputs of individual subsystems are crisp numbers. An 

algebraic product operator is usually selected to perform the t-norm to simplify the computations 

further. The result of implication of each rule is a weight factor that indicates the rule degree of 

firing (dof), . The aggregation of the rules is simply adding the weighted average of the output 

of the individual rules. Thus, the crisp output  of a TSK model is given by, 

iw
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Fuzzy modeling 

There are two basic approaches for developing a FIS: direct approach and system identification 

(Yager and Filev 1994b). In the direct approach, the information extracted from the expert 

knowledge is used to: 

• specify the input, state, and output variables; 

• determine the partitions of input and output variables in their universes of discourse, and 

optionally label the partitions with appropriate linguistic terms; 

• define a set of IF-THEN statements (rules) that represent the relationships between the 

system variables; 

• select an appropriate reasoning method; and finally, 

• evaluate the model adequacy. 

Direct approach is essentially simple and intuitive, but it has inherent limitations. The main 

limitation is due to the fact that quantitative observations provide an overview of the 

performance of the system, but do not explicitly determine the structure or parameters of the 

model. Also, it is often the case that an expert cannot tell linguistically what kind of outcome he 

expects or what kind of action he takes in a particular situation. As a result, the adequacy of the 

direct approach is restricted to the boundaries of the expert knowledge. In other words, if the 

expert knowledge about the system is incomplete and subjective, then so will be the model. 
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Another approach for developing a FIS is system identification. In this approach, the FIS is 

developed based on the input-output data (training data) obtained from the actual system. System 

identification is predominantly useful when a predetermined model structure based on 

characteristics of variables is not available. Therefore, system identification can increase the 

objectivity of fuzzy modeling by introducing new knowledge to the model (Zadeh 1991). System 

identification is divided into two parts: structure identification and parameter identification 

(Sugeno and Yasukawa 1993). Similar to the direct approach, the objective of structure 

identification is to determine the input and output variables, partitions of the input and output 

spaces (i.e., fuzzy sets), relationships between the input and output variables (IF-THEN rules), 

and finally the number of rules. Parameter identification involves adjusting the parameters of the 

model obtained in the first part so that a performance index such as the root mean square of the 

output errors is minimized. The parameters of a TSK type fuzzy model define the input fuzzy 

sets  and the output coefficients  of (1).  ijA ijb

Structure identification - The input variables are selected from a pool of input candidates that 

most likely affect the output. Typically, there is no systematic way to specify the input 

candidates, and hence selection is primarily carried out based on experience or common sense. 

Subsequently, given a finite number of input candidates and the training data, the input variables 

can be selected using the combinatorial algorithm described in (Tagaki and Sugeno 1985). In the 

latter, first a combination of input variables is selected from of a number of input candidates. 

Next, the optimum premise and consequent parameters are identified according to the input-

output data and a performance index (e.g., mean square of differences between the model output 

and output data) is calculated. The optimal combination of input variables is the one that yields 

the minimum performance index. 
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The selection of the input variables is generally a complicated problem requiring iterative 

algorithms, if a priori knowledge of the system is not available. At this point, a general 

understanding of the system performance or a sensitivity analysis of the input candidates prior to 

modeling can help reducing the number of input candidates. 

The most important step of structure identification is the rule generation. Clustering of the input-

output data is an intuitive approach to rule generation. The idea of clustering is to produce a 

concise representation of a system’s behavior by dividing the output data into a certain number 

of fuzzy partitions. The fuzzy C-Means (FCM) clustering algorithm (Bezdek 1981, Bezdek et al. 

1987) has been widely studied and applied in many applications.  

The convergence of the FCM optimization similar to most optimization problems depends on the 

choice of initial values (i.e., the number of clusters  and initial cluster centers c iν ). Yager and 

Filev (1994a) proposed a simple and effective clustering algorithm, called the mountain method, 

for estimating the number and initial location of cluster centers. In this method, a grid is 

generated for data space of each input and output variable, and then a potential value for each 

grid point based on the distances to the actual data points is calculated. The grid points with high 

potential values correspond to the cluster centers. The problem with this clustering method is 

that the computational load increases exponentially with the number of input variables. Chiu 

(1994) proposed a modified form of the mountain method, called subtractive clustering, which 

significantly decreases the computational load, especially for systems with a large number of 

input variables. In this method, the potential value  is calculated with respect to the actual 

data points not some inscribed grid points. The potential of a data point  is given by, 

1
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where  is a positive constant. The first cluster center is at ar 1ν  that has the highest potential 

value . Subsequently, the potential values of the remaining data points 

are updated with respect to the first cluster by, 
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where  is a positive constant and c  is the total number of clusters. The procedure is repeated 

until all cluster centers are obtained. The parameters  and  are used to adjust the distance 

between the clusters. Typically, the clusters stand in an appropriate distance when . In 

this paper, subtractive clustering is used to partition the input space and find the initial structure 

of the FIS. 

br

ar br

ab rr 5.1=

The number of rules is an important parameter of the FIS. Clearly, the appropriate number of 

rules depends on the complexity of the system. According to Sugeno and Yasukawa (1993), the 

number of fuzzy rules corresponds to the order of a conventional model where an optimal model 

minimizes both the order and the output error. A statistical analysis for evaluating the optimal 

order of a model is discussed by Akaike (1974). A large number of rules, similar to a high order 

of a model, will bias the model towards specific data that can be imprecise or even erroneous. On 

the other hand, less number of rules will likely increase the output error, which is essentially 

equivalent to disregarding the effect of some of the data points containing valuable information. 

12



Thus, the optimal number of rules  can be obtained from a tradeoff between the number of 

rules and the output error. 

n

The number of rules will be automatically determined through clustering the input and output 

spaces. Each cluster center is used as the basis of a rule that describes the system behavior. Thus, 

the neighborhood radii  and  can be selected such that an optimal number of rules is 

achieved. 

ar br

Parameter identification – Parameter identification concerns the adjustment of the antecedent 

and consequent membership functions. In general, parameter identification is more 

straightforward than structure identification, especially when an initial structure of the model is 

determined based on expert knowledge or through clustering. In this paper, parameter 

identification is carried out using Adaptive Network-based Fuzzy Inference System (ANFIS) 

(Jang 1993), which is also called Adaptive Neuro-fuzzy Inference System. The ANFIS algorithm 

basically provides a learning technique for extracting information from an input-output dataset 

viz., training data, and setting up the antecedent and consequent parameters of a fuzzy inference 

system, accordingly. 

The ANFIS is essentially an adaptive multilayer feedforward network whose mathematical 

functionality is equivalent to a fuzzy inference system (FIS). The network is composed of a 

number of nodes connected through directed links. Each node is a processing unit that performs 

a node function on its incoming signal and yields the node output. The links only specify the 

direction of signal flow from one node to another. If a node function depends on certain 

parameter values (i.e., node’s parameter set is nonempty), the node is an adaptive node. If a node 

function is fixed (i.e., node’s parameter set is empty) then it is a fixed node. The output of the 
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nodes as well as the overall behavior of the adaptive network can be modified by changing the 

node function parameters. Thus, these parameters can be updated according to the training data 

to achieve a desired input-output mapping. 

The ANFIS network consists of the following five layers: 

Layer 1: Every node i  in this layer is an adaptive node with a node output  given by iO ,1

rjnixO jAi ij
,,1,,1),(,1 KK === μ  

(6)  

where  is the input to the node,  is a fuzzy set associated with the node,  is the number of 

inputs, and  is the number of rules. The use of Gaussian-shaped fuzzy sets is usually preferable 

from a computational point of view. A Gaussian fuzzy set with a maximum membership equal to 

1 and minimum membership equal to 0 is given by, 

jx ijA m

n

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −
−=

2

2 ij

ij
A

a

cx
exp

ij
μ  

(7)  

where and  are the antecedent parameters of the FIS. ija ijc

Layer 2: Every node i  in this layer is a fixed node, labeled Π , which multiplies the incoming 

signals and sends the product out.  

∏
=

==
m

j

jAii xwO
ij

1

,2 )(μ  
(8)  

where  is the degree of firing strength (dof) of rule . Any t-norm operator that performs AND 

connective can be used as the node function in this layer. 

iw i

14



Layer 3: Every node in this layer is a fixed node labeled N. The i
th

 node calculates the ration of 

the i
th

 rule’s firing strength to the sum of all rules’ firing strength. 

∑
=

==
n

k

k

i

ii

w

w
wO

1

,3  

(9)  

where iw  is called the normalized dof of each rule. 

Layer 4: Every node i  in this layer is an adaptive node with a node function 

)( 110,4 mimiiiiii xbxbbwywO +++== K  
(10)  

where iw  is the output of layer 3, and mjbij ,,1, K= are the consequent parameters of the FIS. 

Layer 5: The single node in this layer is a fixed node labeled Σ  that composes the overall output 

as the summation of all incoming signals, i.e., 

∑
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1,5  
(11)  

The above 5-layer network is functionally equivalent to a TSK type fuzzy inference system. 

The parameter identification of the TSK models involves the determination of antecedent 

parameters  and  and consequent parameters  using a given input-output dataset. A basic 

approach for identifying the parameters of an adaptive network is based on gradient method 

(Werbos 1974). The learning rule concerns how to recursively obtain a gradient vector in which 

ija ijc ijb
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each element is defined as the derivative of an error measure with respect to a parameter. In 

gradient method, the learning rule is a chain rule, generally referred to as “back propagation” 

(Rumelhart et al. 1986) because the gradient vector is calculated in the direction opposite to the 

flow of the output of each node.  

Although the gradient method seems a straightforward approach for the determination of the 

parameters of an adaptive network, this method is generally slow and likely to become unstable 

or trapped in local minima. The ANFIS constructs a fuzzy inference system (FIS) using a hybrid 

of the least squares estimate (LSE) and gradient descent proposed by Jang (1993) (see also Jang 

and Sun 1995). Specifically, the learning procedure uses the least squares estimate in a forward 

pass and gradient descent in a backward pass. In the forward pass, the network is simulated till 

layer 4 and the consequent parameters are identified by the least squares estimate under the 

condition that the antecedent parameters are fixed. In the backward pass, the error rates 

propagate backward and the antecedent parameters are updated by the gradient descent. The 

learning process is continued based on a learning rule, usually represented by the discrepancy 

between the desired output and the network output under the same input conditions. This 

discrepancy is called the error measure, which is usually defined as the sum of the squared 

differences between the desired and network outputs. 

ANFIS model development for concrete strength estimation 

The efficiency of the proposed ANFIS modeling technique is illustrated using the mix 

proportioning and material characterization data reported in Kim et al. (2004) and Kim et al. 

(2005). A three step procedure on the implementation of ANFIS to estimate concrete strength 
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using mix design is illustrated in this section. Fig. 4 shows the flowchart of the proposed 

modeling approach. 

Step 1: Preparation of training data 

The concrete mix constituents used in the model development are similar to those used in Kim et 

al. (2004) and Kim et al. (2005). The reported data were gathered from actual mix proportions of 

two companies, Company A and Company B. The overall basic material properties between the 

two companies are similar, with the exception of sand used. Company B uses only natural sand 

whereas Company A mixes both natural and crushed sand. Sample input data of the specified 

concrete mix proportions of Company A and B are presented in Tables 1a and 1b, respectively. 

Further, the main difference between the reported Kim et al. (2004) and Kim et al. (2005) data is 

the units assigned to the mix proportions. Kim et al. (2004) use kN/m
3
 for water, cement, fine 

aggregate and coarse aggregate contents, whereas Kim et al. (2005) use kg/m
3
 for those 

proportions Consequently, to combine the two datasets, the kN/m
3
 units (shown in Tables 1a and 

1b) are converted into kg/m
3
.  

The Company A and B data were combined for model training under the assumption that the 

data are commensurate. Hence, the final training data for Company A and B consist of 45 data 

points each. Further, a combined model of Company A and B, henceforth described as Company 

A-B is generated using a total of 90 training data points. It is noted that Company A and B have 

different fine aggregate constituents. Thus, for combined Company A-B data, the natural and 

crushed sand of Company A are combined and represented with a single fine aggregate (FA) 

label. For brevity, data are not repeated here; curious readers are referred to Kim et al. (2004) 

and Kim et al. (2005).  

17



Kim et al. (2004) and Kim et al. (2005) have considered nine different concrete mix 

proportioning parameters to model the 28-day compressive strength. The efficiency of a given 

model can be demonstrated using minimal input parameters to capture the desired model output. 

Hence, in this paper, initial screening is carried out to eliminate any redundant input parameter. 

For example, the simultaneous use of water-cement ratio and the corresponding water and 

cement contents as input parameters is redundant. Hence, the input parameters are divided into 

two groups, absolute variables and relative variables (Table 2). The absolute value modeling 

includes absolute values, input parameters entail, where possible, parameters without any 

relative ratios, e.g. using only unit water content and unit cement content, without the w/c ratio, 

specified concrete strength, slump, etc. The input of the relative value modeling includes relative 

ratios where possible (e.g., w/c ratio, fine aggregate percentage, etc…). 

Step 2: Structure and parameter identification 

ANFIS is used for structure and parameter identification as outlined in the previous section. The 

models are generated using datasets of Company A, Company B and the combination of 

Company A and B that are referred to as Model A, Model B and Model A-B, respectively. 

Moreover, each of the three models is implemented for absolute variables and relative variables, 

which are referred to as absolute model and relative model, respectively. In this way, a total of 

six models are generated. Initial sensitivity analysis is carried out to observe if there is any 

significant difference between the actual concrete strength and those predicted using the six 

models. The analysis showed that the results are only slightly different. Nevertheless, for a 

pragmatic model application, where a more generic model with the minimum number of inputs is 
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typically more desirable, Model A-B is preferable. The ensuing discussion is only for the relative 

Model A-B, but the derived conclusion is equally applicable to the other five models. 

The FIS generated for the five relative input parameters (Table 2: slump, w/c ratio, FA, CA, 

Amix) has four rules. Each input parameter is modeled using a Gaussian type membership 

function (7). Result of coefficients of the Gaussian type membership function, for slump 

( Slumpμ ), w/c ratio ( cw /μ ), FA ( FAμ ), CA ( CAμ ), and Amix ( Amixμ ) are summarized in Table 3. 

For example, from Table 3, the Slumpμ  associated with Rule 1 is: 

( )
⎟
⎠
⎞

⎜
⎝
⎛− −

= 9938.14

25386.4

2
1

)(
x

exSlumpμ . 

The ANFIS equivalent of the TSK model is illustrated in Fig. 5. As discussed in the previous 

section, the ANFIS is represented in five layers. Layer 1 corresponds to the membership 

functions (Table 3). Layer 2, is a product layer, which illustrate the firing strength of a rule. 

Hence, the i
th

 rule firing strength ( ) of input parameters associated with Rule i is (8): iw

)()()()/()( / mixAmixCAFAcwSlumpi ACAFAcwSlumpw μμμμμ ××××= . 

Layer three entails normalization of the i
th

 rule strength to the sum of all rules firing strength (9): 

4331 wwww

w
w i

i +++
= . 

Hence, iw  is called normalized firing strengths. Layer four computes the corresponding output 

 strength estimation of Rule i (10): iO
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( )054321 / bAbCAbFAbcwbslumpbwywO mixiiii +×+×+×+×+×== . 

The parameters, {b1, b2, b3, and b4} are referred as consequent parameters (Table 4). For 

example, the model output from Rule 1 can be shown as 

( )46.34866.8000988.0%4255.0/4684.00471.011 +×−×+×+×−×−= AmixCAFAcwslumpwO

. 

Finally, the estimated concrete strength, , is obtained by summing the model output of the 

four rules (11): 

'

cf

∑
∑∑ ==

i i

i ii

i

iic
w

fw
fwf '  

Step 3: ANFIS Model Validation 

Model validation must be carried out using the input-output data that are not used for training to 

evaluate the efficiency the FIS in predicting concrete strength. The reported (Kim et al. 2004 and 

Kim et al. 2005) testing data points are combined in the model validation, which resulted in total 

of 24 data points for each of Model A and B, and 48 data points for Model A-B. The FIS model 

predicted and actual concrete strength are used for model validation. The results are plotted in 

Figs. 6a to 6e. Figures 6a, 6c, and 6e show result of the absolute model validation of Model A, B, 

and A-B, respectively. Similarly, Figs. 6b, 6d, and 6f show result of the relative model validation 

of Model A, B, and A-B, respectively. A linear regression fit is performed between the actual 

and predicted concrete strength. The corresponding absolute and relative model coefficient of 

determination r
2
 values are as follows: Model A (0.999, 0.984), Model B (0.970, 0.995) and 

Model A-B (0.999, 0.998). 
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Discussion 

Concrete mix proportioning is a highly nonlinear process that is also subject to experimental 

error (Kim et al. 2004). Reliable prediction of concrete strength necessitates the development of 

models which are tolerant of various manifestations of uncertainty. Identification of dominant 

parameters can help to implement stringent monitoring and quality control during mix 

proportioning (Jain et al. 2005). A sensitivity analysis is commonly carried out using random 

sampling (Monte Carlo-type simulations) where the probability distributions for input data can 

either be assumed or derived from observations. Thereafter, the rank correlation method (Cullen 

and Frey 1999) is applied to the results of the Monte Carlo simulations to identify input 

data/parameters that dominate the output. The rank correlation method involves the 

determination of coefficient of determinations, which measure the strength of the linear 

relationship between two variables. The procedure utilized for the sensitivity analysis is as 

reported in Tesfamariam et al. (2005) and the basic steps are outlined here. For ns number of 

realization,  

For i = 1 to ns, 

▪ Generate a uniformly distributed random numbers for the five input parameters 

(ranging between the min and max values),  

▪ Compute the corresponding membership function (6) and (7), 

jx

)( jA x
ij

μ  

▪ Compute the dof (8) and normalized dof (9) 

▪ Compute the output of each layer (10) and normalized output (11) 
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Next i 

▪ For the n input-output results, rank order the results and perform rank correlation 

▪ Normalize the rank correlation results and show the result on a tornado graph 

Sensitivity analysis of the FIS model is carried out for 3000 realizations from the relative Model 

A-B, and the results of the rank correlation are normalized to the sum of one and are plotted in a 

tornado graph (Fig. 7). Figure 7 shows that an increase in CA (16% contribution) and w/c ratio 

(72% contribution) decreases the concrete strength. Clearly, the contribution of Slump is not 

considerable. On other hand, an increase in FA (11% contribution) and Amix (1% contribution), 

albeit to a smaller degree, is followed by an increase in the concrete strength. It is interesting to 

note that impact of CA, w/c ratio, Amix and FA is in agreement with the results reported in 

Neville 1997. Overall the w/c ratio is the most dominant parameter towards the variability of the 

concrete strength. This reinforces our intuitive understanding that stringent quality control of the 

in situ w/c ratio should be implemented. 

Further, two parameters at a time simulation is carried out for the three most dominant variables; 

w/c ratio, CA and FA. Figure 8a shows the simulation between w/c ratio and CA. At a higher CA 

content, e.g., 60%, there is a linear decrease in concrete strength with an increase in w/c ratio. At 

a lower CA content, e.g. 10%, the variation of w/c ratio from 40% to roughly 65% show 

negligible variation. However, at CA = 10%, significant decrease in concrete strength is 

observed with increase in the w/c ratio from 65% to 80%. At a lower w/c ratio, e.g. <50%, an 

increase in CA content (from 10% to 30%) is followed by a decrease in concrete strength. 

However, with further increase in CA content (from 30% to 60%), the concrete strength 

increases. This relation is in agreement with a reported (Neville 1997) relationship and Neville 
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underlined that the reason for this effect is not clear. At a higher w/c ratio, an increase in CA 

content (beyond 35%) reaches minima and the variation is not significant.  

Figure 8b shows the relationship between FA and w/c ratio. In general, an increase in FA and a 

decrease in w/c ratio are followed by a linear increase in concrete strength. Figure 8c shows the 

variation of CA and FA in the estimated concrete strength. At any level of the FA content, 

increase in CA is followed by a decrease in concrete strength; however, after 35% CA content, it 

reaches minima. Similarly, and increase in FA is followed by an increase in concrete in strength, 

however, after 48% FA, it reaches a maxima. 

The accuracy of the ANFIS model generated from the input parameters may be compromised 

outside the range of the training datasets. The inputs parameters for the proposed ANFIS model 

discussed in the paper are bounded within the following ranges: Slump, mm [5, 18]; unit water 

content [160, 185]; unit cement content, kg/m
3
 [228, 524]; unit fine aggregate content, kg/m

3
 

(663, 1004); unit coarse aggregate content, kg/m
3
 [882, 1060]; admixture, % [0.7, 2.6]; specified 

strength, MPa [10.8, 39.2]. Extrapolating the model outside these limits should be carried out 

with caution.  

Conclusions 

Concrete mix proportioning is a nonlinear process, for which developing a comprehensive and 

reliable analytical model is rather challenging, if not impossible. Typically, concrete 

manufacturing companies have extensive datasets of past mix proportions, which can be used for 

modeling and validation. Hence, the concrete industry can benefit from their historical datasets 

in conjunctions with soft computing techniques to automate mix proportioning and predict the 
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strength of the final product, reliably. This study presents ANFIS modeling for concrete strength 

estimation from concrete mix proportioning. The open architecture of the ANFIS model is 

appealing as it captures the designer’s intuitive experience as well as the numerical information 

included in the datasets. The ANFIS modeling also allows post-modeling adjustment and fine 

tuning based on the new datasets as they become available. The ANFIS modeling has a 

significant potential in the concrete industry. Sensitivity analysis is carried out to identify critical 

parameters that impact the concrete strength. Results of this analysis can be used to develop in 

situ construction quality. The ANFIS model is developed for absolute input parameters where 

necessary (e.g. unit water content (kg/m
3
), unit FA content (kg/m

3
), etc…). However, to 

minimize the number of input parameters, relative input parameters (e.g. w/c ratio (%), FA 

percentage (%), etc…) are taken into account where possible. The proposed model is tested and 

validated with actual reported data in the literature. The coefficients of determination r
2
 of the 

corresponding absolute and relative models are as follows: Model A (0.999, 0.984), Model B 

(0.970, 0.995) and Model A-B (0.999, 0.998). 

The proposed ANFIS modeling method is a step forward toward the development of a 

comprehensive model for the concrete industry. In any future development, the concrete strength 

modeling should incorporate external factors that impact the concrete strength, such as 

construction quality, environmental condition, etc. Further, this modeling approach can be used 

at different stages of the concrete industry. These stages include, but not limited to, mix design 

proportioning, simulation of concrete strength using mix design proportioning, estimation of in 

situ concrete strength given the history of construction quality and in situ construction quality 

monitoring using the a measured slump and air content. Finally, the use of soft computing 

24



techniques such as ANFIS modeling allows the concrete industry avoid the risk of faulty or 

deficient concrete that often entails durability and safety problems. 

 

25



References 

ACI 211.1-91. (R2001). “Standard practice for selecting proportions for normal, heavyweight 

and mass concrete.” ACI Committee 211 Report, American Concrete Institute, Detroit. 

Akaike, H. (1974). “New look at the statistical model identification.” IEEE Transactions on 

Automatic Control, 19, 716-723. 

Akbuluta, S., Hasiloglub, A.S. and Pamukcuc, S. (2004). “Data generation for shear modulus 

and damping ratio in reinforced sands using adaptive neuro-fuzzy inference system.” Soil 

Dynamics and Earthquake Engineering, 24, 805–814. 

Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum 

Press, New York. 

Bezdek, J.C., Hathaway, R., Sabin, M., and Tucker. W.  (1987). “Convergence theory for fuzzy 

c-means: Counterexamples and repairs.” The Analysis of Fuzzy Information, Bezdek J. (ed), 

CRC Press, 3, Chap. 8. 

Chang, F.-J. and Chang, Y.-T. (2005). “Adaptive neuro-fuzzy inference system for prediction of 

water level in reservoir. Advances in Water Resources.” Advances in Water Resources, in 

press.  

Chau, K.W., Wu C.L. and Li Y. S. (2005). “Comparison of Several Flood Forecasting Models in 

Yangtze River.” Journal of Hydrologic Engineering, 10(6), 485-491. 

Chiang, C.-H. and Yang, C.-C. (2005). “Artificial neural networks in prediction of concrete 

strength reduction due to high temperature.” ACI Materials Journal, 102(2), 93–102. 

26



Chiu, S.L. (1994). “Fuzzy model identification based on cluster estimation.” Journal of 

Intelligent and Fuzzy Systems, 2, 267-278. 

Cullen, A.C. and Frey, H.C. (1999). Probabilistic Techniques in Exposure Assessment: a 

Handbook—for Dealing with Variability and Uncertainty in Models and Inputs. Plenum 

Press, New York, pp. 352. 

Emami, M. R., Turksen, I. B., and Goldenberg, A. A., (1998). “Development of a systematic 

methodology of fuzzy logic modeling.” IEEE Transactions on Fuzzy Systems, 6(3), 346-361. 

Hong-Guang, N., and Ji-Zong, W. (2000). “Prediction of compressive strength of concrete by 

neural networks.” Cement and  Concrete Research, 30, 1245–1250. 

Jain, A., Misra, S., and Jha, S.K. (2005). “Discussion of  “Application of neural networks for 

estimation of concrete strength.”” Journal of Materials in Civil Engineering, 17(6), 736–738. 

Jang, J. S. R. (1993). “ANFIS: Adaptive-Network-Based Fuzzy Inference System.” Transactions 

on Systems, Man, and Cybernetics, 23(3), 665-685. 

Jang, J. S. R., and Sun, C. T. (1995). “Neuro-fuzzy modeling and control.” Proceedings of the 

IEEE, 83(3), 378-406. 

Kim, D. K., Lee, J.J.; Lee, J.H.; and Chang, S.K. (2005). “Application of probabilistic neural 

networks for prediction of concrete strength.” Journal of Materials in Civil Engineering, 

17(3), 353–362. 

Kim, J. I., Kim, D. K., Feng, M. Q., and Yazdani, F. (2004). “Application of neural networks for 

estimation of concrete strength.” Journal of Materials in Civil Engineering, 16(30), 257–264. 

27



Klir, G. J., and Yuan, B. (1995). Fuzzy sets and fuzzy logic – theory and applications, Prentice-

Hall Inc., Englewood Cliffs, New Jersey. 

Lai, S., and Serra, M. (1997). “Concrete strength prediction by means of neural network.” 

Construction and Building Materials, 11(2), 93–98. 

Lee, C. C. (1990a). “Fuzzy logic in control systems: Fuzzy logic controller-Part I.” IEEE 

Transactions on Systems, Man, and Cybernetics, 20(2), 404-418. 

Lee, C. C. (1990b). “Fuzzy logic in control systems: Fuzzy logic controller-Part II.” IEEE 

Transactions on Systems, Man, and Cybernetics, 20(2), 419-435. 

Lee, S.C. (2003). “Prediction of concrete strength using artificial neural network.” Engineering 

Structures, 25, 849-857. 

Mamdani, E. H. (1977). “Application of fuzzy logic to approximate reasoning using linguistic 

synthesis.” IEEE Transactions on Computers, 26(12), 1182-1191. 

Nayak, P.C., Sudheer, K.P., Rangan, D.M., and Ramasastri, K.S. (2004). “A neuro-fuzzy 

computing technique for modeling hydrological time series.” Journal of Hydrology, 291, 52–

66. 

Neville, A.M. (1997). Properties of Concrete, 4
th

 Ed., Wiley, New York. 

Ni, H.G., and Wang, J.Z. (2000). “Prediction of compressive strength of concrete by artificial 

neural networks.” Cement and Concrete Research, 30, 1245–1250. 

Oh, J. W., Lee, I. W., Kim, J. T., and Lee, G. W. (1999). “Application of neural networks for 

proportioning of concrete mixes.” ACI Materials Journal, 96(1), 61–67. 

28



Rumelhart D. E., Hinton, G. E., and Williams, R. J. (1986). “Learning internal representations by 

error propagation.” Parallel Distributed Processing: Explorations in the Microstructure of 

Cognition, D.E. Rumelhart and J.L. McClelland, Eds., MIT Press, Cambridge, MA, 1, 318-

362. 

Sugeno, T. and Tanaka, K. (1991). “Successive identification of systems and its application to 

modeling and control.” Fuzzy Sets and Systems, 42(3), 315-334. 

Sugeno, M. and Yasukawa, T. (1993). “A Fuzzy-Logic-Based Approach to Qualitative 

Modeling.” IEEE Transactions on Fuzzy Systems, 1(1), 7-31. 

Takagi, T. and Sugeno, M. (1985). “Fuzzy identification of systems and its applications to 

modeling and control.” IEEE Transactions on Systems, Man, and Cybernetics, 15(1), 116–

131. 

Tesfamariam, S., Rajani, B. and Sadiq, R. 2006. Consideration of uncertainties to estimate 

structural capacity of ageing cast iron water mains - a possibilistic approach. Canadian 

Journal of Civil Engineering, 33(8): 1050-1064. 

Vernieuwe, H., Georgieva, O., Baets, B.D., Pauwels, V.R.N., Verhoest, N.E.C. and F.P. D. 

Troch (2005). “Comparison of data-driven Takagi–Sugeno models of rainfall–discharge 

dynamics.” Journal of Hydrology, 302, 173–186. 

Werbose, P. (1974). Beyond regression: New tools for prediction and analysis in the behavioral 

sciences. PhD dissertation, Harvard University, Cambridge, MA.  

Yager, R.R. and Filev, D.P. (1994a). “Generation of fuzzy rules by mountain clustering.” 

Journal of Intelligent and Fuzzy Systems, 2, 209-219.  

29



Yager, R. R., and Filev, D. P. (1994b). Essentials of fuzzy modeling and control, Wiley, New 

York. 

Yeh, I.-C. (1998). “Modeling of strength of high-performance concrete using artificial neural 

networks.” Cement and Concrete Research, 28(12), 1797–1808. 

Zadeh, L.A. (1965). “Fuzzy sets.” Information and Control, 8, 338-353. 

Zadeh, L.A. (1973). “Outline of a new approach to the analysis of complex systems and decision 

processes.” IEEE Transactions on Systems, Man, and Cybernetics, 3, 28-44. 

Zadeh, L.A. (1991). “From circuit theory to system theory.”  Facets of Systems Science (G.J. 

Klir Eds.), Plenum Press, New York. 

Zadeh, L.A. (1997). “The role of fuzzy logic and soft computing in the conception, design and 

deployment of intelligent systems.” Software Agents and Soft Computing, Springer, New 

York. 

 

30



LIST OF NOTATION 

ijA  Input fuzzy set 

ANFIS Adaptive Network-based Fuzzy Inference System 

ija ,  ijc Parameters of Gaussian-shaped function 

ijb  Consequent parameters 

c  Subtractive cluster, total number of clusters 

CA Coarse aggregate 

dof Degree of firing strength 

ji,  Counters 

ε  Error measure 

FA Fine aggregate 

FIS Fuzzy inference system 

'

cf  minimum 28 days specified strength 

n  Total number of rules 

iO ,1  Node output of the ANFIS network 

1

iP  Subtractive cluster, potential value 

iR  i
th

 rule 

ar ,  br Subtractive cluster, adjustment parameters 

TSK Takagi-Sugeno-Kang 

jU  Input space 

V  Output universe of discourse 

iν  Subtractive cluster, cluster centers 

iw  Degree of firing strength 

iw  Normalized dof of each rule 

w/c ratio water cement ratio 

jx  Input variables ),,1( mj K=  

iy  Output variable 
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*y  Defuzzified crisp value 

)x(μ  Membership function   

0π  Highest potential value 

Σ  Summation of all incoming signals 
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Table 1a. Sample Input Data, Specified Concrete Mix Proportions of Company A for Training
§
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Unit fine aggregate content 

(kN/m3) 

Specified 

strength  

(MPa) 

Slump  

(cm) 

Water-

cement ratio  

(w/c) 

Fine 

aggregate 

percentage 

(%) 

Unit water 

content  

(kN/m3) 

Unit 

cement 

content 

(kN/m3) Natural sand 

(s1) 

crushed sand 

(s2) 

Unit coarse 

aggregate 

content  

(kN/m3) 

Admixture 

(%) 

15.68 10 64.2 46.6 1.75 2.73 3.28 4.93 9.67 0.84 

15.68 15 64.2 47.6 1.86 2.90 3.27 4.92 9.26 0.89 

M  M  M  M  M  M  M  M  M  M  

39.20 15 32.1 41.2 1.76 5.50 2.53 3.79 9.26 1.68 

39.20 18 32.1 41.8 1.82 5.67 2.51 3.77 8.99 1.74 

§
from Kim et al. 2004 

 

Table 1b. Sample Input Data, Specified Concrete Mix Proportions of Company B for Training
§

Unit fine aggregate content 

(kN/m3) 

Specified 

strength  

(MPa) 

Slump  

(cm) 

Water-

cement ratio  

(w/c) 

Fine 

aggregate 

percentage 

(%) 

Unit water 

content  

(kN/m3) 

Unit 

cement 

content 

(kN/m3) Natural sand 

(s1) 

crushed sand 

(s2) 

Unit coarse 

aggregate 

content  

(kN/m3) 

Admixture 

(%) 

15.68 10 63.1 50.9 1.68 2.66 9.23 - 9.08 1.36 

15.68 15 63.2 50.4 1.76 2.79 8.98 - 9.01 1.43 

M  M  M  M  M  M  M  
 M  M  

39.20 15 33.2 44.4 1.71 5.14 7.11 - 9.08 2.62 

39.20 18 33.2 44.1 1.75 5.28 6.96 - 9.00 2.70 

§
from Kim et al. 2004 
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Table 2. Datasets of Specified Concrete Mix Proportions 

Absolute value modeling Relative value modeling 

Specified concrete strength (MPa) 

Slump (cm) 

Unit water content (kg/m
3
) 

Unit cement content (kg/m
3
) 

Unit fine aggregate content (kg/m
3
) 

Natural sand (s1), crushed sand (s2) 

Unit coarse aggregate content  (kg/m
3
) 

Admixture (%) 

Specified concrete strength (MPa) 

Slump (cm) 

Water-cement ratio (w/c) 

Fine aggregate percentage (%) 

Coarse aggregate percentage (%) 

Admixture (%) 
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Table 3. Membership function of the Model A-B input parameters 

Rules Slump, Slumpμ  w/c ratio, cw /μ  FA, FAμ  CA, CAμ  Amix, Amixμ  

 ci1 ai1 ci2 ai2 ci3 ai3 ci4 ai4 ci5 ai5

R1 4.5386 14.9938 14.9342 53.3991 4.1284 45.4977 14.4901 56.0001 0.5983 1.0611 

R2 4.5242 15.0009 14.9346 35.7003 4.1316 41.9012 14.4901 59.6099 0.5704 1.5168 

R3 4.5236 15.0006 14.9342 45.2000 4.1297 46.7999 14.4902 16.7901 0.5888 1.9525 

R4 4.5217 12.0046 14.9333 66.3006 4.128 51.4011 14.4901 49.4499 0.5793 1.3134 

           

 

 

Table 4. Datasets of Specified Concrete Mix Proportions 

Rules b1 b2 b3 b4 b5 b0

R1 -0.0471 -0.4684 0.4255 0.000988 -8.866 34.46

R2 -0.4072 0.2037 1.329 -0.9398 18.57 -59.22 

R3 -0.06809 -1.013 1.298 1.09 3.304 -51.54 

R4 -0.4016 -0.9981 1.512 -0.6199 -0.6334 48.12 
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Figure 1. Concrete mix proportioning 
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Figure 2. Typical Fuzzy Membership Functions 
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Figure 3. Fuzzy reasoning models 
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Figure 4. Flowchart of ANFIS model development for concrete strength modeling 
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Figure 5. ANFIS equivalent of TSK model for concrete strength modeling 
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Figure 6. Comparison of target and predicted concrete strength for  

a combined and relative model. 

42



-75% -50% -25% 0% 25% 50%

Percent of contribution to variability of f'c  (%)

Slump

w/c ratio

FA

CA

Amix

 

Figure 7. Sensitivity analysis of concrete strength input parameters using a tornado graphs  
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Figure 8a. Impact of variation in water cement ratio and coarse aggregate on the estimated concrete 

strength: Slump (10 mm), Amix (1.5%) and FA (50%) 
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Figure 8b. Impact of variation fine aggregate and water cement ratio on the estimated concrete 

strength: Slump (10 mm), Coarse Aggregate (40%) and Admixture (1.5%) 
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Figure 8c. Impact of variation in coarse aggregate and fine aggregate on the estimated concrete 

strength: Slump (10 mm), Water cement ratio (60%) and Admixture (1.5%) 
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