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Abstract

A new theoretical framework for the view planning prob-

lem is presented. In this framework, view planning is de-

�ned as an instance of the well-known set covering problem

from the �eld of combinatorial optimization. We include

an image-based registration constraint and express the re-

sult in the form of an integer programming problem.
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1 Introduction

The view planning problem (VPP) for 3D object recon-
struction and inspection by active range cameras remains
an open problem. The imaging environment comprises
a range sensor [3], the object, associated �xtures and
a positioning system. While inspection bene�ts from a
detailed object model, object reconstruction commences
with little a priori knowledge and must undertake both
scene exploration and precision measurement. Most cur-
rent techniques combine these activities in iterative ex-
ploration/measurement steps exploiting current knowledge
for cues to the next-best-view (NBV). The non-model-
based view planning literature is reviewed at [14], [10].

An alternative approach is model-based view planning
[10] which partitions scene exploration from precision mea-
surement. As its starting point, the present work assumes
that a separate, pre-programmed and rapid scene explo-
ration phase has been completed, resulting in a polygonal
mesh rough model capturing an approximation of object
geometry. The rough model, or CAD model in the inspec-
tion case, is used to compute one or more measurability
matrices which become the knowledge base for planning
precision measurement. The issue of how rough the rough
model can be and still reliably guide precise 3D geometric
sensing has been addressed at [11].

Theoretical treatment of view planning has been limited.
Tarbox and Gottschlich [15] introduced the measurability
matrix concept in a model-based approach to inspection.
They showed that the VPP was isomorphic to the set cov-
ering problem (SCP) which is known to be NP-complete
[6]. Scott et al [10] extended that work to object recon-
struction with a set theoretical framework and introduced

the concept of performance-oriented view planning - that
is, planning with respect to speci�c technical criteria in a
model speci�cation. Whaite and Ferrie [16] presented an
autonomous exploration theory based on minimization of
model uncertainty. Yuan [17] used mass vector chains in
a global approach to view planning. Most other work in
the �eld relies on a variety of heuristic techniques without
a theoretical framework.

2 View Planning as an Integer

Programming Problem

2.1 Theoretical Framework

We have previously developed [10] a set theory based for-
mulation of the VPP in terms of a measurability mapping
between viewpoint space V and object surface space S.
The size of V and S are v and s, respectively. Recognizing
the VPP as an instance of the SCP admits its expression
as a classical 1/0 integer programming problem (IP), a
sub-class of linear programming problems (LP). The view
planning problem can then be expressed as the problem of
covering the rows of a binary s-by-v measurability matrix
M = [mij ] by a minimal sub-set of the columns. In this
notation, rows correspond to surface points (vertices in the
rough model) and columns to candidate viewpoints. Can-
didate viewpoints are generated from the geometric scene
knowledge embedded in the rough model.

It is instructive to partitionM into column vectorsMS;j

and row vectorsMi;V . The set Sj of surface elements mea-
surable by a single viewpoint vj is de�ned by the corre-
sponding column vectorMS;j of the measurability matrix.
Similarly, the region Vi of viewpoint space from which a
given surface element si is measurable is de�ned by the
corresponding row vector Mi;V of the measurability ma-
trix.
Computing the measurability matrix has complexity

O(vs2). For a typical dense model reconstruction, s � 105.
Without simpli�cation, viewpoint space discretization lev-
els can be very high (� 1011). Complexity reduction tech-
niques [10] include sparse sampling in surface and view-
point space as well as segmenting the object surface into
patches. In this case, separate measurability matrices are
computed for each segmented patch and v and s refer to
subsets associated with individual patches. The theoretical



framework presented here applies regardless of the repre-
sentation.
Informally, the goal of view planning is to �nd the small-

est set of views satisfying measurability constraints. More
formally, the problem can be written as follows. Here, we
de�ne X as a vector of binary viewpoint variables xj such
that xj = 1 if column j is in the solution and xj = 0 if it
is not.

Minimize Z =

vX
j=1

xj (1)

subject to

vX
j=1

mijxj � 1 ; i = 1; : : : ; s ; i 2 S (2)

xj 2 f0; 1g ; j = 1; : : : ; v ; j 2 V (3)

X spans viewpoint space as sampled by the viewpoint
generation stage. The optimal X is the minimal set of
viewpoints covering S - that is, the next-best-view set N .
The constraints de�ned by equation 2 ensure that each
row of the measurability matrix is covered by at least one
viewpoint. Equation 3 applies an integer constraint on the
viewpoint variable. Occasionally, there may be no feasible
solution, in which case we wish to have a solution for the
minimal number of non-compliant constraints, that is -
maximum surface covering.

2.2 Positioning System Movement

Constraint

The preceding formulation is known as the unicost set cov-
ering problem. Modifying equation 1 by assigning costs cj
to each viewpoint restates the problem as a non-unicost
SCP. This would be appropriate for an imaging environ-
ment with non-uniform and signi�cant movement \costs"
associated with viewpoints. In general, this will not be the
case and the unicost formulation will su�ce for our pur-
poses. The non-unicost IP is a somewhat more di�cult
programming problem.

Minimize Z =

vX
j=1

cjxj (4)

A separate issue relates to physical limitations on the
range of motion and degrees of freedom of the positioning
system which e�ect viewpoint feasibility. There is no need
to include such constraints in the above IP formulation. It
is more e�cient to avoid generating infeasible viewpoints
at the viewpoint generation stage.

2.3 Image-Based Registration Con-

straint

A common imaging problem arises when positioning sys-
tem precision is inferior to that of the sensor. It is then nec-
essary to employ image-based registration to bring images

into a common reference frame with a precision compara-
ble to that of surface measurements. The iterative closest
point (ICP) algorithm [4] and its more recent enhance-
ments is widely used for image-based registration. It works
by minimizing errors in the geometric �t between overlap-
ping range image segments. In this section we show how
an image-based registration constraint can be expressed
within the IP formulation of the VPP.
Image-based registration requires su�cient overlap be-

tween range images1. A degree of image overlap is also
necessary for image integration. As a �rst approximation,
we specify a point overlap constraint which is a necessary
but not su�cient condition for image-based registration.
In general, we need to add a geometric complexity require-
ment to the overlap region to fully constrain registration
in all directions and rotations. It will be apparent from
the simpler point overlap constraint how, in principal, we
can formulate a more stringent constraint for overlap with
geometric complexity. This is being pursued.
There is a direct correspondence between viewpoints

and range images. Image overlap can therefore be deter-
mined from the degree of viewpoint correlation. For the
purposes of view planning, we de�ne the cross-correlation
�kj of two viewpoints vk and vj as the dot product of
the respective column vectorsMS;k andMS;j of the mea-
surability matrix, normalized2 by the maximum viewpoint
coverage of any viewpoint in the candidate viewpoint set,
i.e. mS = maxjMS;kj 8k 2 V .

�kj =
MS;k �MS;j

mS

(5)

To register image (viewpoint) vk with image (viewpoint)
vj , we require that their cross-correlation exceed some
image-based registration threshold, typically around 20%.

�kj � tr (6)

Let the binary variable Xkj = 1 if �kj � tr and Xkj = 0
otherwise. We can then compute the symmetric v-by-v
cross-correlation matrix � = [Xkj ]. Normally, Xkk = 1.
In the rare case where Xkk = 0, meaning the image is so
sparse it could not even register with itself, we drop the
associated viewpoint from the candidate viewpoint list and
reformulate the IP set covering problem accordingly.
We can now observe that � speci�es viewpoint adja-

cency in registration terms. We therefore de�ne a view-

point registration-adjacency matrix A = [akj ] such that
akj = Xkj , i 6= j, and akk = 0. The registration-adjacency
matrix A has an associated viewpoint registration graph Gr

1Few view planning techniques in the literature incorporate
a registration constraint. Pito [8] includes an explicit overlap
requirement and mentions the need for shape complexity in the
overlap area but does not implement it. Whaite and Ferrie [16]
achieve image overlap by a conservative search strategy.

2There are several potential choices for a normalizing value.
mS has the advantage of guaranteeing �kj values in the range
[0,1], is reciprocal and is independent of object or segmen-
tation patch size, rough model sampling density and sensor
characteristics.



encoding viewpoint connectivity in terms of inter-image
registration potential. Consequently, we can express the
image-based registration requirement by stating that

The viewpoint registration graph must be at least simply

connected.

Connectivity information embedded in the registration-
adjacency matrix can be used to determine the connec-

tivity of the registration graph. The (k; j)th entry of the
matrix product Ar de�nes the number (� 0) of di�erent
paths (including backtracking) between nodes k and j of
length r in the graph. The maximum length of a non-
repeating path in the registration graph is one less than
the size v of the viewpoint set V . Consequently, the cu-

mulative registration-adjacency matrix C = [ckj ] shown in
equation 7 de�nes the number of paths of all lengths from
minimum to maximum connectivity between viewpoints.
In principal, C can be computed directly from � as a pre-
processing step prior to tackling the IP problem.

C = A
1 +A

2 + � � �+A
v�1 (7)

For the registration graph to be connected, rows and
columns of C corresponding to viewpoints in the next-best-
view set N must be non-zero. Therefore, a necessary and
su�cient condition for successful image-based view regis-
tration is

ckj � 1 ; k; j 2 N ; k 6= j (8)

As C is symmetric with all elements � 0, and diagonal
elements are irrelevant, the equation can be simpli�ed as
follows, where n = jN j and, generally, n� v.

ckj � 1 ; k = 1; � � � ; (n � 1) ; j = k + 1; � � � ; n ; k; j 2 N

(9)

Furthermore, C de�nes the registration connectivity of
all viewpoints in V whereas we wish to apply the global
registration constraint only on N � V . Then, if xl = 0,
ignore ckj for all k; j = l. We can achieve the desired e�ect
over the full problem domain by changing the registration
constraint to

ckj � xkxj ; k = 1; � � � ; (v � 1) ; j = k + 1; � � � ; v ; k; j 2 V

(10)

2.4 Registration Constraint Example

A simple example illustrates the above concept. Con-
sider the set of four candidate viewpoints shown with their
global registration graph in Figure 1. The base registration
adjacency matrix A can be written3 as

3As we are interested only in simple connectivity, we take
the liberty of using boolean algebra in matrix manipulation and
simpli�cation.

1 2

3

4

Sample
NBV set

Figure 1: Example Registration Graph and NBV Cut

2
64

0 0 x1x3 0
0 0 0 x2x4

x1x3 0 0 x3x4
0 x2x4 x3x4 0

3
75

from which we obtain the cumulative registration adja-
cency matrix C = A1 +A2 +A3

2
64

x1x3 x1x2x3x4 x1x3 x1x3x4
x1x2x3x4 x2x4 x2x3x4 x2x4
x1x3 x2x3x4 x3(x1 + x4) x3x4
x1x3x4 x2x4 x3x4 x4(x2 + x3)

3
75

or simply as the following where \-" signi�es \don't
care".

2
64
� x1x2x3x4 x1x3 x1x3x4
� � x2x3x4 x2x4
� � � x3x4
� � � �

3
75

Using equation 10 and removing redundancies, the fore-
going simpli�es to the following global registration con-
straints which can be validated by inspection of Gr. Test-
ing the registration graph in Figure 1 against the con-
straints at equation set 11, we observe that the example
candidate NBV set fails the registration test.

x1x2x3x4 � x1x2

x1x3x4 � x1x4

x2x3x4 � x2x3 (11)

2.5 Observations on the Registration

Constraint

A number of observations on the registration constraint
are appropriate. Firstly, we note the constraints are non-
linear, making the IP non-linear. However, we can solve
for the set covering constraints alone and then enforce reg-
istration compliance as part of the �tness function. If re-
quired, a minimal number of views can be added to satisfy
the registration constraint and render the solution feasible
overall.

A second concern is the computational cost of formulat-
ing the registration constraints as calculation of C involves



symbolic matrix operations on large matrices. The com-
putational complexity of C is approximately O(v3) opera-
tions. However, the matrix need be computed only once.
Additionally, we again have the option to delay computa-
tion of C to only candidate solutions, in which case the
dimensionality of the required computations is greatly re-
duced and can be numerical rather than symbolic. In the
latter case, the computational complexity is approximately
O(cn3) operations, where c is the number of candidate so-
lutions and n� v.

3 Summary and Conclusion

Summarizing, given one or more measurability matrices
computed from a rough exploratory model, we can express
the view planning problem as the following integer pro-
gramming problem, where the objective function and con-
straints are as previously de�ned.

Minimize Z =

vX
j=1

cjxj (12)

subject to

vX
j=1

mijxj � 1 ; i = 1; : : : ; s ; i 2 S (13)

ckj � xkxj ; k = 1; � � � ; (v � 1) ; j = k + 1; � � � ; v ; k; j 2 V

(14)

xj 2 f0; 1g; j = 1; : : : ; v ; j 2 V (15)

Expressing the view planning task as an IP provides a
compact mathematical formulation of the problem, open-
ing up the rich research base in discrete combinatorial opti-
mization. However, IP solution time can be highly unpre-
dictable, depending on the problem formulation, data char-
acteristics and problem size. Optimal solution methods
such as branch-and-bound and cutting-plane techniques
typically use an intelligent tree search of feasible solutions
and are found in a variety of commercial LP/IP solvers.
While guaranteeing optimal results, such exact methods
can be computationally prohibitive even for modestly sized
IPs. For most medium-to-large IPs, this leaves a choice of
approximate and heuristic algorithms [9], including greedy
search (GS) [5], simulated annealing (SN) [13], genetic al-
gorithms (GA) [2], Lagrangian relaxation [1] and neural
network [7] methods. Most published performance results
[7], [1] deal with random, low density data sets. The VPP
falls into the category of a medium-to-large IP with non-
random data and moderate density [12].
Finally, we believe an even more important area awaits

better theoretical underpinnings - notably, issues relat-
ing to the problem formulation, rather than its solution.
Speci�cally, the �eld requires a sound theoretical basis for
determining a suitable set of viewpoint variables and sur-
face constraints - that is, optimal sampling of viewpoint
space and the exploratory object model.

In conclusion, we have expressed a theoretical frame-
work for the view planning problem as an integer program-
ming problem including a registration constraint. The for-
mulation is amenable to a variety of exact or approximate
solution methods, depending on application requirements.
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