# NRC Publications Archive <br> Archives des publications du CNRC 

## Pressure loss associated with air flow in electrical conduits Stephenson, D. G.

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

## Publisher's version / Version de l'éditeur:

https://doi.org/10.4224/20338097
Internal Report (National Research Council of Canada. Division of Building Research), 1956-08-01

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=9116a8d0-99ca-4d59-81fc-9f6df9ca3750 https://publications-cnrc.canada.ca/fra/voir/objet/?id=9116a8d0-99ca-4d59-81fc-9f6df9ca3750

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.
Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

# NaTIONAL RESEARCH COUTICIL <br> CAMADA <br> DIVISION OF BUILDING RE:SYARCH 

# PRISSURE LOSS ASSOGIATUD WTTH AIR FIOU IN BLGCTRICAL CONOUTTS by <br> D. G. Stephenson 

ANALYEDO

Report No. 99
of the
Division of Building Research

## This report has been prepared for information and record purposes and is not to be referenced in any publication

Ottawa
August 1956

## PREFACE

The Division of Building Research welcomed the opportunity to assist a Subcommittee of the Canadian Standards Association by undertaking to determine the friction coefficients for air flow in filled electrical conduits. This work, although immediately related to a very restricted interest in the broad field of building design and construction, has nevertheless paralleled very closely the interests of the Division in air flow in ducts for heating and air-conditioning systems. The flow measurement apparatus developed and the experience which has been obtained will be useful in future work of this kind. The effort made to obtain accurate data, although perhaps not justified by the immediate needs for electrical conduit application, has however resulted in good basic friction data for the particular cases tested which when published may find broader application.
N. B. Hutcheon, Assistant Director.

# PRESSURE LOSS ASSOCIATED WITH AIR FLOW <br> IN ELECTRICAL CONDUITS 

by D. G. Stephenson
Recently the problem has arisen of how to design an electrical conduit system so that its internal static pressure will always exceed 1 ts ambient static pressure by a specified amount. This was needed to ensure that there would be no inflow where the conduit passed through a region of corrosive or explosive gases. Since some leakage is practically unavoidable with standard fittings there will have to be some flow through the conduit system; and associated with this flow there will be a pressure drop. It appears that there are no data in the engineering literature on the pressure drop for flow in partially filled conduits, so it was to provide these needed data that the present investigation was undertaken.

The pressure drop vs. mass flow has been obtained for each of the twenty seven combinations of the following variables:
(I) Conduit size: $3 / 4$ inch, 1 inch, $11 / 4$ inch
(2) Wire size: 10, 12, 14-gauge, with plastic insulation,
(3) Arrangement: One, two, and three conductors in each conduit - nontwisted.

In addition to the above listed tests the effects of the following variables were studied for some of the above combinations:
(1) Rubber insulation rather than plastic,
(2) Twisting the conductors, and
(3) A standard coupling and a $90^{\circ}$ elbow in the conduit.

It has been possible to correlate the data from those tests so that they indicate a relationship between the geometry of the conduit and wire; the physical properties and mass flow rate of the gas flowing through the conduits; and the pressure loss associated with this flow.

DIESCRIPTION OF APPARATUS
For all of the tests which required a flow of air through the conduit the apparatus was arranged as shown in Fig. 1. The air was obtained from the laboratory compressed air supply main and was reduced from 100 psi in the main to
between 2 and 20 psi at the inlet side of the throttling valves. Immediately ahead of the pressure reducing valve the air passed through a Logan aridifier. This eliminated any droplets of water or oil as well as particles of pipe scale or rust which might be in the compressed air. No provisions were made for measuring or controlling the humidity of the air but when calculating the density of the air it was assumed to be saturated at 100 psig and $72^{\circ} \mathrm{F}$ (this corresponds to a dew point of $20^{\circ} \mathrm{F}$ at a pressure of 1 atmosphere). The quantity of air flowing through the system was controlled by the throttling valves on the low pressure side of tho pressure reducing valve.

From the flow control panel the air passed through a 20-foot length of 1 l/4-inch galvanized iron pipe into a 1 1/4-inch header pipe and thence through any one of the three 40-foot runs of conduit to the orifice tank and through the flow metering orifice into the atmosphere. The orifice tank and orifice plates are essentially the same as those which were calibrated by Polson* and the orifice coefficients determined by Polson have been used for these tests.

Data were required for the pressure drop due to friction in a continuous run of conduit as well as in a conduit composed of lo-foot lengths of conduit jointed by a standard conduit coupling. Since conduit is usually supplied in lo-foot lengths, special couplings were needed to join the sections without causing any roughness or irregularity at the junction.

Because the conduit was supplied in lo-foot lengths it was conveniont to measure the pressure drop along each lo-foot section of the continuous run. For this purpose six static pressure holes $1 / 16$-inch in diameter were drilled at $60^{\circ}$ intervals around the conduit approximately 4 inches from one end of each l0-foot section. These holes were covered by brass piezometer rings which wero soldered to the outside of the conduit to make an airtight seal. Fig. 2 shows the details of both the coupling and the piezometer rings.

The inside of the conduit was reamed for approximately 6 inches at the end where the piezometer ring was fitted and 2 inches at the other end. This roaming ensured that the internal area of the flow passage was the same at each pressure tapping and also thet the inside diameter of the two conduits which were brought together were the same. As shown in Fig. 1 all the differential pressure measurements were made with a Betz 400 mm water manometor and the gauge pressures through the system were measured by Merion 100-inch vertical manometer using CCl4 as the manometer fluid. To enable the manometers to be connected to any of the twelve piezometer rings as well as the static pressure taps on the orifice tank a simple pressure
Frolson, J.A. and J.G. Iowther. The flow of air through circular orifices in thin plates. Univ. of Ill., Enginoering Experiment Station, Bull. No. 240, 1932.
switching panel vas used. The schematic arrangement of this panel is shown in Fig. 3. With this arrangement the Betz manometer could be easily connected to read the differential pressure between any two piezometer rings or the pressure drop across the orifice plate.

Before the apparatus was assembled it was necessary to determine the internal cross-sectional area of each length of conduit. These measurements required an auxiliary apparatus which is shown schematically in Fig. 4. A lo-foot length of conduit was suspended vertically with its lower end about 2 inches below the surface of the water in a 4-liter beaker. This beaker was set on the pan of a Toledo $5-\mathrm{kg}$ balance. The conduit was supported by a length of braided monel wire which passed over the two pulleys on the upper support bracket and then was attached to the upper end of the adjustment screw. By turning the large knurled nut on this screw it was possible to vary the vertical position of the conduit so that its lower end was always located the same distance below the surface of the water in the beaker. This adjustment was facilitated by attaching a hook gauge to the lower end of the conduit. The piezometer ring pressure fitting at the top end of the conduit was connected to the top of the 100 -inch vertical manometer by plastic tubing. From a tee fitting at the top of the manometer both the manometer and the conduit were connected through a $1 / 8$-inch needle valve to a low pressure tank. With this arrangement the pressure in the system could be progressively reduced causing water from the beaker to rise up the conduit as the carbon tetrachloride rose in the manometer tube.

## DESCRIPTION OF TESTS AND REDUCTION OF DATA

## 1. Determination of the Friction Factor for the Empty Conduit

The friction factor for flow in a circular pipe is defined by:

$$
f=\frac{\Delta P}{L} \cdot \bar{d} \cdot \frac{2}{\rho \cdot V^{2}},
$$

where $\Delta P=$ pressure drop due to friction in a piece of conduit of length $L$,
$\overline{\mathrm{d}}=$ mean diameter of the flow passage,
$\rho=$ mean density of the fluid,
$V=$ mean velocity of the fluid.
Thus to determine the friction factor it is necessary to know the mean velocity as well as the pressure drop per unit length of pipe and the conduit diameter.

The mean velocity was obtained from the flow rate which was measured with a thin plate orifice. The mass flow through the orifice is given by:

$$
\begin{aligned}
M^{\prime} & =C^{\prime} \cdot A^{\prime} \cdot \rho^{\prime} \cdot V^{\prime} . \\
C^{\prime} & =\text { orifice discharge coefficient, } \\
A^{\prime}= & \text { orifice area, } \\
\rho^{\prime}= & \text { mass density of the fluid at the } \\
& V^{\prime}= \\
& \text { orifice }
\end{aligned}
$$

The 1 indicates conditions at the orifice.
The velocity $V^{\prime}$ is related to the differential pressure across the orifice (il) by:

$$
\left(V^{\prime}\right)^{2}=\frac{2 i^{\prime}}{\rho^{\prime}}
$$

Therefore, $M^{\prime}=C^{\prime} \cdot A^{\prime} \cdot\left(2 i^{\prime} \cdot \rho^{\prime}\right)^{\frac{1}{2}}$
The mass flow can also be expressed in terms of the velocity in the conduit:

$$
M^{\prime}=M=A \cdot \rho \cdot V
$$

Therefore, $\frac{\rho \cdot V^{2}}{2}=\frac{\left(M^{I}\right)^{2}}{2 \rho A^{2}}$.
Substituting for $\mathrm{M}^{\prime}$ gives:

$$
\frac{\rho V^{2}}{2}=\left(C^{1}\right)^{2} \cdot\left(\frac{A^{1}}{A}\right)^{2} \cdot \frac{P^{1}}{\rho} \cdot 1^{1}
$$

But $\frac{\rho^{\prime}}{\rho}=\frac{P^{\prime}}{P}$ where the temperature is constant,

$$
\text { and } \frac{A^{\prime}}{A}=\frac{D^{2}}{(\bar{d})^{2}}
$$

Where $D$ is the diameter of the orifice,
$P$ is the absolute pressure in the conduit, and $P^{\prime}$ is the absolute pressure at the orifice.

The expression for the friction factor becomes:

$$
f=\frac{\Delta P}{L} \cdot \frac{(\bar{d})^{5}}{D^{4}} \cdot \frac{P}{P^{\prime}} \cdot \frac{I}{\left(C^{\prime}\right)^{2} \cdot i^{\prime}}
$$

The units used in this expression need not all be of the same system but when mixed units are used it is necessary to check that $f$ is dimensionless.

To obtain the pressure drop per unit length the drop in static pressure was measured between successive tappings located at lo-foot intervals along the conduit.

The procedure for these tests was as follows:
(1) The Betz manometer was connected to measure the differential pressure across the orifice plate and the flow was adjusted until a desired flow was ostablished;
(2) The Betz manometer was switched to measure the pressure drop along one of the $10-f o o t$ sections of the conduit. The gauge pressure at the upstream end of the section under test was measured with the vertical l00-inch manometer;
(3) The Betz manometer was switched back to check the flow rate and if this was still at the desired value the pressure drop data for the pipe were recorded and the manometer switched to measure the loss along the next section of pipe.

This procedure was continued until each of the 10foot test sections had been checked twice at the same rate, then the flow was increased and the same series of operations repeated. Four different flow rates were used for each orifice plate. These corresponded to differential pressures of 1 cm , 4 cm .16 cm , and 39 cm of water. The 4 cm and 16 cm values were chosen since for these values the flow was approximately double its preceding value, hence when the data were plotted on a logarithmic scale the points were evenly spaced.

On the other hand, 1 cm and 39 cm values were used because they were close to the limits obtainable with the Betz manometer. The orifice plates used had nominal diameters of $1 / 2$ inch, $3 / 4$ inch and $11 / 4$ inch which gave flow rates of approximately 2 to $13 \mathrm{cfm} ; 4$ to 27 cfm and 12 to 90 cfm respectively when the differential pressures ranged between 1 and 39 cm of water.

The overlapping of the ranges of the orifice plates provided a check on the accuracy of the orifice coefficients. This point is discussed in the section dealing with the analysis of the test results.

The data obtained from this series of tests along with the calculated values of the friction factor and the Reynolds number are included in Table A-3 of Appendix A.

The methods of calculation are presented in Appendix $B$ in the form of a sample calculation.

The friction factor equation shows that:

$$
\text { f } \infty(\bar{d})^{5}
$$

Thus an error in the value of $\overline{\mathrm{d}}$ causes fives times as great a percentage error in $f$. For this reason the mean diameters of the conduits were carefully measured.

## 2. Determination of the Root Mean Square value of the Conduit

 Diameter.In principle the diameter of the conduit was obtained by measuring the internal volume of a length of the conduit. The volume $\div$ length gave an average value of the cross-sectional area which equals $\pi / h^{( }(\bar{d})^{2}$, where $d$ is the rom.s. value of the diameter.

With the apparatus arranged as shown in Fig. 4 the pressure inside the conduit could be reduced by opening the valve V1. This caused the water to rise in the conduit and the carbon tetrachloride in the 100-inch manometer. In each case the rise in the fluid level above the level in the tank was related to the pressure difference between the inside of the conduit and the atmosphere by the expression:

$$
\text { 12. } \Delta \mathrm{p}=(\rho \cdot \mathrm{g} \cdot \mathrm{H})_{\mathrm{m}}=(\rho \cdot \mathrm{g} \cdot \mathrm{H})_{\mathrm{c}} .
$$

where, $\quad \Delta p$ is the static pressure difference between the atmosphere and the inside of the conduit ( $\mathrm{lb} / \mathrm{ft}^{2}$ )

$g$ is the acceleration due to gravity (ft/sec ${ }^{2}$ )
$H$ is the height of the fluid inside the conduit or manometer tube above the level of the tank (in.)

The subscripts $m$ and $c$ refer to the manometer and conduit respectively.

The tests were carried out in a room where the temperature was very nearly constant but any small changes in $\rho_{m}$ or $\rho_{c}$ were taken into account by a calibration which was performed immediately before each test on a length of conduit. For the calibration the plastic tubing was removed from the pressure connection on the upper end of the conduit and attached instead to the low pressure side of a Betz micromanometer. With the low pressure tank open to the atmosphere both the micromanometer and the l00-inch vertical manometer were adjusted to zero. Then the pressure in the system was reduced sufficiently to make $H_{m}$ equal to 9 inches. The corresponding indication of the Betz manometer $\left(H_{w}\right)$ was noted and also the temperature of the distilled water in the Betz manometer. Knowing this temperature the density of the distilled water ( $\rho_{w}$ ) was obtained directly from a set of physical tables. Thus:

$$
\rho_{\mathrm{r}}=\frac{\rho_{\mathrm{w}} \cdot \mathrm{H}_{\mathrm{w}} .}{g}
$$

To measure the internal cross-sectional area of a length of conduit the conduit was suspended as shown in Fig. 4, the mass of the beaker of water was measured first when $H_{r n}=O\left(M_{O}\right)$ and again when $H_{m}=70$ inches (M70). In each case the vertical position of the conduit had to bo adjusted so that the hook gauge just touched the surface of the water in the beaker when the weight of the beakor was measured.

Then $M_{0}-M_{70}=\rho_{c} \cdot H_{c} \cdot \bar{A}$,
where $\bar{A}=\frac{\pi}{4}(\bar{d})^{2}$,
but $\quad H_{c} \cdot \rho_{c}=70 \mathrm{fm}_{9}^{70} \cdot \rho_{\mathrm{w}} \mathrm{H}_{\mathrm{W}}$,
Therefore
$(\bar{d})^{2}=\frac{4}{\pi} \cdot \frac{9}{70} \cdot \frac{M_{0}-M_{70}}{\rho_{W} \cdot \mathrm{H}_{W}}$
Since the balance used to measure the mass of the beaker was calibrated in gm, and tho manometor indicatgd $\mathrm{H}_{\mathrm{W}}$ in cm it was convenient to calculate $\bar{d}$ in cm and $\rho_{\mathrm{w}}$ in $\mathrm{gm} / \mathrm{cm}^{3}$. Then to obtain $\overline{\mathrm{d}}$ in feet it was only nccessary to multiply by the conversion factor $\frac{1}{2.54 \times 12}$. A sample calculation is given in Appendix B.

The specific gravity of the manometer fluid ( $\mathrm{CCl}_{4}$ ) was approximately l.6; thus the value of $\bar{d}$ calculated using $\mathrm{M}_{0}-\mathrm{M}_{7} 0$ was an average for 112 inches of the 120-inch length of conduit. The 8 inches not included werc the sections which had been reamed to a known diameter. The value of $M$ was recorded for each value of $H_{m}$ which was an integral multiple of five, i.e., for $H_{r n}=5,10,15,--70$. The data were obtained only while the water level was rising in a dry piece of conduit because once the water had wetted the inside of the conduit, a thin film
of water remained on the surface after the water level had fallen. These data showed the variations in diameter along each lo-foot piece of conduit. However, the variation was always so small that the difference between the rms (1) and rmf(1) values of $\bar{d}$ was negligible. Because of this, rms values were used to calculate the friction factor and only one complate set of data for a typical conduit is included in Table $A-l(i i)$ of Appendix A. For all of the other lengths of conduit only the values of $M_{0}$ and $M 0$ are included, along with $H_{W}, \rho_{W}$ and the calculated r.m.s. value of $\bar{d}$.
3. The Calculation of the Reynolds Number for the Empty Conduit

The Reynolds number for flow in a circular pipe is defined as:

$$
\begin{aligned}
& \operatorname{Re}=\frac{V \cdot \rho \cdot \bar{d}}{\mu}, \\
& \text { but } \quad \rho \cdot V=\frac{M}{A}=C^{\prime} \cdot \frac{A^{\prime}}{A} \cdot\left(2 i^{\prime} \rho^{\prime}\right)^{1 / 2} \\
& \text { and } \quad \rho^{\prime}=\frac{P^{\prime}}{1715 \cdot 5 T} \cdot \\
& \text { Therefore } \quad \operatorname{Re}=\frac{C^{\prime} D^{2}}{\bar{d} \mu} \cdot\left(\frac{2 i^{\prime} P^{\prime}}{1715 \cdot 5 T}\right)^{1 / 2}
\end{aligned}
$$

For this quantity to be dimensionless a consistent system of units must be used. In this case the pressure is expressed in $1 b / \mathrm{ft}^{2}$; the temperature in ${ }^{\circ} \mathrm{R}$; the diameters in $f t . ;$ and the visocsity in slug $/ \mathrm{ft} / \mathrm{sec}$. However, since the pressures were measured by a manometer and a barometer it is more convenient to take i* in mm water and $\mathrm{P}_{*}$ in mm mercury and include the appropriate conversion factor in the expression for Re. The subscript $*$ is used to indicate that standard English units are not being used.

The Reynolds number is then given by:

$$
\begin{aligned}
\operatorname{Re} & =\frac{C^{\prime} D^{2}}{\bar{d} \mu}\left(\frac{2 \times 0.20436}{1715.5 T} \quad i * \times 2.7846 P_{4}\right)^{1 / 2} \\
& =0.025757 \frac{C^{1} D^{2}}{\bar{d} \mu}\left(\frac{i_{*} P_{*}}{T}\right)^{1 / 2}
\end{aligned}
$$

1 The rms value of $\bar{d}=\sqrt[2]{\left(\overline{d^{2}}\right)}$
and mf value of $\bar{d}=\sqrt[5]{\left(\overline{d^{5}}\right)}$
When calculating an average value of $f$ the mf value of $\bar{d}$ should be used because f $\infty$ d 5 .
where it and $P *$ are in mm of water at $72^{\circ} \mathrm{F}$ and mm mercury at $32^{\circ}$ respectively and the other quantities are in the usual English anits.

A sample calculation is included in Appendix B.
4. Determination of the Equivalent Diameter for a Straight Conduit Partially Filled with Wire

For flow in an empty circular pipe in series with an orifice plate the relationship between the friction factor and the measured quantities is:

$$
f=\frac{\Delta P}{i^{\prime}} \cdot \frac{(\bar{d})^{5}}{L D^{L}} \cdot \frac{P}{P^{\prime}} \cdot \frac{1}{\left(C^{\prime}\right)^{2}}
$$

By simply transposing, this becomes:

$$
(\bar{d})^{5}=f \cdot\left(C^{\prime}\right)^{2} \cdot \frac{i^{\prime}}{\Delta P} \cdot L D^{4} \cdot \frac{P^{\prime}}{P} \cdot
$$

When the conduit is partially filled by wire this equation $c$ an be used to calculate the diameter of an empty conduit which would have the same pressure drop vs. mass flow characteristic. This diameter is called the equivalent diameter $d_{\theta}$.

After the friction factors had been found for the empty conduits the various wire fills were pulled into the conduit. The wires were pulled in one at a time so that they could not become twisted. With each arrangement the pressure drop vs. mass flow relationship was determined in the same way as for the empty pipes.

The data obtained from these tests are presented in Tables $A-4$ (i), $A-4$ (ii), $A-4$ (iii), and $A-4(i v)$ of Appendix $A$. In Table A-5 data are included for a further series of tests in which the wire fills were twisted at the rate of three twists for each lo-foot length of conduit.

For the calculation of $d_{e}$ it is assumed that $f$ varies with Re in the same way as it did for the same piece of conduit without wire. Hence to calculate de it is necessary to assume a value of $f$, then use this to fincl a value of de and with this de calculate Re. From this value of $R e$ and the curve relating $f$ to Re for the empty pipe a second value of $f$ is obtained and $d_{e}$ recalculated. Since $f$ changes only slowly with Re it is usually not necessary to make more than two calculations to obtain the accurate value of $d_{\theta}$. A sample of this calculation is included in Appendix B.

To avoid introducing an error into $d_{e}$ due to an inaccurate value of the orifice discharge coefficient, the same values of $C$ ' were used when calculating the equivalent diameter as were used initially to determine the friction factor. In addition the value of $f$ used for the accurate calculation of $d_{e}$ was taken from the $f$ vs. Re curve which was obtained from measurements made with the same orifice plate.
5. Determination of the Equivalent Length of a Threaded Coupling and a Long Radius $90^{\circ}$ Elbow

When the tests on the continuous 40-foot runs of conduit were completed the conduits were cut at approximately 22 feet from the inlet end. A tapered pipe thread was cut on each of the pieces and the conduit re-assembled using a standard threaded coupling to join the two parts of each conduit.

Data were obtained on the pressure loss through the conduit for the same mass flow rates as were used for the original friction factor determinations. By comparing these data with those from the continuous runs of conduit it was possible to determine the equivalent length of the coupling.

The increase in pressure drop due to the presence of the coupling $c$ an be equated to the pressure drop in a length of pipe of the same diameter. This length of pipe is here called the equivalent length of the coupling. Then the pressure drop for 10 feet of conduit $\Delta P_{i}$; and the pressure drop for 10 feet of conduit plus a coupling $\Delta P_{c}$ can be related to the equivalent length of the fitting by:

$$
\begin{gathered}
\left(\frac{\Delta P_{c}}{\Delta P_{y}}\right)_{i i i} \equiv \frac{10+I_{\theta}}{10}, \\
\text { or } \quad l_{e}=10\left\{\left(\frac{\Delta P_{c}}{\Delta F_{i}}\right)_{i i i}-1\right\}
\end{gathered}
$$

The subscript iii indicates that the pressure drops were those measured for the third lo-foot length of conduit, i.e. between 20 and 30 feet from the conduit entry.

Since it was not possible to ensure that the conditions were exactly the same for the tests with the coupling as for the previous tests with continuous conduit, the ratio ( $\Delta P_{c} / \Delta P_{s}$ ) iii was multiplied by a factor $\left(\Delta P_{*} / \Delta P_{c}\right)_{i j}$ which accounts for small changes in flow conditions between tests. Here the subscript ii indicates that the data are for the conduit between 10 and

20 feet from the entry. Thus the expression for $I_{e}$ becomes:

$$
I_{e}=10\left\{\left(\frac{\Delta P_{c}}{\Delta P_{*}}\right)_{i i i} \cdot\left(\frac{\Delta P_{i s}}{\Delta P_{c}}\right)_{i i}-1\right\} \quad f t
$$

The ratio $l_{e}$ / $\bar{d}$ for different pipe sizes and Reynolds numbers is given in Table $A-6(i)$ of Appendix $A$ along with the data on which the calculations are based.

Similarly a long radius $90^{\circ}$ elbow was installed at the cut in each conduit. The elbow was joined to each piece of conduit by a standard threaded coupling and the equivalent length of the elbow plus couplings determined as described above for the coupling alone. These data and the calculated values of $l_{e} / \bar{d}$ are also given in Table A-6(i) of Appendix A. A sample calculation for $l_{e} / d$ is given in Appendix $B$.

The equivalent lengths of the $90^{\circ}$ elbows were also letermined when the conduit and elbows contained one strand of lo-gauge rubber-insulated wire. In this case the data for the tests with the elbow were compared with the data for the same fill with the continuous conduit and the equivalent length calculated as before. The data are given in Table A-6(ii) of Appendix $A$ along with the ratio $l_{e} / d_{e}$.

## ANALYSIS OF TEST DATA

## 1. Friction Factor Tests

In the tests to determine the relationship between the friction factor and the Reynolds numbor for the empty conduit it was possible to cover the same range of pipe Reynolds number with two or in some cases three different diameter orifice plates. When log $f$ was plotted against log Re it was found that a smooth curve could be drawn through the data obtained with any one orifice plate; but there was a different curve for each orifice plate. This indicated that the values of the orifice discharge coefficient that were used were not accurate.

From the curves of $\log f$ vs. log Re it is possible to calculate the difference in the flow which would be indicated by the various orifice plates.

The pressure loss due to friction is:

$$
\begin{aligned}
\Delta P & =f \cdot \frac{L}{\bar{d}} \cdot \frac{\rho V^{2}}{2}, \\
\text { and } \operatorname{Re} & =\frac{V \cdot \rho \cdot \bar{d}}{\mu} \\
\text { Therefore } \quad \Delta P & = \pm \cdot \frac{L \mu^{2}}{2 \rho \bar{d}^{3}} \cdot(R e)^{2} .
\end{aligned}
$$

Thus for one particular piece of pipe with standard temperature and pressure conditions, a straight line of slope -2 on the $\log \mathrm{f}$ vs. $\log \mathrm{Re}$ graph corresponds to a constant value of $\Delta \mathrm{P}$ or flow rate, since $\Delta \mathrm{P}$ is dependent on flow rate. The values of Re for the points where this line intersects the various friction factor - Reynolds number curves correspond to the flow rates which the orifice plates would indicate if the same mass flow were passed through each.

Using this method and the curves for the third tenfoot section of the l-inch conduit it was found that:

$$
Q_{3 / 4}=0.991 Q_{1} / 2
$$

and $Q_{1} 1 / 4=0.968 Q_{1} / 2$
where $Q_{1} / 2, Q_{3} / 4$, and $Q_{1} 1 / 4$ are the rates of flow which would be indicated respectively by the $1 / 2$-inch, $3 / 4$-inch, and $11 / 4$ inch orifice plates if each had the same flow rate passing through it. This indicates that some values of the orifice discharge coefficients may be in error by 3 per cent.

For pipes with an appreciable roughness $\left|\frac{d f}{d R e}\right|$ is always less than for a smooth pipe at the same Reynolds number. When the calculated friction factors are plotted against Reynolds number as in Fig. 5 it can be seen that for each orifice plate the curve of $f$ vs. Re is practically parallel to the accepted smooth pipe curve.* This indicates that the roughness is negligible and that the experimental results should agree with the smooth pipe curve if the data are accurate. By this reason-
 taken as correct and those for the other orifices as in error by the amounts calculated abovo.

[^0]In Fig. 5(i) the relationship

$$
f=\frac{0.34^{0}}{(\operatorname{Re})^{0.26}}
$$

is shown to be an accurate representation of the data for Reynolds numbers between 5,000 and 50,000.

## 2. Correlation of Equivalent Diameter with Mass Flow and Conduit Geometry

The equivalent diameter was calculated from the formula:

$$
\begin{aligned}
d_{\Theta} & =f \cdot \frac{L}{\Delta P} \cdot \frac{\rho V^{2}}{2} \\
\text { where } f & =\varphi \frac{\left(V \cdot \rho \cdot d_{e}\right)}{(\mu)}
\end{aligned}
$$

The function $\varphi$ was determined by experiment on the conduit without wire and it was assumed that the same relation held when there was wire in the conduit.

For the purposes of correlation the equivalent diameter de was assumed to be a function of the conduit diameter $\bar{d}$, the wire diameter $d_{W}$, the number of strands of wire $N$ and the Reynolds number for the flow $\frac{\left(\nabla \cdot \rho_{\cdot} d_{e}\right)}{\mu}$. These variables can be grouped to form one dependent and three independent dimensionless groups. Then $d_{e} / \bar{d}=\theta\left(N, R e, d_{w} / \bar{d}\right)$.

The data contained in Table A-4 were first plotted as in Fig. 6 to show the variation in $d_{e} / \bar{d}$ with Re. Values of $d_{e} / \bar{d}$ were obtained (from the curves) for $R e=10,000$ and Fig. 7 shows them plotted against $d_{w / \bar{d}}$. All the data for each value of $N$ fell on a straight line. Each of these lines passed through the point $\left(d_{e} / \bar{d}=1.0 ; d_{w} / \bar{d}=0\right)$. The fact that all of the data obtained for the various sizes of wire and conduit, and with different insulations, could be correlated on the basis of the three independent variables indicated that only these variables had a significant effect on the dependent variable.

## 3. The Effect of Twisting the Wire Fill

For some tests the wire fill was given three twists for each lo-foot section of conduit. The data in Table $\mathrm{A}-5$ show that for this condition the pressure losses were not significantly different from the comparable nontwisted cases.
4. Equivalent Length of $90^{\circ}$ Elbow and Threaded Couplings

The equivalent lengths for elbows and couplings calculated from the data in Table A-6(i) are plotted against Reynolds number in Fig. 8. Since the fittings for different pipe sizes are not geometrically similar it is not surprising that there is a separate curve for each size of pipe. However, for a Reynolds number of 10,000, all of the elbows are equivalent to a conduit of approximately 23 diameters in length. For the usual design calculations this equivalont length can be used for all conduit sizes at all Reynolds numbers between 5,000 and 50,000 but if maximum accuracy is desired the equivalent length for elbows should be obtained from Fig. 8.

The results for the threaded couplings are much the same as for the eloows. An equivalent length of three diameters is the average for the three sizes tested at a Reynolds number of 10,000 . The variation of the equivalent length with Reynolds number and conduit size is small and need only be considered in calculations of the highest accuracy. Here also the accuratc value can be obtained from Fig. 8 when it is needed.

Table A-6(ii) contains the data for the tests on elbows and fittings when they were partially filled with wire. In this case the data have been used to calculate the equivalent length of a conduit whose diameter equals the equivalent diameter of the conduit containing wire. The results in Table A-6(ii) show that $l_{e} / d_{e}$ for the conduit with wire is approximately 1.4 times $l_{e} / \bar{d}$ for the empty conduit.

## APPLICATION OF RTSULTS

The results of this series of tests can be incorporated into a set of design charts which facilitate the calculation of friction loss for air flow in pipes.

For flow in pipes at Reynolds numbers between 5,000 and 50,000 the friction factor has been found to be:

$$
f=\frac{0.340}{(\operatorname{Re})^{0.26}}
$$

Since for these Reynolds numbers the flow is turbulent, the pressure drop due to friction is given by:

$$
\begin{aligned}
\Delta P & =f \cdot \frac{L}{d_{e}} \cdot \rho \frac{v^{2}}{2} \\
& =\frac{0.340}{(R e)^{0.26}} \cdot \frac{L}{d_{\theta}} \cdot \rho \frac{v^{2}}{2} .
\end{aligned}
$$

Both the velocity and the Reynolds number can be related to the mass flow rate $M$.

$$
V=\frac{4}{\pi} \quad \frac{M}{\rho d_{e}^{2}}
$$

and

$$
\operatorname{Re}=\frac{4}{\pi} \quad \frac{M}{\mu d_{\theta}}
$$

Therefore, $\Delta P=0.340\left\{\frac{\left.\pi \mu d_{e}\right\}^{0.26}}{4 M)} \cdot \frac{L}{d_{e}} \cdot \frac{\rho}{2}\left\{\frac{4}{\pi} \cdot \frac{M}{\rho d_{e}^{2}}\right\}^{2} \cdot\right.$
but $\quad \rho=\frac{P}{1715 T}$
Therefore, $\Delta P=K \cdot M^{1} \cdot 74$

$$
\text { where } K=444 \frac{T}{P}(\mu)^{0.26} \cdot \frac{L}{d_{e}^{4.74}} .
$$

Thus the relationship between $\Delta P$ and $M$ for any particular run of pipe can bc represented by a straight line of slope 1.74 on logarithmic graph paper. The intercept of the line with the $\triangle P$ axis depends on the value of $K$. Fig. 9 is a chart which gives $\Delta P$ directly when $K$ and $M$ are known. The nomograph, Fig. 10, does the same for a wider range of $\triangle P$ but the scale can only be read to approximately $\pm 5$ per cent.

Fir added convenience when calculating K, Fig. Il gives ( $\mu$ ) 0.26 for dry air as a function of temperature and Fig. 12 gives $d_{6} \cdot 74$ as a function of $d_{e}$ for the range of diameters commonly used.

The convenience of the charts $c$ an be demonstrated most easily by solving an example problem first by direct calculation and then by the use of the charts.

## PROBLEM :

Find the pressure drop for air flowing through 100 feet of l-inch conduit containing 2 strands of lo-gauge plastic insulated wire at a flow rate of $1 \mathrm{lb} / \mathrm{min}$. The gauge pressure at the inlet to the conduit is 6 psi and the temperature is $72^{\circ} \mathrm{F}$.

SOLUTION:
(I) Equivalent Diameter
wire is
The diameter of plastic insulated lo-gauge $d_{w}=0.165$ in.

The average internal diameter for l-inch
conduit is

$$
\begin{aligned}
\overline{\mathrm{d}} & =1.045 \mathrm{in} \\
\text { Therefore, } \quad \frac{\mathrm{d}_{\mathrm{w}}}{\mathrm{~d}} & =\frac{0.165}{1.045}=0.158
\end{aligned}
$$

From Fig. 7 for two wires the corresponding value of $\frac{d_{e}}{\mathrm{~d}}$ is 0.880,
$\overline{\mathrm{d}}$ Therefore, $\mathrm{d}_{\mathrm{e}}=0.880 \times 1.045=0.920 \mathrm{in} .=7.66 \times 10^{-2} \mathrm{ft}$.
(2) Reynolds number

The Reynolds number for the flow is defined by: $R e=\frac{4}{\pi} \quad \frac{M}{d_{e} \cdot \mu}$
where $M$ is the mass flow rate, and
$\mu$ is the absolute viscosity.
For this case:

$$
\begin{aligned}
M & =\frac{1.0}{32.2 \times 60} \text { slug/sec. } \\
\mu_{72^{\circ} \mathrm{F}} & =3.82 \times 10^{-7} \text { slug/ft. } / \mathrm{sec} . \quad \text { and, } \\
\text { Therefore, } R \theta & =\frac{4}{\pi} \times \frac{1.0}{32.2 \times 60} \times \frac{10^{2}}{7.66} \times \frac{10^{7}}{3.02}=2.26 \times 10^{4},
\end{aligned}
$$

(3) Friction Factor

$$
\begin{aligned}
f & =\frac{0.340}{(R e)^{0.26}} \\
\text { Thus for } \operatorname{Re} & =2.26 \times 10^{4} \\
f & =\frac{0.340}{(2.26)^{0.26}(10)^{1.04}}=2.50 \times 10^{-2}
\end{aligned}
$$

(4) Density

$$
\rho=\frac{\mathrm{P}}{1715 \mathrm{~T}} \text { slug/ ft } \mathrm{t}^{3}
$$

where $\quad P$ is absolute pressure $1 b / \mathrm{ft}^{2}$
$T$ is absolute temperature ${ }^{\circ} R$
Therefore, $\rho=\frac{(14.7+6) \times 144}{1715 \times(460+72)}=3.27 \times 10^{-3}\left(\mathrm{slug} / \mathrm{ft}^{3}\right)$.
(5) Velocity

$$
V=\frac{4}{\pi} \cdot \frac{M}{\rho d_{\theta}{ }^{2}}
$$

Therefore, $V=\frac{4}{\pi} \cdot \frac{1.0}{32.2 \times 60} \times \frac{10^{3}}{3.27} \times \frac{104}{(7.66)^{2}}=34.4 \mathrm{ft} / \mathrm{sec}$
(6) Pressure drop due to Friction

$$
\Delta P=f \cdot \frac{L}{d_{e}} \cdot \frac{\rho V^{2}}{2} \cdot
$$

Therefore, $\Delta P=2.50 \times 10^{-2} \times \frac{10^{2}}{7.66 \times 10^{-2}} \cdot \frac{3.27 \times 10^{-3}}{2} \cdot(4 \cdot 1)^{2}$

$$
=63.1 \mathrm{lb} / \mathrm{ft}^{2}
$$

$$
=\frac{63.1}{144}=0.44 \mathrm{psi}
$$

To obtain the greatest accuracy the density should be recalculated using a mean value for the gauge pressure; in this case, 5.78 psi rather than 6.00 . However, the change would be only l per cent so this last step has be on omitted.

Solution of Sample Problem using Charts

$$
\frac{d_{\mathrm{w}}}{\overline{\mathrm{~d}}}=\frac{0.165}{1.045}=0.158
$$

From Fig. 7 for two wires $\frac{d_{\theta}}{\bar{d}}=0.880$
Therefore, $d_{\theta}=0.880 \times \frac{1.045}{12} \quad=7.66 \times 10^{-2} \mathrm{ft}$.
$\mathrm{L} \quad=100 \mathrm{ft}$.
$T=460+72=532^{\circ} \mathrm{R}$
$P=(14.7+6.0) \times 144=29801 \mathrm{~b} / \mathrm{ft}^{2}$
$(\mu)^{0.26}=2.144 \times 10^{-2}$
$M=\frac{1.0}{32.2 \times 60} \quad=5.18 \times 10^{-4} \mathrm{slug} / \mathrm{sec}$
Therefore, $K=444 \times \frac{532}{2980} \times 2.144 \times 10^{-2} \times \frac{10^{2}}{5.1 \times 10^{-6}}=3.34 \times 10^{7}$
From Fig. 9:

$$
\text { For } \begin{aligned}
K & =3.34 \times 10^{7} \text { and } M=5.18 \times 10^{-4} \\
\Delta P & =63 \mathrm{lb} / \mathrm{ft}^{2}
\end{aligned}
$$

The advantages of using the design charts increase as the problems become more complex. The following design problem further illustrates the use of the charts.

## Example Design Problem

## PROBLEM

Determine the mass flow and static pressure required at the inlet of the conduit system shown which will ensure that every point in the system has a gauge pressure greater than $l$ inch water. Assume that there is negligible friction loss and leakage at the tee and cross fittings and that the fixture at the end of each branch has a mass flow vs. pressure characteristic similar to a $1 / 4$-inch diameter orifice. The
temperature everywhere is $72^{\circ} \mathrm{F}$ and the ambient pressure 15 psia.

INLET

a I I/4-inch conduit 60 ft . 3 strands 10 g plastic covered wire.
b
$11 / 4$-inch conduit 60 ft . 2 strands 10 g plastic covered wire.
c l-inch conduit 20 ft . 2 strands 12 g plastic covered wire.
d 3/4-inch conduit 20 ft. 2 strands 12 E plastic covered wire.
$F \quad$ Fixtures which have some mass flow vs. pressure as $1 / 4$-inch diameter orifice.

SOLUTION
A. $\quad$ Calculation of Equivalent Diameters
(a)
$\frac{d_{w}}{\bar{d}}=\frac{0.165}{1.384}=0.119$.
From Fig. $7 \frac{\mathrm{~d}}{\overline{\mathrm{~d}}}=0.875$,
Therefore, $\left(d_{e}\right)_{a}=0.875 \times \frac{1.384}{12}=0.1009 \mathrm{ft}$.
(b) $\quad \frac{d_{W}}{\bar{d}}=0.119$.

$$
\text { From Fig. } 7 \frac{d_{\theta}}{\bar{d}}=0.909
$$

Therefore, $\left(d_{\theta}\right)_{b}=0.909 \times 1.384=0.1049 \mathrm{ft}$.
(c)
$\frac{d_{W}}{\bar{d}}=\frac{0.165}{1.045}=0.158$.
From Fig. $7 \frac{\mathrm{~d}_{\theta}}{\bar{d}}=0.880$,
Therefore, $\left(d_{\theta}\right)_{c}=0.880 \times \frac{1.045}{12}=0.0766 \mathrm{ft}$.
(d)
$\frac{d_{W}}{\bar{d}}=\frac{0.151}{0.825}=0.183$.
From Fig. $7 \frac{\mathrm{~d}_{e}}{\overline{\mathrm{~d}}}=0.860$,
Therefore, $\left(d_{\theta}\right)_{d}=0.860 \times \frac{0.825}{12}=0.0591 \mathrm{ft}$.

Calculation of K

$$
\begin{aligned}
& K=444 \frac{T}{P}(\mu)^{0.26} \cdot \frac{L}{d_{e}} \cdot 74 \\
& P=15 \times 144=2160 \mathrm{lb} / \mathrm{ft}^{2} \\
& T=460+72=532{ }^{\circ} \mathrm{R} \\
& (\mu)_{72} 0.26=2.144 \times 10^{-2}(\text { slug } / \mathrm{ft} . / \mathrm{sec})^{0.26}
\end{aligned}
$$

Thus $K=\frac{2}{d_{e} \cdot 35 \cdot 74}$
Therefore, $K_{a}=\frac{2.35 \times 60}{(0.1009)^{4.74}}=\frac{2.35 \times 60}{1.88 \times 10^{-5}}=7.50 \times 10^{6}$,

$$
K_{b}=\frac{2.35 \times 60}{(0.1049)^{4.74}}=\frac{2.35 \times 60}{2.27 \times 10^{-5}}=6.20 \times 10^{6},
$$

$$
\begin{gathered}
-21- \\
K_{c}=\frac{2.35 \times 20}{(0.0766)^{4.74}}=\frac{2.35 \times 20}{5.10 \times 10^{-6}}=9.21 \times 10^{6}, \\
K_{d}=\frac{2.35 \times 20}{(0.0591)^{4.74}}=\frac{2.35 \times 20}{1.54 \times 10^{-6}}=3.05 \times 10^{7} .
\end{gathered}
$$

## C. Calculation of Pressure Losses

## (1) Branch II

Figure 13 gives the mass flow as a function of the differential pressure which exists across the fixture. For this example the fixture is assumed equivalent to a 1/4-inch diameter orifice. For a gauge pressure at the fixture of 1 inch $\mathrm{H}_{2} \mathrm{O}$ the flow rate is:

$$
M_{d}=3.22 \times 10^{-5} \text { slug } / \mathrm{soc}
$$

Figure 14 gives the pressure drop vs. mass flow for each of the four different types of conduit.

Thus for $M_{d}=3.22 \times 10^{-5}$ slug $/ \mathrm{sec}$. ,

$$
(\Delta P)_{\mathrm{d}}=0.465 \mathrm{lb} / \mathrm{ft}^{2}
$$

$$
M_{c}=3 \times 3.22 \times 10^{-5}=9.66 \times 10^{-5} \text { slug } / \mathrm{sec} .
$$

and

$$
(\Delta P)_{c}=0.94 \quad 1 \mathrm{~b} / \mathrm{ft}^{2}
$$

Hence the gauge pressure at the entry to Branch II is

$$
\begin{aligned}
& 5.20+0.46+0.94=6.60 \mathrm{lb} / \mathrm{ft}^{2} \\
& \text { for a mass flow of } 9.66 \times 10^{-5} \mathrm{slug} / \mathrm{sec} .
\end{aligned}
$$

The pressure drop in the supply pipe b is:

$$
(\Delta P)_{b}=0.63 \mathrm{Ib} / \mathrm{ft}^{2}
$$

Thus the pressure.at the inlet to Branch I is

$$
6.60+0.63=7.23 \mathrm{lb} / \mathrm{ft}^{2}
$$

## (2) Branch I

It is now necessary to determine what the flow will be into Branch I when the pressure at the branch inlet is 7.23 lb/ft ${ }^{2}$. To do this it is necessary to find the relation
between the supply pressure and mass flow for the branch.
Since Branches I and II arc identical one point on the characteristic is $6.60 \mathrm{lb} / \mathrm{ft}^{2}$ at $9.66 \times 10^{-5} \mathrm{slug} / \mathrm{sec}$. To obtain a second point assume that the fixture pressure is $6.00 \mathrm{lb} / \mathrm{ft}^{2}$. Then from Fig. 13 the mass flow through each fixture is $3.47 \times 10^{-5}$ slug/sec. and the corresponding pressure drop in the d conduits is $0.53 \mathrm{lb} / \mathrm{ft}$. The mass flow in the c conduit is $3 \times 3.47 \times 10-5=10.41 \times 10^{-5} \mathrm{slug} / \mathrm{sec}$. and the pressure drop is $(\Delta \mathrm{P})_{c}=1.08 \mathrm{lb} / \mathrm{ft}^{2}$.
$7.61 \mathrm{lb} / \mathrm{ft}^{\text {This }}$ gives a supply pressure of $6.00+0.53+1.08=$ third point has bcen found to be $7.12 \mathrm{lb} / \mathrm{ft}^{2}$ with a flow of $10.19 \times 10^{-5} \mathrm{slug} / \mathrm{sec}$. These three sets of values were used to draw the curve in Fig. l5. From this curve the flow rate corresponding to $7.23 \mathrm{lb} / \mathrm{ft}^{2}$ is $10.19 \times 10^{-5} \mathrm{slug} / \mathrm{sec}$.

## (3) Supply Line

The mass flow through the main supply conduit is $10.19+9.66=19.85 \times 10^{-5} \mathrm{slug} / \mathrm{sec}$. and the corresponding pressure drop in the supply pipe is $2.66 \mathrm{lb} / \mathrm{ft}^{2}$.

Hence at the entrance to the conduit system the gauge pressure must be $7.23+2.66=9.89 \mathrm{lb} / \mathrm{ft}^{2}=1.90$ inches water and the mass flow is:

$$
\begin{aligned}
19.85 \times 10^{-5} \mathrm{slug} / \mathrm{sec} & =\frac{19.85 \times 10^{-5} \times 60 \times \frac{1715 \times 532}{2160}}{}=5.03 \mathrm{~cm}
\end{aligned}
$$

## CONCLUSIONS

The sample design calculation in the section on Application of Results shows that with the data included in this report it is possible to calculate approximately the pressure distribution throughout a conduit system that contains wire. This neglects the losses in the various cross, tee, elbow, and reducing fittings. If there are so many of these fittings that they cannot be safely allowed for by a design aafety factor, further tests will be required to provide data for these fittings. From the limited data obtainod with long radius elbows it appeared that the equivalent length of fittings with wire are of the order of 40 per cent more than when the conduit is empty. This should only be used as a guide until better design data for fittings are available.

- 23 -

ACKINOWLEDGMLNTS
The author wishes to express his thanks to J. E. Berndt who assembled most of the apparatus and carried out all of the tests, to P. Janecek who made many of the calculations, and to R. G. Evans for his assistance in building the apparatus that was used to measure the conduit diameter.

## APPENDIX A

## DATA TABLES

| Table $\mathrm{A}-1(1)$ | Data for determination of conduit diameter |
| :---: | :---: |
| Table A-I(ii) | Complete data for a typical section |
| Table A-2 | Orifice plate data |
| Table A-3 | Friction factors for empty conduit |
| Table $A-4$ (i) | Pressure drop for partially filled conduit (1 $1 / 4$-inch conduit, section No. 3-plastic covered wire) |
| Table A-4(ii) | Pressure drop for partially filled conduit (l-inch conduit, section No. 3-plastic covered wire) |
| Table $\mathrm{A}-4(\mathrm{iii})$ | Pressure drop for partially filled conduit (3/4-inch conduit, section No. 3-plastic covered wire) |
| Table A-4(iv) | Pressure drop for partially filled conduit (1 $1 / 4$ and $3 / 4$-inch conduit, section No. 3rubber covered wire) |
| Table A-5 | Data for twisted, compared with nontwisted, wires |
| Table $A-6(i)$ | Equivalent length of long radius $90^{\circ}$ elbows and threaded couplings without wire |
| Table $A-6$ (ii) | Equivalent length of long radius $90^{\circ}$ elbow with wire (l strand, lo-gauge, rubber covered) |

TABLE A-1 (i)

## DETERMINATION OF CONDUIT DIAMETER

| Conduit Number |  | $\begin{aligned} & \mathrm{M}_{0} \\ & \mathrm{gm} \end{aligned}$ | $\begin{aligned} & \mathrm{M}_{70} \\ & \mathrm{gm} \end{aligned}$ | $\stackrel{\mathrm{H}_{\mathrm{W}}^{\mathrm{H}}}{2} \mathrm{O}$ | $\begin{gathered} \rho_{\mathrm{w}} \\ \mathrm{gm} / \mathrm{cm}^{3} \end{gathered}$ | $\log _{10} \overline{\mathrm{~d}}$ | $\begin{gathered} \overline{\mathrm{d}} \\ \mathrm{ft} . \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{3}{4 \prime \prime}$ | I | 4210 | 3230 | 36.29 | 0.9970 | 즈. 839384 | $6.908 \times 10^{-2}$ |
|  | II | 4808 | 3839 | 36.30 | 0.9970 | $\underline{\underline{2}} .836874$ | $6.869 \times 10^{-2}$ |
|  | III | 4799 | 3816 | 36.29 | 0.9970 | $\underline{2} .840048$ | $6.919 \times 10^{-2}$ |
|  | IV | 4692 | 3734 | 36.30 | 0.9974 | $\overline{2} .834308$ | $6.828 \times 10^{-2}$ |
| $1 "$ | I | 4988 | 3417 | 36.30 | 0.9975 | $\underline{\underline{2}} .941690$ | $8.744 \times 10^{-2}$ |
|  | II | 4709 | 3164 | 36.30 | 0.9975 | $\underline{\underline{2}} .938066$ | $8.671 \times 10^{-2}$ |
|  | III | 4748 | 3185 | 36.28 | 0.9966 | $\underline{2} .940898$ | $8.728 \times 10^{-2}$ |
|  | IV | 4758 | 3201 | 36.27 | 0.9967 | 2.940112 | $8.712 \times 10^{-2}$ |
|  | I | 4979 | 2217 | 36.40 | 0.9980 | $\underline{1} .063508$ | $11.575 \times 10^{-2}$ |
|  | II | 4849 | 2164 | 36.140 | 0.9978 | 1.057412 | $11.413 \times 10^{-2}$ |
|  | III | 4963 | 2195 | 36.41 | 0.9979 | $\underline{1} .063942$ | $11.586 \times 10^{-2}$ |
|  | IV | 4880 | 2117 | 36.40 | 0.9978 | 1.063622 | $11.578 \times 10^{-2}$ |

TABLE A-1 (ii)
COMPLETE DATA FOR A TYPICAL SECTION

| Man. Height <br> in. $\mathrm{CCl}_{4}$ | Mass <br> gma | $\Delta \mathrm{M}$ <br> gm | Notes |
| :---: | :---: | :---: | :---: |
| 0 | 4799 |  |  |
| 5 | 4.729 | 70 | 9 Man. Scale |
| 10 | 4658 | 71 | $=36.29 \mathrm{~cm} \mathrm{H}_{2} 0$ |
| 15 | 4588 | 70 | at $25.25^{\circ} \mathrm{C}^{2}$ |
| 20 | 4517 | 71 | $\therefore P_{w}=0.9970$. |
| 25 | 4448 | 69 |  |
| 30 | 4378 | 70 |  |
| 35 | 4308 | 70 |  |
| 40 | 4237 | 71 |  |
| 45 | 4166 | 71 |  |
| 50 | 4096 | 70 |  |
| 55 | 4025 | 71 |  |
| 60 | 3955 | 70 |  |
| 65 | 3886 | 70 |  |
| 70 | 3816 | 70 |  |

TABLE A-2

ORIFICE PLATE DATA

| Nominal Diam. | $\frac{1}{2}$ in. |  | 3/4 in. |  | I $\frac{1}{4} \mathrm{in}$. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Actual Diam. | $4.1850 \times 10^{-2} \mathrm{ft}$. |  | $6.2817 \times 10^{-2} \mathrm{ft}$. |  | $10.397 \times 10^{-2} \mathrm{ft}$. |  |
| Differential Pressure | C 1 | $\mathrm{Log}_{10} \mathrm{Cl}^{\prime}$ | C: | $\log _{10} \mathrm{Cl}$ | $\mathrm{Cl}^{1}$ | $\log _{10}{ }^{1}$ |
| 10 mm H O | 0.6045 | I.781/100 | 0.6026 | $\overline{1} .780040$ | 0.5935 | I. 773405 |
| 40 mm H H | 0.6049 | $\overline{1.781700 ~}$ | 0.6029 | $\overline{1} .780240$ | 0.5940 | $\overline{1.773785 ~}$ |
| $160 \mathrm{~mm} \mathrm{H}_{2} \mathrm{O}$ | 0.6066 | I. 782910 | 0.6040 | I. 781070 | 0.5961 | I. 775310 |
| $390 \mathrm{~mm} \mathrm{H} \mathrm{H}_{2}$ | 0.6099 | I. 785230 | 0.6063 | I. 782660 | 0.6001 | 工. 778235 |

tabIE A-3
FRICTION FACTORS FOR EMPTY CONDUIT

| Conduat | 119 Conduit - Section \#3 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Orifice | $\frac{3}{}{ }^{\text {n }}$ |  |  |  | 3/4" |  |  |  | $1 \frac{12}{4}$ |  |  |  |
| ${ }^{1}{ }_{4} \mathrm{Hman} \mathrm{H}_{2} \mathrm{O}$ | 10.0 | 40.0 | 160.0 | 390.0 | 10.0 | 40.0 | 160.0 | 390.0 | 10.0 | 40.0 | 160.0 | 390.0 |
| T ${ }^{\circ} \mathrm{C}$ | 21.6 | 21.6 | 20.8 | 20.7 | 21.5 | 21.5 | 21.0 | 21.0 | 21.7 | 21.7 | 21.4 | 21.4 |
| $\mathrm{B}_{\text {corr. mam }} \mathrm{Hg}$. | 750.8 | 750.8 | 749.3 | 749.3 | 753.3 | 753.3 | 753.4 | 753.4 | 752.0 | 752.0 | 750.8 | 750.8 |
| $\bar{\triangle} \mathrm{in}^{-\mathrm{CCI}_{4}}$ | 0.28 | 1.06 | 4.16 | 10.08 | 0.32 | 1.24 | 4.80 | 11.42 | 0.68 | 2.49 | 8.93 | 20.30 |
|  | 0.019 | 0.080 | 0.270 | 0.573 | 0.099 | 0.331 | 1.101 | 2.370 | 0.581 | 1.939 | 6.145 | 14.060 |
| f $\times 10^{2}$ | 3.5 | 3.7 | 3.15 | 2.76 | 3.66 | 3.06 | 2.56 | 2.27 | 2.95 | 2.47 | 2.08 | 1.90 |
| $\mathrm{Re} \times 10^{-3}$ | 2.32 | 4.65 | 9.38 | 14.80 | 5.23 | 10.46 | 21.08 | 33.22 | 14.08 | 28.20 | 56.79 | 89.76 |
| Conduit | 1" Conduit - Section \# 3 |  |  |  |  |  |  |  |  |  |  |  |
| Orifice | $\frac{1}{2}{ }^{\prime \prime}$ |  |  |  | 3/4" |  |  |  | 112n |  |  |  |
| $i_{*}$ \% $\mathrm{mm} \mathrm{H}_{2} \mathrm{O}$ | 10.0 | 40.0 | 160.0 | 390.0 | 10.0 | 40.0 | 160.0 | 390.0 | 10.0 | 40.0 | 160.0 |  |
| T ${ }^{\circ} \mathrm{C}$ | 21.7 | 21.7 | 21.1 | 21.1 | 21.4 | 21.4 | 20.9 | 20.9 | 21.5 | 21.5 | 21.5 |  |
| ${ }^{\text {B }}$ corr. ${ }^{\text {Imm }} \mathrm{Hg} 0$ | 758.4 | 758.4 | 758.2 | 758.2 | 754.1 | 754.1 | 754.1 | 754.1 | 752.6 | 752.6 | 761.5 |  |
| $\bar{\Delta} \mathrm{In} . \mathrm{CCI}_{4}$ | 0.31 | 1.20 | 4.60 | 11.00 | 0.50 | 1.81 | 6.62 | 15.12 | 1.66 | 5.59 | 18.80 |  |
| $\Delta \mathrm{P}_{* / L} \frac{\text { nim }}{\mathrm{H}} \mathrm{H}$ | 0.090 | 0.311 | 1.032 | 2.208 | 0.389 | 1.282 | 4.231 | 9.058 | 2.240 | 7.375 | 24.35 |  |
| $\bigcirc \times 10^{2}$ | 4.07 | 3.52 | 2.92 | 2.57 | 3.49 | 2.88 | 2.40 | 2.14 | 2.77 | 2.31 | 1.98 |  |
| Re $\times 10^{-3}$ | 3.10 | 6.20 | 12.51 | 19.76 | 6.95 | 13.91 | 28.01 | 44.13 | 18.71 | 37.48 | 75.88 |  |
| Conduit | 3/4" Conduit - Section \# 3 |  |  |  |  |  |  |  |  |  |  |  |
| Oriflee | $\frac{1}{2}{ }^{\prime \prime}$ |  |  |  | 3/4" |  |  |  |  |  |  |  |
| 1) ${ }^{\text {max }} \mathrm{H}_{2} \mathrm{O}$ | 10.0 | 40.0 | 160.0 | 390.0 | 10.0 | 40.0 | 160.0 | 390.0 |  |  |  |  |
| $\mathrm{T}^{\circ} \mathrm{C}$ | 21.8 | 21.8 | 21.0 | 21.0 | 21.6 | 21.6 | 21.0 | 21.0 |  |  |  |  |
| ${ }^{\text {B }}$ corr. ${ }^{\text {man }}$ Hg. | 756.3 | 756.3 | 754.9 | 754.9 | 753.1 | 753.1 | 748.5 | 748.5 |  |  |  |  |
| $\bar{\Delta} \mathrm{In}^{\text {d }} \mathrm{CCl}_{4}$ | 0.43 | 1.56 | 5.80 | 13.58 | 0.94 | 3.28 | 11.53 | 25.85 |  |  |  |  |
| $\Delta_{* / L} \frac{\mathrm{P}^{\mathrm{nam}} \mathrm{H}_{2} \mathrm{O}}{\mathrm{It}}$ | 0.282 | 0.941 | 3.090 | 6.578 | 1.170 | 3.830 | 12.495 | 26.45 |  |  |  |  |
| $f \times 10^{2}$ | 3.99 | 3.34 | 2.75 | 2.12 | 3.29 | 2.72 | 2.26 | 2.03 |  |  |  |  |
| $\mathrm{Re} \times 10^{-3}$ | 3.90 | 7.81 | 15.75 | 24.86 | 8.75 | 17.50 | 35.19 | 55.24 |  |  |  |  |

TABLE A－4（1）
PRESSURE DROP FOR PARTIALLY FILLED CONDUIT

| 1年＂Conduit Section \＃ 3 Plastic Covered Wire |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fill | 1 Strand 10 gauge |  | 2 Strands 10 gauge |  | 3 Strands 10 gauge |  |
| Orifice | $\frac{7}{2}{ }^{\prime \prime}$ | 1 ${ }^{\frac{1}{4}}{ }^{1}$ | $\frac{1}{2}{ }^{1}$ | $1 \frac{12}{4 n}$ | $\frac{1}{2}{ }^{1}$ | $1{ }^{\frac{1}{4}}{ }^{n}$ |
| i＊ $\mathrm{mm} \mathrm{H}_{2} \mathrm{O}$ | $40.0 \quad 390.0$ |
| T ${ }^{\circ} \mathrm{C}$ | $21.5 \quad 21.1$ | $21.6 \quad 21.7$ | $21.6 \quad 20.9$ | $21.5 \quad 22.2$ | $21.6 \quad 20.8$ | 21.121 .5 |
| $B$ corr．mm Hg． | $757.5 \quad 757.4$ | 758.1758 .1 | $757.7 \quad 757.5$ | $759.9 \quad 756.8$ | 759.4757 .6 | $764.0 \quad 764.0$ |
| $\bar{\Delta}$ in． $\mathrm{CCl}_{4}$ | $1.07 \quad 10.15$ | $2.80 \quad 22.06$ | 1.0910 .22 | 2.9923 .40 | 1.0910 .28 | 3.1024 .44 |
| $\Delta \mathrm{P}_{* / \mathrm{L}}{ }^{\text {man } \mathrm{H}_{2} \mathrm{O}}$ | 0.1050 .710 | $2.345 \quad 16.97$ | $0.132 \quad 0.872$ | $2.865 \quad 20.50$ | 0.1721 .064 | 3.41923 .90 |
| $\mathrm{d}_{\mathrm{e}} / \mathrm{d}$ | $0.949 \quad 0.959$ | $0.960 \quad 0.963$ | 0.9040 .917 | 0.9200 .926 | 0.854 | 0.8840 .893 |
| Re $\times 10^{-3}$ | 4.93 15．38 | 29.5893 .55 | $5.17 \quad 16.22$ | $30.85 \quad 97.04$ | 5.48 16．93 | 32.92101 .30 |
| Fill | 1 Strand 12 gauge |  | 2 Strands 12 gauge |  | 3 Strands 12 gauge |  |
| Orifice | $\frac{1}{2}{ }^{\prime \prime}$ | $1 \frac{1}{4}{ }^{\text {n }}$ | $\frac{7}{2}{ }^{1}$ | $1 \frac{1}{4}$ | $\frac{1}{2}{ }^{\prime \prime}$ | $1{ }^{\frac{174}{4}}$ |
|  | 390.0 | $40.0 \quad 390.0$ | $40.0 \quad 390.0$ | $40.0 \quad 390.0$ | $40.0 \quad 390.0$ | 40.0 390．0 |
| $\mathrm{T}^{\circ} \mathrm{C}$ | 21.5 | 22.222 .0 | $21.6 \quad 20.9$ | $21.5 \quad 21.7$ | 22.320 .8 | 21.521 .6 |
| B corr．mm hige | 752.5 | 752.2751 .8 | 752.2752 .3 | 752.2752 .2 | 745.3744 .9 | 743.7743 .9 |
| $\bar{\Delta} \quad$ in． $\mathrm{CCI}_{4}$ | 10.11 | $2.65 \quad 21.25$ | 1.0810 .19 | $2.81 \quad 22.32$ | 1.09 10．24 | 3.05 24．12 |
|  | 0.700 | 2.33016 .72 | $0.131 \quad 0.834$ | 2.72519 .58 | 0.1621 .017 | 3.276 22．84 |
| $\mathrm{d}_{\mathrm{e} / \mathrm{d}}$ | 0.961 | 0.9610 .964 | 0.9050 .926 | $0.930 \quad 0.932$ | 0.870 0．888 | 0.8940 .902 |
| $\operatorname{Re} \times 10^{-3}$ | 15.38 | 29.2792 .93 | 5.74 | 30．34 96.28 | $5.31 \quad 16.62$ | 31.3899 .02 |
| F117 | 1 Strand 14 gauge |  | 2 Strands 14 gauge |  | 3 Strands 14 gauge |  |
| Orifice | 产 ${ }^{\prime \prime}$ | 1 ${ }^{\frac{1}{4}}{ }^{\text {m }}$ | $\frac{7}{2}{ }^{1}$ | 1亲＂ | $\frac{7}{2}{ }^{17}$ | $1{ }^{\frac{7}{4} /{ }^{4}}$ |
| $1_{*}^{1}$ mm $\mathrm{H}_{2} \mathrm{O}$ | 40.0 390．0 | $40.0 \quad 390.0$ |
| T ${ }^{\circ} \mathrm{C}$ | 21.420 .7 | 21.221 .1 | $21.5 \quad 20.7$ | 21.421 .7 | 21.621 .1 | 21.421 .6 |
| ${ }^{8}$ corr．${ }^{\text {nmm }} \mathrm{Hg}$ ． | 745.6746 .3 | 746．7 746.9 | 752.1752 .2 | $752.3 \quad 752.2$ | 752.3752 .3 | 755.8755 .9 |
| $\bar{\triangle}$ in． $\mathrm{CCl}_{4}$ | 1.0610 .13 | 2.6921 .45 | 1.0810 .16 | $2.82 \quad 22.32$ | 1.0810 .22 | 2.9423 .18 |
| $\Delta P_{* / L} \frac{\text { mim }{ }^{\text {m }} \text { H }}{\text { ft．}}$ | 0.1010 .690 | 2.29816 .58 | $0.122 \quad 0.801$ | 2.63518 .76 | $0.146 \quad 0.978$ | 2.958 20．80 |
| $\mathrm{d}_{\mathrm{e}} / \mathrm{d}$ | 0.9570 .964 | $0.964 \quad 0.965$ | $0.919 \quad 0.934$ | 0.9370 .940 | 0.8850 .908 | 0.914 0．921 |
| Re $\times 10^{-3}$ | $4.85 \quad 15.33$ | $29.20 \quad 92.87$ | $5.07 \quad 15.89$ | $30.15 \quad 95.70$ | $5.26 \quad 16.32$ | $30.98 \quad 95.50$ |

TABLE A-4 (1i)
PRESSURE DROP FOR PARTIALLY FILLED CONDUIT


TABLE A-4 (iii)
PRESSURE DROP FOR PARTIALLY FILIED CONDUIT

| 3/4" Conduit Section \# 3 Plastic Covered Wire |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fill | 1 Strand 10 gauge |  | 2 Strands 10 gauge |  | 3 Strands 10 gauge |  |  |  |
| Orifice | $\frac{7}{2} n$ | 3/4" |  |  |  | $\frac{7}{2}{ }^{1}$ |  | 3/4" |
| $\mathrm{i}_{*}^{1} \mathrm{~mm} \mathrm{H}_{2} \mathrm{O}$ | $10.0 \quad 40.0 \quad 160.0$ | 160.0 | $10.0 \quad 40.0$ | $160.0 \quad 390.0$ | 10.0 | 40.0 | 160.0 | 160.0 |
| $7{ }^{\circ} \mathrm{C}$ | $21.4 \quad 21.4 \quad 21.7$ | 21.2 | 21.421 .3 | $20.7 \quad 20.7$ | 21.8 | 21.8 | 21.4 | 21.5 |
| ${ }^{\text {B }}$ corr. ${ }^{\text {min }} \mathrm{Hg}$. | 760.0760 .0769 .3 | 759.3 | 749.7749 .7 | 749.9749 .9 | 754.8 | 754. 8 | 753.7 | 750.6 |
| $\bar{\Delta}$ in. $\mathrm{CCl}_{4}$ | $\begin{array}{lll}0.50 & 1.74 & 6.34\end{array}$ | 13.50 | $0.60 \quad 2.04$ | $7.28 \quad 16.60$ | 0.69 | 2.30 | 8.05 | 20.15 |
| $\Delta \mathrm{P}_{* / L} \frac{\mathrm{mma} \mathrm{H}_{2} \mathrm{O}}{\mathrm{ft} .}$ | $0.4401 .369 \quad 4.353$ | 17.36 | $0.715 \quad 2.120$ | $6.570 \quad 13.67$ | 0.960 | 2.798 | 8.517 | 32.66 |
| ${ }^{\text {d }}$ e/d | 0.9150 .9220 .932 | 0.940 | $0.826 \quad 0.841$ | 0.8540 .860 | 0.772 | 0.792 | 0.806 | 0.812 |
| $\operatorname{Re} \times 10^{-3}$ | $\begin{array}{lll}4.28 & 8.46 & 16.88\end{array}$ | 37.75 | $4.70 \quad 9.22$ | 18.4028 .85 | 5.040 | 9.850 | 19500 | 43.300 |
| Fill | 1 Strand 12 gauge |  | 2 Strands 12 gauge |  | 3 Strands 12 gauge |  |  |  |
| Orifice | ${ }^{\frac{1}{2}}{ }^{\prime \prime}$ |  | $\frac{1}{2}{ }^{1}$ |  | $\frac{1}{2}{ }^{\prime \prime}$ |  |  |  |
| $1_{*}^{\prime}$ man $\mathrm{H}_{2} \mathrm{O}$ | $10.0 \quad 40.0 \quad 160.0$ | 390.0 | $10.0 \quad 40.0$ | $160.0 \quad 390.0$ | 10.0 | 40.0 | 160.0 | 390.0 |
| T ${ }^{\circ} \mathrm{C}$ | $\begin{array}{lll}21.8 & 21.8 & 20.8\end{array}$ | 20.6 | $21.7 \quad 21.7$ | 21.221 .2 | 21.8 | 21.8 | 21.0 | 21.0 |
| ${ }^{\text {B }}$ corr. ${ }^{\text {rmm }} \mathrm{HE}$ | $758.6758 .6 \quad 758.0$ | 758.0 | $755.5 \quad 755.5$ | 755.3755 .3 | 754.3 | 754.3 | 751.3 | 751.3 |
| $\bar{\Delta}$ in. $\mathrm{CCl}_{4}$ | $\begin{array}{lll}0.50 & 1.74 & 6.30\end{array}$ | 14.62 | 0.571 .94 | $6.92 \quad 15.88$ | 0.66 | 2.19 | 7.66 | 17.38 |
|  | $0.428 \quad 1.345 \quad 4.282$ | 9.000 | 0.6211 .894 | 5.88012 .22 | 0.862 | 2.536 | 7.705 | 15.90 |
| $\mathrm{d}_{\text {e/ }}$ | $0.916 \quad 0.925 \quad 0.932$ | 0.937 | 0.8470 .860 | $0.871 \quad 0.878$ | 0.790 | 0.809 | 0.821 | 0.830 |
| Re $\times 10^{-3}$ | $4.260 \quad 8.450 \quad 16,900$ | 26.62 | 4.6009 .060 | 1795028.30 | 4.930 | 9.640 | 29.170 | 29.85 |
| Fill | 1 Strand 14 gauge |  | 2 Strands 14 gauge |  | 3 Strands 14 gauge |  |  |  |
| Orifice | $\frac{1}{2}{ }^{\prime \prime}$ |  | $\frac{1}{2}{ }^{n}$ |  | $\frac{1}{\frac{1}{2}}{ }^{\text {m }}$ |  |  |  |
| $\mathrm{i}_{*}^{\prime} \mathrm{mm} \mathrm{H}_{2} \mathrm{O}$ | $10.0 \quad 40.0 \quad 160.0$ | 390.0 | $10.0 \quad 40.0$ | $160.0 \quad 390.0$ | 10.0 | 40.0 | 160.0 | 390.0 |
| $\mathrm{T}^{\circ} \mathrm{C}$ | $21.8 \quad 21.8 \quad 21.0$ | 21.0 | $22.6 \quad 21.6$ | $22.6 \quad 22.6$ | 21.7 | 21.7 | 20.8 | 20.8 |
| $B^{\text {corr. }}$ nm Hg . | $752.0 \quad 752.0 \quad 751.4$ | 751.4 | $750.7 \quad 750.7$ | 749.9749 .9 | 748.7 | 748.7 | 749.7 | 749.7 |
| $\bar{\triangle} \quad$ 1n. $\mathrm{CCl}_{4}$ | 0.46 1.70 6.22 | 14.44 | 0.561 .86 | $6.72 \quad 15.45$ | 0.60 | 2.07 | 7.30 | 16.60 |
| $\Delta P_{* / L} \frac{\mathrm{~mm} \mathrm{H}_{2} \mathrm{O}}{}$ | 0.4101 .2964 .121 | 8.682 | $0.546 \quad 1.678$ | 5.29011 .01 | 0.730 | 2.171 | 6.670 | 13.78 |
| $\mathrm{d}_{\mathrm{e}} / \overline{\mathrm{d}}$ | 0.9250 .9330 .940 | 0.944 | 0.8710 .884 | $0.891 \quad 0.898$ | 0.819 | 0.836 | 0.848 | 0.855 |
| $\operatorname{Re} \times 10^{-3}$ | $\begin{array}{lll}4.200 & 8.350 & 16.720\end{array}$ | 26.200 | $4.470 \quad 8.80$ | $1750 \quad 27.45$ | 4.740 | 9.300 | 18.460 | 28.900 |

TABLE A-L (iv)
PRESSURE DROP FOR PARTIALLY FILLED CONDUIT

| 114 Conduit Section \# 3 Rubber Covered Wire |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fill | 1 Strand 14 gauge |  |  |  | 2 Strands 14 gauge |  |  |  | 3 Strands 14 gauge |  |  |  |
| Oritite | $\frac{7}{2}{ }^{1}$ |  | $1{ }_{4}^{1 / 4}$ |  | $\frac{1}{2}{ }^{\prime \prime}$ |  | $1{ }^{1 / 4}$ |  | $\frac{7}{2}{ }^{\prime \prime}$ |  | $1{ }^{\frac{1}{4}}$ |  |
| $\mathrm{i}_{*}^{\prime} \mathrm{mm} \mathrm{H}_{2} \mathrm{O}$ | 40 | 160 | 40 | 160 | 40 | 160 | 40 | 160 | 40 | 160 | 40 | 160 |
| T C | 21.7 | 21.0 | 21.5 | 22.1 | 21.9 | 20.8 | 21.6 | 21.5 | 21.4 | 20.8 | 21.5 | 21.6 |
| B corr. ${ }^{\text {mmm }} \mathrm{Hg}$. | 763.4 | 763.4 | 759.6 | 758.7 | 757.6 | 756.0 | 755.3 | 754.2 | 752.5 | 753.0 | 753.7 | 753.5 |
| $\bar{\triangle}$ in. $\mathrm{CCl}_{4}$ | 1.07 | 4.20 | 2.71 | 9.55 | 1.08 | 4.21 | 2.83 | 9.98 | 1.08 | 4.23 | 2.93 | 10.30 |
| $\Delta P_{* / L} \frac{\mathrm{mmm}^{\text {r }} \mathrm{H} \mathrm{O}}{\mathrm{ft}^{\prime}}$ | 0.106 | 0.340 | 2.358 | 7.872 | 0.128 | 0.394 | 2.662 | 8.798 | 0.150 | 0.468 | 3.100 | 10.12 |
| $\mathrm{d}_{\mathrm{e}} / \mathrm{d}$ | 0.943 | 0.948 | 0.958 | 0.960 | 0.905 | 0.918 | 0.934 | 0.936 | 0.876 | 0.883 | 0.905 | 0.910 |
| Re $\times 10^{-3}$ | 4.98 | 10.00 | 29.70 | 59.55 | 5.16 | 10.29 | 30.30 | 00.85 | 5.33 | 10.54 | 31.30 | 62.50 |

3/4" Conduit Section \# 3 Rubber Covered Wire

| Fill | 1 Strand 10 gauge |  | 2 Strands 10 gauge |  | 3 Strands 14 gauge |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Orifice | $\frac{1}{2}{ }^{11}$ | $1 \frac{11}{4}$ | $\frac{1}{2}{ }^{\prime \prime}$ | $1 \frac{1}{4} n$ | $\frac{1}{2}{ }^{1}$ | $1{ }_{4}^{\frac{1}{4}}$ |
| $\mathrm{i}_{*}^{1}$ mum $\mathrm{H}_{2} \mathrm{O}$ | $10 \quad 40$ | 16030 | 1040 | 16020 | $10 \quad 40$ | $160 \quad 25$ |
| $T{ }^{\circ} \mathrm{C}$ | $21.8 \quad 21.8$ | 21.121 .7 | 21.621 .6 | 20.921 .5 | $21.8 \quad 21.8$ | $21.0 \quad 21.7$ |
| B corr. rmm Hg . | 761.2761 .2 | 761.1759 .2 | 754.2754 .2 | 754.3754 .3 | 764.4764 .4 | $764.5 \quad 764.0$ |
| $\bar{\triangle}$ in. $\mathrm{CCl}_{4}$ | 0.541 .89 | $6.84 \quad 16.80$ | $0.76 \quad 2.47$ | $8.51 \quad 18.18$ | $0.68 \quad 2.25$ | $7.87 \quad 18.75$ |
| $\Delta P_{H / L} \underbrace{\text { nin } H_{2} \mathrm{O}}_{\rho_{t}}$ | 0.5681 .740 | $5.532 \quad 29.86$ | $1.050 \quad 3.100$ | 9.55235 .96 | $0.910 \quad 2.681$ | $8.210 \quad 36.84$ |
| $\mathrm{d}_{\mathrm{e}} / \vec{d}$ | 0.8670 .881 | $0.886 \quad 0.892$ | 0.7610 .779 | 0.7850 .795 | $0.784 \quad 0.802$ | $0.815 \quad 0.824$ |
| $\operatorname{Re} \times 10^{-3}$ | $4.51 \quad 8.69$ | $17.80 \quad 46.00$ | 5.119 .99 | 20.0842 .90 | 5.029 .80 | $19.53 \quad 45.40$ |

DATA FOR TWISTED COMPARED WITH NONTWISTED WIRES


| Orifice$i_{*}^{1}$ | 1" Conduit 3 Strands 14 gauge Plastic covered |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\frac{7}{2}{ }^{\prime \prime}$ |  |  |  | $1 \frac{1}{4}{ }^{n}$ |  |
|  | 10.0 | 40.0 | 160.0 | 390.0 | 10.0 | 40.0 |
|  | $\underset{\text { NT }}{\Delta P_{*}}{ }_{\text {\% }}$ | $\mathrm{NT}^{\Delta P_{*}}$ | ${ }_{\text {NT }}{ }^{\Delta P_{*}}{ }^{\text {c }}$ | $\triangle_{\text {NT }}{ }^{*}{ }^{\text {r }}$ | $\mathrm{NT}^{\Delta P_{*}}{ }_{T}$ | $\mathrm{NT}^{*}{ }^{\text {\% }}$ |
| Sect \# II | 0.2680 .258 | 0.7560 .755 | 2.3112 .307 | 4.7984 .781 | 4.8594 .850 | 15.3815 .36 |
| Sect \# III | 0.2400 .239 | 0.7000 .705 | 2.1472 .166 | 4.4574 .517 | 4.5164 .594 | 14.4214 .64 |
| Sect \# IV | 0.2410 .231 | 0.6990 .694 | 2.1252 .141 | 4.4094 .470 | 4.4724 .540 | 14.3814 .58 |
| Thist | 3 Trists per $10 \mathrm{ft}$. length of conduit |  |  |  |  |  |

## $T=T w i s t e d$

NT = Nontwisted




TABLE A-6 (i1)
EQUIVALENT LENGTH OF LONG RADIUS $90^{\circ}$ ELBOW (WTTH WTRE)
( 1 Strand 10 gauge Rubber covered)

| Orifice$i_{\pi}^{\prime}$ | 3/4' ${ }^{\text {n }}$ Conduit |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\frac{7}{2}{ }^{\prime \prime}$ |  |  |  |  |  |  |  | $1{ }^{\frac{1}{4}} 11$ |  |  |  |  |  |  |  |
|  | 10 |  | 40 |  | 160 |  | 390 |  | 10 |  | 30 |  |  |  |  |  |
|  | $\Delta \mathrm{P}$ | $\Delta \mathrm{PI}$ | $\Delta \mathrm{P}$ | $\Delta P^{\prime}$ | $\Delta \mathrm{P}$ | $\triangle \mathrm{P}^{\prime}$ | $\Delta P$ | $\triangle P^{\prime}$ | $\Delta \mathrm{P}$ | $\Delta P^{\prime}$ | $\triangle P$ | $\triangle P^{\prime}$ |  |  |  |  |
| Sect \# II | 5.99 | 5.88 | 18.39 | 18.33 | 58.01 | 58.01 | 121.6 | 121.1 | 122.5 | 123.3 | 306. | 304.8 |  |  |  |  |
| Sect \# III | 5.68 | 6.96 | 17.40 | 21.40 | 55.32 | 67.89 | 116.9 | 143.5 | 117.5 | 146.1 | 298. | 369.8 |  |  |  |  |
| $\begin{aligned} & \text { Re } \times 10^{-3} \\ & L_{e / d e} \end{aligned}$ | 5.89 | 6.19 | 18.43 | 19.28 | 58.94 | 61.85 | 125.4 | 131.3 | 126.5 | 133.8 | 327. | 346.5 |  |  |  |  |
|  | 4.5 |  | 8.7 |  | 17.8 |  | 28.2 |  | 26.5 |  | 46.0 |  |  |  |  |  |
|  | 40.8 |  | 38.2 |  | 37.4 |  | 38.0 |  | 38.3 |  | 40.3 |  |  |  |  |  |
| Orifice$i_{*}^{\prime}$ | $1{ }^{14}$ Conduit |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\frac{7}{2}{ }^{n}$ |  |  |  |  |  |  |  | $1{ }^{\frac{1}{4}}{ }^{18}$ |  |  |  |  |  |  |  |
|  | 10.0 |  | 40.0 |  | 160.0 |  | 390.0 |  | 10.0 |  | 40.0 |  |  |  |  |  |
|  | $\Delta \mathrm{P}$ | $\Delta P^{\prime}$ | $\Delta \mathrm{P}$ | $\triangle P^{\prime}$ | $\Delta \mathrm{P}$ | $\Delta P^{\prime}$ | $\Delta \mathrm{P}$ | $\triangle \mathrm{P}^{\prime}$ | $\Delta \mathrm{P}$ | $\triangle P^{\prime}$ | $\Delta P$ | $\Delta P^{\prime}$ |  |  |  |  |
| sect \# II | 1.70 | 1.80 | 5.30 | 5.51 | 17.00 | 17.30 | 35.91 | 36.34 | 36.15 | 37.05 | 117. |  |  |  |  |  |
| Sect \# III <br> Sect \# IV | 11.62 | 2.29 | 5.14 | 6.80 | 16.33 | 21.44 | 34.51 | 45.45 | 34.98 | 46.32 | 114. | $153.3$ |  |  |  |  |
|  | 1.621 .79 |  | 5.08 | 5.43 | 16.38 | 17.25 | 34.69 | 36.44 | 35.01 | 37.28 | 115. | $124.5$ |  |  |  |  |
| $\operatorname{Re} \times 10^{-3}$ | 3.4 |  | 6.8 |  | 13.8 |  | 21.8 |  | 20.6 |  | 41.2 |  |  |  |  |  |
| $\mathrm{L}_{\mathrm{e} / \mathrm{de}}$ | 42.7 |  | 34.4 |  | 36.6 |  | 38.0 |  | 36.8 |  | 38.0 |  |  |  |  |  |
| Orifice$i_{*}^{\prime}$ | 1 1 " ${ }^{\prime \prime}$ Conduit |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\frac{1}{2}{ }^{\prime \prime}$ |  |  |  |  |  |  |  | 1 ${ }_{4} \mathrm{n}$ |  |  |  |  |  |  |  |
|  | 10.0 |  | 40.0 |  | 160.0 |  | 390.0 |  | 10.0 |  | 40.0 |  | 160.0 |  | 390.0 |  |
|  | $\Delta \mathrm{P}$ | $\Delta P^{\prime}$ | $\Delta \mathrm{P}$ | $\triangle \mathrm{P}^{\prime}$ | $\Delta \mathrm{P}$ | $\Delta P^{\prime}$ | $\Delta \mathrm{P}$ | $\Delta P^{\prime}$ | $\Delta \mathrm{P}$ | $\triangle P^{\prime}$ | $\triangle \mathrm{P}$ | $\triangle P^{\prime}$ | $\Delta \mathrm{P}$ | $\triangle \mathrm{P}^{\prime}$ | $\triangle \mathrm{P}$ | $\Delta \mathrm{P}^{\mathrm{f}}$ |
| Sect \# II | 0.41 | 0.40 | 1.30 | 1.28 | 4.11 | 4.11 | 8.64 | 8.64 | 8.77 | 8.89 | 28.60 | 28.74 | 95.01 | 94.90 | 204.8 | 202.7 |
| Sect \# III | 0.38 | P. 51 | 1.20 | 1.61 | 3.80 | 5.21 | 7.99 | 11.08 | 8.09 | 11.39 | 26.2 | 37.58 | 87.20 | 127.4 | 189.8 | 274.7 |
| Sect \# IV | 0.36 | P. 34 | 1.17 | 1.19 | 3.67 | 3.85 | 7.63 | 8.18 | 7.84 | 8.40 | 25.08 | 27.55 | 83.18 | 93.60 | 181.2 | 204.6 |
| $\operatorname{Re} \times 10^{-3}$ | 2. | 5 | 500 |  | 10. |  | 15. |  | 15. |  |  | . 4 | 61. |  | 96. |  |
| $L_{\text {e/de }}$ | 35. |  | 33.8 |  | 34. |  | 36. |  | 36. |  |  | . 5 | 43. |  | 43.5 |  |

$\Delta P$ Pressure drop $\mathrm{mm}_{2} \mathrm{O}$ for 10 ft . of straight conduit with wire
$\Delta P^{\prime}$ Pressure drop am $H_{2} \mathrm{O}$ for 10 ft . of conduit $+90^{\circ}$ elbow with wire

1. Calculation of Conduit Diameters

| $(\bar{d})^{2}$ | $=\frac{4}{\pi} \cdot \frac{9}{70} \cdot \frac{M_{0}-M_{7 O}}{\rho_{W} \cdot H_{W}}$ |
| ---: | :--- |
| $M_{0}$ | $=4692 \mathrm{gm}$ |
| $M_{70}$ | $=3734 \mathrm{gm}$ |
| Therefore $\quad M_{O}-M_{70}=958 \mathrm{gm}$ |  |
| $H_{W}$ | $=36.30 \mathrm{~cm}$ water at $23.6^{\circ} \mathrm{C}$ |
| Therefore $\quad \rho_{W}$ | $=0.9974 \mathrm{gm} / \mathrm{cm}^{3}$ |
| $2 \log \bar{d}$ | $=\log \left(M_{0}-M_{7 O}\right)-\log \rho_{W}-\log H_{W}-3.753975$. |

This last number is:

$$
\begin{aligned}
\log \left\{\frac{\pi}{4} \times \frac{70}{9}\right\} & +2(\log 2.54+\log 12) \\
\log 0.9974= & \overline{1} .998869 \\
\log 36.30 & =1.559907 \\
& +\frac{3.753975}{5.312751} \\
& =2.981366 \\
\log 958 & =5.312751 \\
2 \log \overline{\mathrm{~d}} & =\overline{3} .668615 \\
\log \overline{\mathrm{~d}} & =\overline{2} .834308 \\
\overline{\mathrm{~d}} & =6.828 \times 10^{-2} \mathrm{ft} .
\end{aligned}
$$

2. The Density of Air

The mass density of dry air is given by:

$$
\rho=\frac{P}{1715.5 \mathrm{~T}}
$$

$$
\begin{aligned}
& \quad \underline{B-2} \\
& \rho \text { is in slug/ft3 } \\
& P \text { is in } 1 \mathrm{~b} / \mathrm{ft}^{2} \text { absolute } \\
& \mathrm{T} \text { is in }{ }^{\circ} \mathrm{R} . \\
& \text { or } \quad \rho=1.6232 \times 10^{-3} \frac{\mathrm{~B}}{\mathrm{~T}} \cdot \\
& \\
& \\
&
\end{aligned}
$$

For moist air the expression for density is:

$$
\rho=1.6232 \times 10^{-3} \frac{(B-0.375 e)}{T},
$$

where $\theta$ is the partial pressure of the water vapour in the air vapour mixture. Thus the effect of moisture on the density can be accounted for by using the dry air formula with the barometer reduced by 0.375 e.

The air flowing through the conduit was assumed to e saturated at 100 prig and $72^{\circ} \mathrm{F}$. Hence at atmospheric pressure this air had a vapour pressure of:

$$
20.0 \times \frac{14.6}{114.6}=2.55 \mathrm{~mm} \text { mercury }
$$

Thus the barometric correction to take account of the moisture in the air is:

$$
-0.375 \times 2.55=-0.956 \mathrm{~mm} \text { mercury }
$$

Since the barometric pressures are measured only to the nearest 0.1 mm this correction is $\mathbf{- 1 . 0 ~ m m ~ m e r c u r y . ~}$
3. Sample Calculation of Friction Factor and Reynolds number

The expression relating the friction factor to measurable quantities was shown to be:

$$
f=\frac{\Delta P_{* 4}}{L} \cdot \frac{(\overline{\mathrm{~d}})^{5}}{\mathrm{D}^{4}} \cdot \frac{\mathrm{P}_{*}}{\mathrm{P}_{*}} \cdot \frac{1}{\left(\mathrm{C}^{1}\right)^{2} \mathrm{i}_{*}^{*}}
$$

## $B-3$

The following data are typical:

$$
\begin{aligned}
& 3 / 4 \text {-inch conduit - third section } \\
& 3 / 4 \text {-inch orifice plate } \\
& \text { Temperature } 21.6^{\circ} \mathrm{C} \\
& \text { Barometer } 756.8 \mathrm{~mm} \text { mercury at } 21.8^{\circ} \mathrm{C}
\end{aligned}
$$

The barometer correction for temperature is -2.7 and as discussed in the previous section a further correction of -1.O takes account of the moisture content of the air.

$$
\begin{aligned}
\mathrm{B}_{\text {corr }} & =756.8-2.7-1.0=753.1 \mathrm{~mm} \text { mercury } \\
\mathrm{P}_{*} & =\mathrm{B}_{\text {corr }}+2.99 \bar{\Delta},
\end{aligned}
$$

where $\bar{\Delta}$ is the mean gauge pressure for the length of conduit, in inches of carbon tetrachloride. For this case $\bar{\Delta}=0.94$.

Therefore

$$
\begin{aligned}
& P_{*}=753.1+2.99 \times 0.94=755.9 \mathrm{~mm} \text { mercury, } \\
& P_{*}=B_{\text {corr }}+\frac{i 4}{27.2},
\end{aligned}
$$

where it is the differential pressure across the orifice in mm of water.

Thus for i 杂 $=10.0 \mathrm{~mm}$ water
$P_{*}^{\prime}=753.1+\frac{10.0}{27.2}=753.5 \mathrm{~mm}$ mercury.

The values of log $T$ and log $\mu$ used for the following calculation were obtained from graphs of these variables vs. temperature in ${ }^{\circ} \mathrm{C}$. Similarly values of log $\mathrm{C} '$ were taken directly from Table $A-2$.

| Quantity | Value | Log10 |
| :---: | :---: | :---: |
| P | 753.5 | 2.877199 |
| D 4 |  | 5.192300 |
| i' | 10.0 | 1.000000 |
| $C^{\prime \prime}$ |  | I.780 040 |
| $\mathrm{Cl}^{1}$ |  | $\underline{1.780040}$ |
| N |  | 2.629 579 |
| $\mathrm{P}_{\text {* }}$ | 755.9 | 2.878464 |
| ( $\overline{\mathrm{d}})^{5}$ |  | 6.200240 |
| $\Delta \mathrm{P}_{*} /$ L | 1.170 | 0.068186 |
|  |  | 3.146890 |

$$
B-4
$$

| N |  | $-\frac{\overline{2} .629579}{2.517311}$ |
| :---: | ---: | ---: |

The expression for the Reynolds number was shown to be:

$$
\operatorname{Re}=0.025757 \quad \frac{C^{\prime} D^{2}}{\vec{d} \mu} \quad\left\{\begin{array}{cc}
i^{\prime} P^{\prime} \\
T
\end{array}\right\}^{1 / 2}
$$

The quantities here are the same as discussed
above.

| Quantity | Value | $\log _{10}$ |
| :---: | :---: | :---: |
| 1* | 10.0 | 1.000000 |
| P* | 755.9 | 2.877199 |
|  |  | 3.877199 |
| T |  | - 2.724 .780 |
| $\div 2$ |  | 1.152419 |
|  |  | 0.576209 |
| C' |  | I. 780040 |
| $D^{2}$ |  | $\overline{3} .596150$ |
| Factor | 0.025757 | T. 410897 |
| X |  | 4.363296 |
| d |  | 2.840048 |
| $\mu$ |  | $7.581 \quad 310$ |
| $Y$ |  | 8.421358 |
| X |  | 4.363296 |
| Y |  | - 8.421358 |
| - Re | $8.749 \times 10^{3}$ | 3.941938 |

## $B-5$

4. Sample Calculation Equivalent Diameter.

The equivalent diameter $d_{e}$ is related to the measurable quantities by the relation:

$$
\left(d_{e}\right)^{5}=f \cdot\left(c^{\prime}\right)^{2} \cdot \frac{(i \neq)}{\left(\Delta P_{*}^{*}\right)} L \quad D^{4} \frac{P_{4}^{\prime}}{P_{\mu}^{\prime}}
$$

where the quantities have the same meaning as in the expression for f .

As an example the following data were obtained for the third section of the $3 / 4$-inch conduit containing 1 strand of lo-gauge plastic covered wire.

1/2-inch orifice plate
$i_{*}^{\prime} \quad=10.0 \mathrm{~mm}$ water
$\Delta P_{* / L}=0.440 \mathrm{~mm}$ water

$$
\bar{\Delta}=\frac{0.55+0.95}{2}=\begin{gathered}
0.50 \text { in carbon } \\
\text { tetrachloride }
\end{gathered}
$$

Temperature $21.4^{\circ} \mathrm{C}$
Barometer 763.7 mm mercury at $22.8^{\circ} \mathrm{C}$
Barometer $=763.7-2.8-1.0=759.9 \mathrm{~mm}$ mercury at $0^{\circ} \mathrm{C}$ corr.
$P_{*}=B_{\text {corr }}+2.99 \bar{\Delta}=759.9+2.99 \times 0.50=761.4$
$P_{*}^{\prime}=B_{\text {corr }}+\frac{1}{13.6} \cdot \frac{\left(11_{*}^{\prime}\right)}{(2)}=759.9+\frac{10}{27.2}=760.3$

B-6
First Trial
Correction

| Quantity | Value | Log |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{P}_{*}$ | 761.4 | 2.881613 |  |
| $\Delta \mathrm{P}_{* / L}$ | 0.440 | $\frac{\overline{1} .643453}{2.525066}$ |  |
| f |  | 2.605000 | 2.6000 |
| $C^{1}$ | 0.6045 | I. 781400 |  |
| $C^{1}$ |  | I.781400 |  |
| D4 |  | 6.486784 |  |
| $\mathrm{P}_{\text {is }}$ | 760.3 | 2.880985 |  |
| $i_{i}$ | 10.0 | 1.000000 |  |
|  |  | T.535 569 |  |
|  |  | - 2.525066 |  |
| $\left(d_{e}\right)^{5}$ |  | 6.010503 |  |
| $\mathrm{d}_{\theta}$ |  | 「. 802101 | 2.8011 |
| $\mu$ |  | 7.581 070 |  |
|  |  | $\overline{8.383171}$ |  |
| 1: | 10.0 | 1.000000 |  |
| P\% | 760.3 | 2.880985 |  |
|  |  | 3.880985 |  |
| T |  | - 2.724480 |  |
| $\div 2$ |  | 1.156505 |  |
|  |  | 0.578252 |  |
| $D^{2}$ |  | $\overline{3} .243392$ |  |
| $\mathrm{C}^{\prime}$ | 0.6045 | I. 781400 |  |
| Factor | 0.025757 | $\underline{2.4 .10897}$ |  |
|  |  | 4.013941 |  |
|  |  | - 8.383171 |  |
| Re |  | 3.630770 |  |

5. Sample Calculation of $l_{e} / \bar{d}$ for $90^{\circ}$ elbow.

Data:
$3 / 4$-inch conduit empty $\bar{d}=6.919 \times 10^{-2} \mathrm{ft}$.
1/2-inch orifice plate $i_{2}=40.0 \mathrm{~mm}$ water

| Section \# | $\Delta P_{\%}$ | $\Delta P_{\theta}$ |
| :---: | :---: | :---: |
| 2 | 9.80 mm water | 9.82 mm water |
| 3 | 9.41 mm water | 10.90 mm water |
| 4 | 10.04 mm water | 10.02 mm water |

Calculation:

$$
I_{e / \bar{d}}=\frac{10}{6.919 \times 10^{-2}}\left\{\frac{10.90}{9.41} \times \frac{9.80}{9.82}-1\right\}=22.8
$$



ARE CONNECTED TO THE CORRESPONDINGLY
numbered pressure switch on the
SWITCHING PANEL.

FIGURE 1
LAYOUT OF APPARATUS

SCALE $=2 \times$ FULL SIZE
FIGURE 2
PIEZOMETER RING.
DBR REPORT 99


FIGURE 3


FIGURE 5 (i)
FRICTION FACTOR VS REYNOLDS NUMBER


[^1]




VARIATION OF de/ $\overline{3}$ WITH REYNOLDS NUMBER 3/4" CONDUIT - SECTION NO. 3 - PLASTIC COVERED WIRE


FIGURE 6 (iv)
VARIATION OF de/d WITH REYNOLDS NUMBER $11 / 4^{\prime \prime}$ CONDUIT - SECTION NO. 3- RUBBER covered wire




FIGURE 8
EQUIVALENT LENGTHS FOR ELBOWS AND COUPLINGS WHEN EMPTY.


FIGURE 9
PRESSURE LOSS FOR TURBULENT FLOW IN A SMOOTH PIPE.


FIGURE 10
PRESSURE LOSS FOR TURBULENT FLOW IN A SMOOTH PIPE.


$$
92.0(0351 \pm / 9 \cap 75) \quad 92.0(H)
$$



FIGURE 12 (i)
$d_{e} 4.74$ vs. $d_{e}$
D.B.R. REPORT 99


FIGURE 12 (ii)
$d_{e} 4.74$ vs. $d_{e}$


FIGURE 13
MASS FLOW FOR $1 / 4$ DIA. ORIFICE
D.B.R. REPORT 99


FIGURE 14
PRESSURE LOSS FOR TURBULENT PIPE FLOW.

DBR. REPORT 99


FIGURE 15
MASS FLOW vs SUPPLY PRESSURE FOR BRANCH III.

DBR. REPORT 99


[^0]:    * The smooth pipe curve was taken from paper by Moody
    "Priction Factors for Pipe Flow" Trans. A.S.M.E. Vol. 66, p.671-684, 1948.

[^1]:    FIGURE 5(ii)
    FRICTION FACTOR VS REYNOLDS NUMBER
    DBR. REPORT 99

