
https://doi.org/10.4224/8913308

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien

DOI ci-dessous.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Similarity-based Neuro-Fuzzy Networks and Genetic Algorithms in Time

Series Models Discovery
Valdés, Julio

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=8c49ea65-d303-4694-bce3-fefa00da6bec

https://publications-cnrc.canada.ca/fra/voir/objet/?id=8c49ea65-d303-4694-bce3-fefa00da6bec

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l’information

Similarity-based Neuro-Fuzzy Networks and Genetic

Algorithms in Time Series Models Discovery*

Valdes, J.
April 2002

* published in NRC/ERB-1093. NRC 44919.

Copyright 2002 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l’information

Similarity-based Neuro-Fuzzy Networks

and Genetic Algorithms in Time Series

Models Discovery

Valdes, J.
April 2002

Copyright 2002 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

 NRC 44919

ERB-1093

Similarity-Based Neuro-Fuzzy Networks and Genetic Algorithms in Time Series Models

Discovery

Julio J. Valdés
Institute for Information Technology

Integrated Reasoning Group

National Research Council of Canada

1200 Montreal Road, K1A 0R6

Canada

julio.valdes@nrc.ca

Abstract: This paper presents a hybrid soft computing

technique for the study of time varying processes based on

a combination of neurofuzzy techniques with evolutionary

algorithms, in particular, genetic algorithms . Two

problems are simultaneously addressed: the discovery of

patterns of dependency in general multivariate dynamic

systems (in an optimal or quasi-optimal sense), and the

construction of a suitable initial representation for the

function expressing the dependencies for the best model

found.

The patterns of dependency are represented by general

autoregresive models (not necessarily linear), relating

future values of a target variable with its past values as

well as with those of the other observed variables. These

patterns of dependencies are explored with genetic

algorithm, whereas the functional approximation is

constructed with a neurofuzzy heterogeneous network. The

particular kind of neurofuzzy network chosen uses a non-

classical neuron model based on similarity in the hidden

layer, and a classical neuron model in the output layer. An

instance-based training approach allows a rapid

construction of a complete network from the multivariate

signal set and the dependency pattern under exploration,

thus allowing the investigation of many prospective

patterns in a short time.

The main goal of the technique is the rapid prototyping

and characterization of interesting or relevant

interdependencies, especially in poorly known complex

multivariate processes. The genetic search of the space of

possible models (astronomically huge in most practical

problems) doesn’t guarantee the optimality of the models

discovered. However, it provides a set of plausible

dependency patterns explaining the interactions taking

place, which can be refined later on by using more

sophisticated techniques (also more time consuming) as

function approximators, to improve the quality of the

forecasting operator.

Examples with known time series show that the proposed

approach gives better results than the classical statistical

one.

1 INTRODUCTION

Multivariate time-varying processes, are common in a

wide variety of important domains like medicine,

economics, industry, communications, environmental

sciences, etc. Processes of this kind are usually described

by sets of variables, sometimes of heterogeneous nature.

Some are numeric representing quantitative magnitudes,

and others are non-numeric and describe variation in terms

of discrete states. Typical from real world settings is the

practical impossibility of recording all variables at all time

frames, thereby generating incomplete information. On the

other hand, the degree of accuracy associated with the

observed variables is very irregular, resulting in data

corpuses with different types and levels of imprecision. In

recent times, developments in sensor and communication

technology enables the simultaneous monitoring and

recording of large sets of variables quickly, therefore

generating large sets of data.

Most of the classical methods for the study of time

dependent data are limited in their applicability by the

problems just mentioned. Many of them are based on

ideal assumptions which are not fulfilled by real data, or

suffer from lack of robustness. Some of them can’t be

applied in the presence of missing values, or were derived

only for single-type data (usually for real valued only).

Often they turn too complicated or intractable with the

increase in dimensionality, or can’t tolerate or even

account for imprecision. Finally, the univariate case (or

single channel time series) has been the most studied w.r.t

the multivariate, for complexity reasons.

Predicting a system's behavior is one of the most important

problems investigated, and there is a large set of

algorithms and techniques developed from a variety of

conceptual approaches [1], [2]. They have very different

theoretical foundations, competence, robustness and

interpretability. Some of them are based on models

concerning the system's structure and composition while

others are model-free and rely only on general input-

output descriptions. In recent years, model-free approaches

based on soft-computing techniques [3] are receiving

increasing attention. In particular, neural networks, fuzzy

systems and hybrid techniques involving these are

excellent function approximators and have been used

extensively for time series prediction [4], [5].

In order to train a neural network or to set a fuzzy

prediction system, a model of the time dependencies has to

be set forth in advance. In complex, highly multivariate, or

poorly known processes, these patterns of internal

dependencies are unknown and precisely what is required

is to discover them in order to construct suitable prediction

operators. The problem of finding these models of internal

dependencies has received much smaller attention in

comparison with the construction of accurate prediction

operators.

This paper presents a soft computing approach to model

discovery. This is an extremely complex problem and

instead of trying to seek a general solution, the present

approach presents a strategy for model finding within a

particular class of dependency patterns and functional

relationships. A particular family of models is chosen and

the search space of possible particular models is explored

with evolutionary algorithms (in this paper with genetic

algorithms). Model quality during the evolutionary process

is evaluated by constructing a similarity-based neuro-fuzzy

network representing the functional relationship and

computing its prediction error. This kind of network has

the advantage of having extremely short training time,

therefore allowing the fast construction and evaluation of

many candidate models, as required by the evolutionary

algorithm. Once a set of “optimal” models is found, they

can be used in a second step for building more accurate

prediction operators. These might be feed-forward

networks, radial basis functions, fuzzy predictors, or

others, using more sophisticated training methods (usually

also more time consuming).

2. PROBLEM FORMULATION

The objective is to analyze a multivariate time varying

process and to extract plausible dependency models

expressing the relationship between future values of a

previously selected time series (the target), and the rest of

the time series, possibly including itself. From the point of

view of the nature of the variables composing the process,

some might be numeric (ratio or interval scales), and some

qualitative (ordinal or nominal scales), for instance, a

Markov chain. Moreover, these series might contain

missing values.

The set of possible functional models describing the

dependency of future values of a target series on the

previous values of the others and itself is clearly unlimited.

The classical theory of time series has studied extensively

the AR, MA, ARMA and ARIMA models (all linear) [1],

and others can be considered as well. From the

methodological point of view considered here, it is the

pattern of mutual dependencies the most important

subject. Clearly, the particular choice of the functional

family will influence the overall result. In this respect,

generalized AR or ARMA are intuitive appealing and the

simplest one is the generalized non-linear AR model.

 As stated previously, the methodology presented here

do not rely on a model of a particular kind. However, the

generalized AR model expressed in (1) will be used as an

example to illustrate the proposed approach.

()

() () ()
() () ()

() () ()
(1)

,,,

,

,,,,

,,,,

,2,1,

,222,221,22

,112,111,11

target
2

1

F

−−−

−−−

−−−

=

npnnnnnn

p

p

tStStS

tStStS

tStStS

tS

K

LLLLLLLLLLLLLLL

K

K

. signal toingcorrespond lag time :

. signalfor considered lags ofNumber : ,,

functionUnknown

Signals. : ,,,

signals. ofNumber :

:where

ji,

 1

21

. :F

ithj

Spp

SSS

n

in

n

−
L

L

 Once the model type is chosen, the problem of pattern

dependency search can be described as the simultaneous

determination of the number of required lags for each

series, the particular lags within each one carrying the

dependency information, and the prediction function. A

natural requirement on function F is the property of

minimizing a suitable prediction error.

 The exponential size of the space of possible models

(even for only a few series and a limited number of

allowed time lags), prevents an approach based on

exhaustive search. Also, the lack of assumptions about the

prediction function makes the set of candidates unlimited.

2.1 A SOFT COMPUTING MODEL MINING

STRATEGY

A direct soft computing approach to the model mining

problem can be based on: (a) exploration of a subset of the

entire model space with evolutionary algorithms, and (b)

use of a neural network of a fuzzy system representation

for the unknown prediction function. The use of

evolutionary algorithms avoids the search of the entire

model space and gives as a result a set of “quasi-optimal”

models, in the sense of the model quality criterion defined

in advance. The use of a neural network, due to its

properties as a general function approximator, allows a

flexible, robust and accurate predictor function operator.

Feed-forward networks, radial basis functions or other

network paradigms are classical choices. However, the use

of these classical network paradigms in (b), might turn out

to be difficult or even prohibitive, considering that for

each candidate model, a function of this kind has to be

constructed (i.e. trained) during search space exploration,

thus, involving long training times. Issues like the

determination of the number of neurons in the hidden

layer, the mixing of numeric and non-numeric information

(required in real world multivariate problems), and the

inclusion of imprecise values add even more complexity.

These can be treated in a natural way by using the

heterogeneous neuron model [6], [7]. This model considers

a neuron as a general mapping from a heterogeneous

multidimensional space composed by cartesian products of

the so called extended sets, to another heterogeneous

space. These are formed by the union of real, ordinal,

nominal, and fuzzy sets, with the missing value. This

construction is very general, and other kind of sets are

possible, like graphs or other mathematical objects. Their

cartesian product forms the heterogeneous space, which in

the present case is given by

 (2)

In this type of neuron (h-neuron), the inputs, as well as

the weights, are elements of the n-dimensional

heterogeneous input space. Among the many kinds of

mappings which can be defined, the one using a similarity

function [8] as the aggregation function and the identity

mapping as the activation function is particularly

appealing. This neuron maps a n-dimensional

heterogeneous space onto the [0,1] real interval in such a

way that the output expresses the degree of similarity

between the input pattern and neuron weights. Such

neuron is shown in Fig-1.

Fig-1. A heterogeneous neuron with fuzzy, real, ordinal

and nominal inputs. (? is a missing input value).

This kind of neuron can be used in conjunction with the

classical (having dot product as aggregation and the

sigmoid function or hyperbolic tangent as activation),

forming hybrid network architectures. Networks

constructed in this way exhibit general function

approximation properties [9]. The training of such

networks is usually done with evolutionary algorithms due

to the lack of continuity, typical of heterogeneous spaces,

and the presence of missing values which precludes the

use of backpropagation-like algorithms.

Since the aggregation is given by a similarity function,

there are many possible choices. Moreover, the input data

structure can be taken into consideration, resulting in

tailored neurons, more sensible to particular data

properties.

A type of hybrid network specially appropriate for the

task of model mining can be constructed by joining a

hidden layer composed by h-neurons with an output layer

having classical neurons (for example, with dot-product as

aggregation and a linear function as activation). The

weights of the output layer neuron are defined as the

corresponding values of the target series when the input is

a vector identical to the weight vector of a neuron in the

hidden layer. In the case of predicting a single real-valued

target time series, the architecture is shown in Fig-2.

Fig-2. A hybrid network with h-neurons in the hidden

layer and one classical neuron (O) in the output layer.

Input is a multivariate vector and output is a real value .

The operation of this network can be defined as a casting

of a k-best interpolator algorithm: Let each neuron in the

hidden layer compute its similarity with the input vector

and retain the k-best responses, where k is a pre-set

number of selected h-neurons. If there is a hidden neuron

identical to the input, then its output (i.e. its similarity) is

1. Then, set the output of the other neurons in the hidden

layer to 0 (i.e. disregard them) and go to the output layer.

As they are neurons with classical dot-product

aggregation, the resulting value will be exactly the weight

of the output layer neuron connected with the single

responsive h-neuron with similarity 1. Therefore, the

network response will be the observed target series value.

If there is no h-neuron identical to the input vector, then

retain the k-best similarity values, set to 0 the outputs of

the rest of the hidden layer neurons and compute the dot-

product aggregation of the neurons in the output layer.

Using as activation a linear function with a single

coefficient, equal to the inverse of the sum of the k-

similarities coming from the hidden layer, the output is the

estimate given by (3).

()∑
∈

Θ=
Kk

kk whoutput 1 , ∑
∈

=Θ
Kk

kh (3)

where K is the set of k best h-neurons of the hidden layer

and kh is the similarity value of the k-best h-neuron w.r.t

the input vector. Since those similarity values represents

the fuzzy memberships of the input vector to the set

classes defined by the neurons in the hidden layer, (3)

represents a fuzzy estimate for the predicted value.

Assuming that a similarity function S has been chosen

and that a single time series is the target, this “case-based”

neuro-fuzzy network can be built and trained as follows:

Define a similarity threshold T and extract the subset L of

the set of input patterns such that for every input pattern

x , there is a Ll ∈ s.t. TlxS ≥),(. Several algorithms

for extracting subsets with this property can be constructed

in a single cycle through the input pattern set, and are

classical in cluster analysis (note that in the particular case

of a threshold T=1, the hidden layer becomes the whole

training set). Now construct the hidden layer by using the

elements of L as h-neurons, and use their corresponding

outputs as the weights of the output layer neuron O. This

training procedure is extremely fast and therefore many

hybrid neuro-fuzzy networks of this kind can be

constructed and tested. The dimension and composition of

input training vectors will depend on the dependency

model considered for the set of time series. Different sets

of individual lags selected from each time series will

define different training sets, and therefore, different

hybrid neuro-fuzzy networks. This one-one

correspondence between dependency models and neuro-

fuzzy networks (defined as above), makes the search in the

space of models equivalent to the search in the space of

networks. Then, given a model describing the

dependencies and a set of time series, a network can be

constructed according to the described procedure, and

tested for its prediction error on a segment of the target

series not used for training (building) the network. Root

mean squared error on a test set is a typical measure.

Clearly, for each model there is a quality indicator given

by the prediction error on a test set of its equivalent

similarity-based neuro-fuzzy network, which is also a

representation of the prediction function controlled by the

dependencies expressed in the model. In this way, the

search for “optimal” models can be made with an

evolutionary algorithm minimizing the prediction error

measure. Genetic Algorithms and Evolution Strategies are

well suited for this task. In the case of genetic algorithms a

simple model coding can be used with binary

chromosomes of length equal to the sum of the number of

lags considered for each of the time series. Clearly, other

problem representations are possible. Within each

chromosome segment corresponding to a given series, the

non-zero values will indicate which time lags should be

included in the model, as shown in Fig-3.

Fig-3. Binary chromosome decodification.

 The set of multivariate series is divided into two parts:

training and test. Given a binary chromosome, a model is

constructed by applying the decodification illustrated in

Fig-3. With the model and the multivariate series, a hybrid

neuro-fuzzy network is constructed and trained, giving a

representation for the prediction function. Then, the

network is applied to the test set and a prediction error is

obtained. This prediction error is also a measure of

network (and model) quality and is used by the genetic

algorithm selection and crossover internal operators.

Models with smaller prediction error are the fittest. The

entire process is illustrated in Fig-4.

Fig-4. Genetic search in the space of dependency models.

 Chromosomes representing models are used for

constructing neuro-fuzzy networks which are trained and

evaluated, thus rating models according to their prediction

error.

At the end of the evolutionary search, the best model (or

models) are obtained and if the associated test errors are

acceptable, they represents meaningful dependencies

within the multivariate process. It is well known that

evolutionary algorithms can’t guarantee the discovery of

the “true” optimum. Thus, the set of models found can be

taken only as plausible descriptors of important

interrelationships present in the data set. It must be taken

into account that models are ranked and evolved according

to the prediction error given by the function represented by

the particular kind of neuro-fuzzy network used, therefore,

maybe other kind of neural networks based on the same

model may have better approximation capabilities. In this

sense, the proposed scheme can be seen as giving a coarse

prediction operator. The advantage is the speed with which

many thousands of models can be explored and tested in a

systematic way. Once the best of them are found, they can

be refined by using more powerful function approximators

like other type of neural networks, fuzzy systems,

techniques suggested in [5], [10] and elsewhere.

3 EXAMPLES

The described technique has been applied to different

examples from the literature [11], and a few are presented

here for illustrative purposes. Deliberately, no

preprocessing of any kind was made to any of the time

series used. In other words, raw data were used in all

cases. This is not the way in which time series data are

analyzed, but by eliminating additional effects the

properties of the proposed procedure in terms of

approximation capacity and robustness are easier to asses.

For simplicity, the same set of parameters was kept as

fixed as possible, with only minor exceptions. In

particular, in all cases the similarity threshold for the h-

neurons was set to 1. The similarity function used was

S=(1/(1+d)), where d is a normalized euclidean distance,

and the number of responsive h-neurons in the hidden

layer set to k=7. No attempt to optimize these was made,

but the subject will be commented later. The genetic

algorithm was applied in its simplest form, with: roulette

selection, single point crossover, crossover rate=0.6,

mutation rate = 0.01, generation gap=1 (i.e. the entire

population is replaced in each generation). All structures

were evaluated in each generation and elitism was

allowed.

3.1 LYNX DATA

This univariate process describes the annual number of

Canadian lynx trapped on the Mackenzie River for the

years 1821-1934 [11], and it is an example of a quasi-

periodical series with 114 observations. In this case, the

first 90 were used as training and the remaining 24 for

testing. A maximum time lag of 20 years was set, defining

a search space size of 2^(20) models. After 20000

generations with 500 individuals each a stable solution

was found starting from generation 14500. The best model

found relates future values at time t with the values at lags

(t - 1), (t - 2), (t - 10), (t - 14), (t - 15), with a RMS test set

prediction error of 549.2. For comparison, an ARIMA

model (20,0,0) was computed under the same conditions,

giving a RMS error of 1516.18.

The soft-computing model not only gives better results,

but is much simpler.

In the soft computing model miner technique only 5 time

lags (i.e. only 25% of the number of potentially available

lags) were found to be relevant for the best model found.

Actually, the best 5 models resulting from the genetic

exploration, have an average of 4.6 lags per model with

prediction errors in the range (549.2- 565.7). However,

note that in the case of the classical AR model, 20

coefficients are required. When dealing with highly

multivariate processes and exploring deeper time windows

in terms of maximum lags, big difficulties may arise.

Moreover, this model can be used only in the presence of

real-valued data.

The behavior of the predicted time series in the test set

segment (observations 91-114) for the proposed technique

and the AR model of order 20 is shown in Fig-5.

Fig-5. Comparison of the real and predicted lynx

population in the test set according to the proposed soft

computing technique and a classical autoregressive

model of the same order.

 It is interesting to observe that the soft-computing

technique is not only better in terms of RMS error and

model simplicity, , but also in terms of its phase behavior

w.r.t the original process. This is not the case of the

classical AR model.

3.2 MACKEY-GLASS SERIES.

This is a well known chaotic time series defined as

 (4)

18=In the present example, was used and a series

with 1200 observations was generated. The first 1000 were

used for training and the remaining 200 for test. A

maximum time lag of 20 time intervals was set, and 1000

generations with 100 individuals each were used in the

genetic exploration with the same settings described

above. The best model found had a RMS error = 0.00499

and was composed by the following set of lags: lags (t -1),

(t - 4), (t - 17), (t -18), (t - 19). The theoretical set of lags

is (t-1), (t-18) were retrived, but also a spurious lag at (t-

4), as well as two others at (t-17) and (t-19), however, they

are symmetrical around the expected (t-18). Only as

reference, an ARIMA (20,0,0) model was computed under

the same conditions w.r.t the training and test sets, and the

results are shown in Fig-6.

 This example shows that the proposed technique is

effectively sensitive to the interdependencies hidden in a

process, which is its main purpose. The fact that the

approximation matches so closely to the theoretical

function shows that the influence of the (t-4) lag is small

and that the overall model is a plausible one. Probably

other experimental parameters could narrow the gap

between the real underlying dependency model and the

one found by the genetic algorithm.

Fig-6. Comparison of the real and predicted Mackey-Glass series in the test set according to the proposed soft computing

technique and a classical autoregressive model of the same order.

3.3 SUNSPOT DATA

 This univariate process describes the american relative

sunspot numbers (mean number of sunspots for the

corresponding months in the period 1/1945 – 12/1994),

from AAVSO - Solar Division [12]. It contains 600

observations, and in this case, the first 400 were used as

training and the remaining 200 for testing. A maximum

time lag of 30 years was set, defining a search space size

of 2^(30) models. After 2000 generations with 50

individuals each ,the best model found relate future values
at time t with the values at lags (t-1), (t-2), (t-4), (t-10), (t-

12), (t-14), (t-16), (t-20), (t-28), (t-29), with a RMS test set

prediction error of 20.45.

 The real and predicted values for the test set are shown

in Fig-7. The prognosed behavior follows the real values

reasonably well in both the magnitude and the phase.

3.4 GAS FURNACE DATA

 In this example, input Gas Rate and Output CO2 in a

chemical plant define a bivariate process [11]. The 246

available observations were divided into a training set with

the first 249 and a test set with the remaining 47. In this

case the model included dependencies from both the input

and the output series and a maximum exploration lag of 50

was set for each. Target series was the Output CO2. Only

20 populations were generated, with 50 individuals each.

The rest of the genetic algorithm parameters were the same
as in the previous experiments.

 The best model found was composed by 26 lag terms

from the input Gas Rate series, and 25 from the Output

CO2, for a total of 51 lags. This is almost one half of the

potentially allotted model size. The RMS error obtained

for the best model was 2.045 and for the 5 best found the

error range was (2.045-2.308), with an average of 48.4 lag-

terms/model. Clearly this result indicates the ability of the

Fig-7. Comparison of the real and predicted values for sunspot data. Only the test set part is shown.

Fig-8. Comparison of the real and predicted Output CO2 in a bivariate process. Only the test set part is shown.

technique to find dependency models with reasonable size

and accuracy. The predicted Output CO2 for the test set is

shown in Fig-8. The prognosed behavior follows the real

values reasonably well in both the magnitude and the

phase.

 This is confirmed by a regression analysis of the expected

and predicted values shown in Fig-9. A highly significant

correlation coefficient of 0.908 was obtained and it is also

interesting to observe that the slope is almost 1, as should

be expected in the case of theoretical coincidence.

Fig-9. Regression analysis of the real and the multivariate

time series model miner prediction for Output CO2

(mvtsmm). Dashed lines shows the 95% confidence band.

Correlation coefficient is 0.908.

4. CONCLUSIONS

 The proposed soft-computing technique constructed with

similarity-based neuro-fuzzy networks and evolutionary

algorithms is a reasonable approach to the problem of

determining the dependency structure of complex

multivariate heterogeneous time-dependent processes. This

is shown by the presented examples, some of them using

real world data. As with other data exploration techniques,

its results can be further refined by using more

sophisticated prediction operators, once the dependency

structure is known or approximated. The approach exhibits

a fair degree of robustness and non-linearity as shown by

the examples, in which the raw time series were used

without any preprocessing, and the comparison with the

classical auto-regressive model.

 The technique, like many others, depends on different

parameters which must be set forth in advance (some of

them are conceptual, like the similarity function used).

Their influence on the results must be investigated, as well

as the limits for its applicability. For this purpose, meta-

evolutionary paradigms, like the one outlined in Fig.10 are

particularly appropriate, as a higher order evolutionary

process can explore the space of the parameters.

 In this case, several important choices have an influence

on the model population explored and the fitness (error)

value characterizing the best found. For instance, for a

fixed dependency model, the prediction error depends on

how many hidden layer neurons are allowed to respond, as

the fuzzy estimate used in the computation of the network

output also depends on how many terms will contribute to

the final value.

Fig-10. Meta-genetic algorithm architecture for the time series

model mining presented in the paper. The outhermost genetic

structure explores the space of problem parameters.

 The similarity threshold will influence the generalization

capability of the predictor operator represented by the

similarity-based neuro-fuzzy network. The maximum lag

parameter, controls the size of the search space and its

choice is very important. If it is too big, many terms within

the dependency model will add only noise or

redundancies, also increasing the computer time needed.

On the other hand, too small a value will leave out of

consideration meaningful lags carrying important

dependencies, and therefore better models, which will

never be discovered. In the multivariate model itself, in

general not all the time series in the set will carry a

significant prediction contribution to the target signal. In

other words, maybe a good model, satisfactory for

theoretical or practical purposes can be obtained only

using a proper subset of the time series involved. Clearly,

smaller, yet reasonably accurate models should be

preferred, but enforcing the use of all available time series

in the search will make this insight more difficult. The

advantages of meta-architectures like these, lead to

computational time overheads. In this case, parallel

implementations for computer clusters seems to be the

natural approach.

 Finally, more experiments must be made in order to

study the influence of other factors, like the size of the

training set required, the tolerance to imprecision and

missing information, etc. These results are only

preliminary and further experiments, research and

comparison with other approaches are required.

References:

[1] G. Box, G. Jenkins. Time Series Analysis, Forecasting and Control,
Holden-Day, 1976.

[2] A. Lapedes, R. Farber. Nonlinear signal processing using neural

networks: prediction and system modeling, Tech. Rep. LA-UR-87-2662,

Los Alamos National Laboratory, NM, 1987.

[3] L. Zadeh., The role of soft computing and fuzzy logic in the

conception, design and deployment of intelligent systems. Proc. Sixth Int

IEEE Int. Conf. On Fuzzy Systems, Barcelona, july 1-5, 1997.

[4] G. Klir, Architecture of Systems Problem Solving, Plenum Press,

 1985.

[5] D. Birx, S. Pipenberg. Chaotic oscillators and complex mapping

feedforward networks for signal detection in noisy environment. Int.

Joint Conf. On Neural Networks, 1992.

[6] J.J. Valdés, R. García, A model for heterogeneous neurons and its use
in configuring neural networks for classification problems. Proc.

IWANN’97, Int. Conf. On Artificial and Natural Neural Networks.

Lecture Notes in Computer Science 1240, Springer Verlag, 1997,

pp.237-246.

[7] J.J. Valdés, Ll. Belanche, R. Alquézar, Fuzzy heterogeneous neurons

for imprecise classification problems. Int. Jour. Of Intelligent Systems,

15 (3) , 2000, pp.265-276.

[8] J.L.Chandon, S. Pinson, Analyse Typologique. Théorie et
Applications. Masson, 1981.

[9] Ll. Belanche, Heterogeneous neural networks: Theory and

applications. PhD Thesis, Department of Languages and Informatic
Systems, Polytechnic University of Catalonia, Barcelona, Spain, July

2000.

[10] D. Specht, Probabilistic Neural Networks, Neural Networks, Vol. 3,

1990, pp. 109-118.

[11] H.J. Newton, Timeslab: A Time Series Analysis Laboratory,

Wadsworth & Brooks Publishing House, 1988.

[12] T. Masters, Neural, Novel & Hybrid Algorithms for Time Series
Prediction, John Wiley & Sons, 1995.

