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PREFACE ----=- 

This %~ansl.ation, &eal.b,g w3,T;h the rale of radl,a tisn 
in heat conduction, i s  cf' great  .~;?i'r;e;.~est t o  %he D,i,.rl.s-l.os% of 

Building Research i n  i t s  work on heat :f:kow :in ku-ilding materials 
and construct%one. The gas t i  e u l a ~  asps,?+, of Peat %Pow w l , t h  

which it  deals 2 s  a specializs.1 cxLe but 1s most par:.c,i.nent %,cs the 
study of transierit methods f o r  tns mt.jas.we1nen-t of the~mal propeab 
t i e s  which are currently of decided :interest; t o  a nuribex? of 
laboratories, 

Thanks are due t o  My1'. H,A,G, Nathan o f  the Translations 
Section, National Resea~eh Council., who tr.xns'la%.zd t . h i a  a~-kl.cle, 

OTTAWA, 
July 1956. 



THE CONTRIBUTION OF RADIATION TO HEAT CONDUCTION 

In this article an attempt is made to explain the 
processes involved in the contribution of radiation to 
the conduction of heat rather than to deduce exact 
formulae for this, Such formulae have been worked out 
extensively by the present author and have been published: 
elsewhere*, The present article deals primarily with the- 
non-stationary processes, showing that some of these make 
a smaller radiation contribution and some a larger one 
than the stationary process, The larger contribution is 
discussed here for the first time, 

It is a known fact that radiation contributes to the 
heat transfer in solid substances (crystals, glass) and light- 
weight insulation materials (fibrous materials containing a great 
deal of air). In these latter materials the density may be easily 
varied, with the radiation decreasing as the density increases 

(Figs l)s This had been calculated before but always for a linear 
temperature curve and then only for the stationary state. The 
greatest advance in this respect was made by the astronomers. 
However, the effect of radiation on non-stationary processes waa 

u+@~own. Furthermore, -thermal conductivity was arst measure$ 
only in the stationary state, a tediow method, One or two day& 
are required to establleh this state. In order to redme lateral 
flow heated guard rings are used with a view to simplifying the 
calculation. This heating must be adjusted until the lateral 
flow decreases to an admissible m i n i m  after each adjustment. it 
is necessary to re-establish the stationary state, Consequently, 
such a measurement usually takes one week, 

+van der Held, B.F.M, Appl, Scio Res, A3: 237, 1952 and a: 77, 
1953e Allg. ~8rmtechnik 4: 236, 1953* 



Therefore, rapid methods of measurement had to be 

evolved and the non-stationary methods were thought to be the 
most suitable ones, 

Many methods are applied as follows: heating with a 

heated heating emitted from a flat surface, forcing a 
sinusoidal temperature variation on a flat plane or a cylindrical 

plane, Sometimes there was agreement with the results obtained 

from ineasurements with the stationary method, but in many cases 

this was not so. Ibloreover one non-stationary method showed 

greater deviations than another, sometimes even deviations with a 

different sign, depending on the method applied. When the 

accuracies attained by the experimentalists are examined it is 

found that the deviations are greater than the errors of meaaure- 

ment. The greatest deviations were obtained for substances which 

can easily be penetrated by radiation, It is thus clear that the 

deviations are due to the radiation contribution, 

A number of questions arise here: 

1, In which case do all the methods of measure- 

ment give the same result? 

2. When there are deviations which method will 

give a useful result? 

3. ' Which quantities mugt be known in order to 
calculate the deviations? 

4. What is the form of this calculation? 

These questions will be answered in order. 

1. Only when the radiation contribution is sufficiently 

small, However, it will be shown that in some methods of measure- 
ment the radiation contribution is many times greater that that 

obtained from a stationary method, Therefore, the method of 

measurement giving the greatest deviations should be applied- 

Then, if no deviations are obtained for a particular substance, the 



pesult may be ~c l . l . ed  upon, However, difficulties may be en- 

countered Top substances which do give deviations. 

2, The frequently applied st~i%ionary method, in whf ch 

a difference In  temperature is produced across the specimen which 
is in the form sf a flat pl,ate and the heat flow is measured, 

This i~l$+fi~d nlay yield values that are %os %ow if the sample in- 

vestigated is too thin and a sufficiently thick sample is chosen 
as the si:ir_dard, In orde~ to explain this difference we examine 
an air space : th wslls havin,~ ~~~~~~~~~t tei~per%atures T, and T,. 
If these tJcm~?._. ro lures do not d i f f e r  t oc riluch, it may be assumed 

that the arnomt of heat transmitted by radiation is proportional 

to the difference in temperature, viz,, 

Q, = a (T, - T, ) cal. /sq. cm, sec. 
If the air is stationary, then the amount of heat transmitted by 
conduction is proportional to the difference in temperature and 

inversely proportional to the thickness d of the air space, The 
factor of p~opsrtionality h is called the thermal conductivity of 

the rnatez-ial in question, in this case air, Thus 

Ass~ming now that the radiation is unknown, then an apparent 
thermal ~ 2 n d ~ ~  tiyity, hs, is obtained, 1% is related to the known 
quanLities as shown by the formula 

Therefore, for very thin spaces hs = h, but with in- 
creasing thickness the lsvadiation cont~ibu+ion" increases li.nearly 

with the thickness. 



If the space is filled, e,g, with a lightweight insul- 

ation material, the radiation is partially suppressed, scarcely 
at all for very small thicknesses but if the thickness is great, 

the radiation is suppressed sufficiently for the apparent thermal 

conductivity to approach a constant value (~ig, 2). This maximum 

will now be calculated in a simple manner and a clear picture of 

the phenomenon will thus be obtained, 

If a parallel bundle of monochromatic rays strikes per- 
pendicularly a substance which absorbs homogeneous radiation and 

which has a flat surface, then a portion will be reflected and a 

portion I, will penetrate the material and will be absorbed in 
this process (absorption coefficient f3), Then the intensity of 

the radiation at distance x from the surface is reduced to I = I. 

exp (- ox), The rilean depth of penetratfon of the radiation is 

calculated next, The fraction fdx = exp (- Px) edx is absorbed 
between x and x + dx, The mean depth of penetration d then i s 

In the case of diffuse irradiation of a medium with constant index 
of refraction throughout, the mean de~~th of penetration becomes 

2/3@, where the word qnleanB indicates the mean distance between 

the point where the radiation i s absorbed, and the surface, 

In the case of ~adiatlve equllib~ium an identical 
fraction fdx from the layer between x and x + dx participates in 
the radiation striking the swfaee perpendicularly from the inside. 
merefore, the mean depth of emission, L e e ,  the point where on 

the average the radiation which eventually will leave the surface 
originates, is again X/p for normal e~nission and 2/3@ for diffuse 

emission. 

In the absence of sadiative equilibrium the depth of 
radiation remains the same, bu-& the depth of emission now appears 

to be a f'unction of the temperatlue ciis%~ibutiorn, Only in the 

presence of a constafit, tenlpera%u-e g~adienk, does the emitted 



radiation seem to have the intensity corresponding to the temper- 

ature at the point of an emission depth which equals the depth of 
penetration, The emission depth becomes greater or smaller than 

the depth of penetration, depending on whether the temperature 

over the first section lies above or below the tangent to the 

temperature curve at the surface. 

The radiation phenomena within the material areinow ex- 

mined in greater detail, The radiation which at constant temper- 

ature gradient in the material passes an arbitrary surface will 
.on the average come from a surface at a distance of 2/38 at the 
one side and will on the average be absorbed at a distance of 
2/38 at the other. At the point of the imaginayy plane it just 
seems as if exchange of radiation takes place here at a distance 

of 4 / 3 ~  and between two absolutely black surfaces with temperatures 
equal to the temperatures at that point, The difference in temper- 

dT The rate of flow is thus: ature is =$ a;;. 

dT The conduction alone contributes the portion -h  to the total 
dT rate of flow - hs z. Hence the radiation contribution to the 

heat conduction is 

Neither the change in the speed of propagation of the 
radiation in the material nor the dispersion has been taken into 

account as yet, If, according to Clausius, I is multiplied by n" 
(n = index of refraction) and @ is replaced by @ + o = E (a = dis- 
persion coefficient, E = extinction coefficient), the correct 

formula for the radiation contribution in the stationary case is 
obtained: 

This rough argument gives some insight into the phenonle- 
non but does not fit the non-stationary case, Furthermore, it is 



not knotvn how much the radiation contribution is if a tri- 
dimensional temperature gradient is involved, The deduction of 

the following fomnulae is given elsewhere* and has therefore been 

omitted here, It will suffice merely to mention and explain it, 

The differential equation of Fourier is now replaced by two 

forrrmlae. 

In the complete Fourier equation (heat balance): 

or, in words, the heat    AT), supplied to an element of volume 
per unit of volume by the pure conduction, increased by the differ- 

ence between the radiation absorbed and that emitted for this 
element of volume per unit of volume (integral term) is converted 

6T 
into a temperature increase ($ p -). 

6t 

In the above formula 

Cp = specific heat at constant pressure, 

P = specific mass, 
T = temperature, 
t = time, 
A = pure thermal conductivity (hence withou$ radiation contri- 

bution), 

A = Laplace's operator = 62 6" 6' 

n = index of refraction, 
G = + 6 y ' + G = '  

I3 = absorption coefficient, 
Id4 = radiation emitted by an absolutely black surface per unit 

of surface and time between the wavelengths 4 and G + dL 
at an absozute temperature T, 

4134 = omnidirectional radiation at temperature T, 
4Jd4 = present omnidirectional radiation for wavelengths between 

8 and 4 + dG. 

+The answer to question 4 may be found in van der Held, E.F,Pl, 
Appl, Sci. Res, A3: 237, 1952 andA4: 77, 1953* Allg. ~Xrmetechnik 
4: 2368 19535 



The second formula for the relationship between J and 

I is 

or, in words, the omnidirectional radiation for wavelengths be- 

tween e and e + d& (4~de) in an element of volume emanates from 
other elements of volume where radiation is being produced (PI 
part of the first integral) or being dispersed (OJ part of the 

first integral) and from surfaces where radiation is being pro- 

duced (e1 part of the second integral) or being dispersed ((1-e) 
J, part of the second integral), These radiations are weakened 
by absorption and dispersion (factor exp (- E r)) and are distribu- 

ted over steadily increasing spheres, 

In the above formula 

a = dispersion coefficient, 
E = p + a = extinction coefficient, 

r = distance between an arbitrary element of volume dY and that 

under consideration, 

e = emissivity of the adjacent surfaces, 

J, = radiation striking an element of the adjacent surface, 
P = distance between surface element dO and the element of 

volume under consideration, 

Y = angle which this r makes with the normal to the surface 
element do. 

The second integral of equation 11 makes no appreciable 

contribution to J for the phenomenon being considered at a dis- 
tance from the surfaces, Then by means of equatim (II), equation 
(I) may be expressed in the following form: 



where 

etc, ,  and vhere A? i s  the p times application of the Laplace oper- 
ator. 

A t  f i r s t  glance t h i s  fornlula appears t o  be ra ther  hope- 

l e s s ,  but i t  seems possible to  present a number of solutions,  

anong others by the rnethod o f  separation of variables,  

For example, i f  i t  i s  a case of differences i n  cooling 

and if  T = G ( x  y, z) @ ( t ) ,  then the d i f f e r e n t i a l  equation re- 
1 d6 quires tha t  be constant, say -k (negative because fading 

processes a re  involved), A solut ion may then be found by put t ing 

a t  the same time AG/G = - C r  a second constant, C must then 

s a t i s f y  the equation 

C p p  k = h  C + 4 l* 3. - O 1  d 4 ,  
0 +a+(%) 8 T 

where 
4 - 

tan-' x2 $ ( x : , = l - - .  
X2 

It w i l l  be noted tha t  0 4  $ 4  1 and Jr = 0 f o r  x = 0 and = l f o r  

x =a. From the limiting conditions efgenvalues of k and C a r e  
abtained and the problem may be solved with eigenfunctions thus 

obtained, A s  the rank increases k increases continuously and s o  
does h. C, A t  the same time the inl;egrPal approacl~es a l imit ing 

value. A s  a r e s u l t  the radin tiovl ~ o n k r l b ~ n  Lion f o r  eigenfunctiol~s 
with high ranks irlay ;;e rleglec Leu r:clr~j,tlred with the p w e  corl~iuc tlon, 

These thus behave l i k e  $he tern17 .).I' , I  Fowie r  s e r i e s  'nut. with a 



lower heat conduction (i,e,, the pure heat conduction) than those 

of the stationary process ( ~ i g .  3). 

An example in which the radiation contribution is 
1 d0 greater than that in the stationary case is obtained if = + k 

is chosen, e,g. accelerated heating, If now AG/G = + C, then C 
must satisfy 

Cp p k = L C + &  

where 

It can be seen that X >, 0 and X (0) = 0 and X (1) = -. 
Furthermore, X alone is real for 0 < x 4 1. As k is increasing 

C the integral is assuming high values such that X (F) C $ will be 
satisfied by this equ-ation, while C will certainly be smaller than 

e 2 *  

Let us take the case that Q <<a, thus a substance with 

small absorption and great dispersion (this need only be the case 

for a region of small wavelengths), then, for sufficiently large 

k, C approaches the constant value 3 s2 @/a 3 a Q for the wave- 

length where this quantity is at a niinirrmm, Cp p k then is large 
with respect to h C  and the radiation contribution is practically 

identical with Cp p k / ~  = Cp p k/3 (a@) min.. If this result is 
compared with the radiation contribution in the stationary case, 

it becomes evident that for this non-stationary process the radi- 

ation contribution may be many times that in the stationary case, 

Comparison of t w ~  materials with identical pure con- 
duotion, and, in the stationary case, identical radiation contaa5- 
bution, shows that the material with lorv absorption but high dis- 

persion has the greatest increase in the radiation contribution, 
i,e., in a measurement with definite non-stationary methods results 
are obtained avhich differ greatly i'rom those obtained by means of 2 



stationary method, An example of this is a fine crystalline rock 
consisting chiefly of pure quartz, The difference will be great 
if the temperatures exceed 150°C. 

Even by simple reasoning such a conclusion may be 

reached, For example, if the surface of such a piece of rock is 

suddently subjected to a high temperature a radiation field will 

form directly in the material. This radiation field is far ahead 

of the pure conduction, and, irmedintely begins to heat the rock 

at a distance from the surface a long time before the pure con- 
duction can take effect, 

In addition to the solution discussed, it was possible 

to calculate the temperature distribution over a point source, a 

line source, and an extended source by means of the theory of 

perturbations, This will not be discussed in detail here, but it 

should be noted- that this method, which depends on the non- 

stationary method of heating with an elec*ic heating wire (method 

of ~tglhane and ~yk), produces the same radiation contribution as 

the stationary method does for sufficiently thick layers. 

It would be interesting to study the surface phenomena 
more closely. However, this will only be done in the stationary 

state in the unidimensional case, Therefore, it is assumed that 
the pheriomena take place at an imaginary plane perpendicular to 

the direction of m x i r m  temperature drop inside the material, It 
can be proved that J = I at a distance from the surface. A greater 
amount of radiation reaches the plane from the pegion of higher 

temperature than from that of lower temperature, If the radiation 
from the region with the higher temperature be denoted by the index 

+ and that from the region with the lower temperature by the index 
-, then J+ = I + AI and J- = I - AI, If the temperature remains 
uncharged, then the rate of heat flow will be lower at the s?_u?r:~ce 
than below it, This is impossible in the stationary case and the 
temperature in the material is going to drops In order to maintain 

the initial temperature distribution at a distance from the 



boundary, the temperature of the boundary must be increased until 

radiation + conduction at the surface are equal to the rate of 
flow everywhere along the boundary and particularly to that at a 
distance from the boundary, This seems to indicate that there is 

additional resistance at the boundary which may be taken into 
account by introducing a transfer coefficient a such that the rate 

of flow, - hS '@ , at a distance from the houndary is equal to 
a@,, where Qo denotes the effective increase in temperature at the 

boundary; a is a complex function of f3, a, A, T and'* e (answer to 
question 3 ) .  

With this the stationary experiments may be corrected in 
order to calculate the total heat conduction in thick layers. The 
heat conduction in kapok with air and kapok with hydrogen (as a 

buoyant gas) as a function of the density is shown as an example in 

Fig. 4. 

These investigations have shorn that discretion must be 
used in selecting the method of measurement. It is suggested that 
the latter be adapted to the purpose for which the heat conduction 
is measured, If stationary processes are involved the methods 
employing flat plates (stationary) and the heating wire (~tglhane 
and Pyk, non-stationary) are suitable, For materials which are 
used at high temperatures and with variable temperature fields, 
other non-stationary methods ma.y be considered with a view to 
obtaining an idea of the effect of radiation contribution, Metals 
are substances whose radfation contributions may be neglected 
under all circumstances. Theref ore, measurements on metals may be 
carried out by any reliable method. 



Fig. 1 

The thermal conductivi ty of rock wool a s  a funct ion of dens i ty  
and terny~erature, 

Fig. 2 

The contr ibut ion of r ad i a t ion  to  heat  conduction a s  a funct ion 
of h y e r  thickness, d, f o r  kapok plxclred 2part,  0 = mensure- 
rnents with lfblack" walls ,  ernissivity 0.94. A = rne:~s~~reinent 
with aluminium willls. $ = proport ional- i ty f a c t o r  of the radi- 

a t i o n  contr ibut ion t o  very th ick layers.  



A = Fourier terin with lovr rsnlr; B = Fourier term with high rank. 
It is evident that the r:ltio of pure conduction (proportional to 
d@/dx) to radiation exchange (proportional to O) is greater for 

case ~-th&n for case A. 

The apparent thermal conductivity, (At), the pure ther11~1 coil- 
ductivity (A) and the maximurn thernx3.1 conductivity (Am) of kapok 
in air and kapok in hydrogen as EI function of the density; the 

first two for a layer of 3 crn, thickness. 


