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Abstract

One technique for establishing the absorbed dose to water under reference condi�

tions is calorimetry� The Ionizing Radiation Standards Group at NRC has focused

its e�orts on water calorimetry and� in previous work� used a small calorimeter con�

taining stirred water to study the heat defect of various aqueous systems� This same

calorimeter� combined with high�precision Fricke dosimetry� was also used to establish

the absorbed dose at a point in a large water phantom�

More recently� a large water calorimeter� capable of giving directly the dose at a

point� has been constructed� The water quality at the measurement point is controlled

by isolating a small volume of water within a sealed glass vessel� An extensive set of

measurements using this calorimeter has now been completed using ��Co ��rays and

�� MV x�rays� This report describes the main design features of the calorimeter and

summarizes the results of the measurements�

For the optimum run time �about 	�� s
 the sample standard deviation is about

���� for an absorbed dose of about 
 Gy� This leads to a standard uncertainty on

the mean of about ��
� for a series of 	� runs� The absorbed dose measured when

operating the calorimeter at �oC is ���� lower than the value obtained when operating

at ��oC� Calculations indicate that this discrepancy is likely due to convective heat

transfer at ��oC�





The NRC sealed water calorimeter �March� ����� i

Contents

� Introduction �

� Calorimeter Design �

��� Overview of the Calorimeter � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Glass Detection Vessel � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 


��� Thermistor Probes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Electronics � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Determination of Absorbed Dose ��

��� Thermistor Calibration � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


��� Transient Thermistor Response to Radiation � � � � � � � � � � � � � � � � � � ��

��� Conductive Heat Transfer � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Convective Heat Transfer � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


��
 Radiation Field Perturbation � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��
 Dose Pro�le Non�Uniformity � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Density of Water � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Heat Defect � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Calorimeter Performance ��

� Relative Absorbed Dose Measurements ��

� Comparisons of Absorbed Dose for ��Co ��


�� Dose Based on Sealed Water Calorimetry � � � � � � � � � � � � � � � � � � � � ��


�� Dose Based on Stirred Water Calorimetry � � � � � � � � � � � � � � � � � � � ��


�� Dose Based on Graphite Calorimetry � � � � � � � � � � � � � � � � � � � � � � ��

� �	 MV Results ��

� Discussion ��


 Acknowledgements �	



ii PIRS��	
�

References ��

List of Figures

� Side view of the sealed water calorimeter � � � � � � � � � � � � � � � � � � � � �

� Photograph of the glass detection vessel � � � � � � � � � � � � � � � � � � � � 


� Close�up of the glass detection vessel � � � � � � � � � � � � � � � � � � � � � � �

� Wall thicknesses for vessels �� and �� � � � � � � � � � � � � � � � � � � � � � �


 Diameters for vessels �� through �� � � � � � � � � � � � � � � � � � � � � � � ��


 Wall thicknesses for vessels �� through �� � � � � � � � � � � � � � � � � � � � ��

� Thermistor probe assembly � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Schematic of the calorimeter electronics � � � � � � � � � � � � � � � � � � � � � ��

� Apparatus for transient thermistor response � � � � � � � � � � � � � � � � � � ��

�� Transient thermistor response to radiation � � � � � � � � � � � � � � � � � � � ��

�� Calculated excess temperature for vessel �� � � � � � � � � � � � � � � � � � � ��

�� Calculated excess temperature for vessel �� � � � � � � � � � � � � � � � � � � ��

�� Electron beam heat loss correction � � � � � � � � � � � � � � � � � � � � � � � ��

�� Heat defect for H��O� water � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�
 Typical calorimeter run � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�
 Noise and drift characteristics � � � � � � � � � � � � � � � � � � � � � � � � � � �


�� Response with various aqueous systems � � � � � � � � � � � � � � � � � � � � � �


�� Summary of ��Co measurements � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Absorbed dose comparison for ��Co � � � � � � � � � � � � � � � � � � � � � � � ��

�� Summary of �� MV measurements � � � � � � � � � � � � � � � � � � � � � � � �


List of Tables

� Thermistor calibration data � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Calculated correction for excess heat � � � � � � � � � � � � � � � � � � � � � � �


� Summary of heat defect results � � � � � � � � � � � � � � � � � � � � � � � � � ��



The NRC sealed water calorimeter �March� ����� iii

� Fricke correction factors � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


 Values of �G � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �



 Summary of dose measurements for ��Co and �� MV � � � � � � � � � � � � � ��



iv PIRS��	
�



The NRC sealed water calorimeter �March� ����� �

� Introduction

Radiation therapy requires that the absorbed dose to the patient be known accurately�

The �rst step in determining the dose to the patient is to determine the dose to water

under well�de�ned reference conditions� One of the best techniques for establishing the

absorbed dose absolutely is calorimetry and� for many years� graphite was considered the

best material to use for building an absorbed dose calorimeter� The main features of various

graphite calorimeters have been reviewed by Laughlin and Genna ���

� and Domen �������

and graphite calorimeters continue to be used as absorbed dose standards �DuSautoy ���
�

Guerra et al ���
� Chauvenet et al ������ The principal disadvantage of graphite calorimetry

is that a conversion process is necessary in order to convert from dose�to�graphite to dose�

to�water�

Several years ago Domen ������ showed that it was possible to construct and operate a

large water calorimeter� However� results with early water calorimeters were disappointing

in that the measured absorbed dose was several percent di�erent from that obtained using

conventional dosimetric techniques� It was soon recognized that the most likely reason for

the discrepancy was due to a heat defect caused by radiation�induced chemical reactions

in the water� Our group has devoted considerable e�ort to the study of the heat defect of

aqueous systems �for a review of the literature� see Ross and Klassen ����
�� and we have

identi�ed several aqueous systems which are well suited for water calorimetry�

Until recently� all our work on water calorimetry has been carried out using a small water

calorimeter in which the water was stirred �Ross et al ������ This design was well suited

to the study of the relative response of various aqueous systems� The small size eased the

problem of keeping the calorimeter clean� and the small water volume ���� ml� permitted

the water to be saturated quickly with various gas mixtures� By stirring the water� thermal

equilibrium could be quickly established� thus allowing several aqueous systems to be studied

in a short time�

On the negative side� a small calorimeter containing stirred water cannot be used for

establishing directly the dose at a point in a large water phantom� We were able to overcome

this limitation by using the small calorimeter to calibrate Fricke dosimeter solution in terms
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of absorbed dose to water �Ross et al ������ The calibrated Fricke solution was then used

to establish the dose at a point in a large water phantom �Shortt et al ������ The main

technical challenge in determining the absorbed dose to the stirred water arises from the need

to determine the heat transferred to the water from the irradiated glass� In addition� the

e�ect of the vial walls on the Fricke response must be known �Ma et al ������ A signi�cant

limitation of this approach is that it requires not only expertise in water calorimetry� but

also in high�precision Fricke dosimetry�

Our studies of the heat defect of various aqueous systems showed that water quality

must be carefully controlled� Using this knowledge� Domen ������ constructed a large water

calorimeter containing a smaller� sealed element which could be �lled with a well�de�ned

aqueous system� Because the temperature sensors were located within the sealed vessel� the

temperature change was measured in water having a known heat defect� He referred to the

calorimeter as a sealed water �SW� calorimeter� Domen showed that measurements with

either N��saturated or H��saturated water gave results for ��Co ��rays which were in good

agreement with the results obtained using graphite calorimetry�

Seuntjens et al �����a�� �����b� constructed a calorimeter similar in design to that of

Domen� They used it to measure the absorbed dose due to medium energy x�ray beams

�Seuntjens et al ����a�� to study the heat defect of various aqueous systems �Seuntjens et al

����b� and to measure the absorbed dose due to protons �Palmans et al ���
�� For ease of

construction� Seuntjens et al used Lucite rather than glass for the walls of the sealed vessel

within the larger water volume� This led to some di�culties with reproducibility at low

doses� presumably due to contamination of the water by the Lucite�

We have completed the construction of a calorimeter which combines the major design

features of both the Domen and Seuntjens calorimeters� The calorimeter has passed various

operational tests and has been used for measurements of the absorbed dose to water in a

��Co ��ray beam and a �� MV x�ray beam�

In section � we describe the main features of the calorimeter� while in section � we

outline how the calorimeter is used to establish the absorbed dose� Section � shows how the

calorimeter responds to ��Co ��rays� while section 
 summarizes its response using di�erent

aqueous systems� Sections 
 and � describe the results of measurements of the absorbed
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dose to water obtained using ��Co ��rays and �� MV x�rays�

� Calorimeter Design

For graphite calorimetry� the volume element in which the radiation�induced temperature

rise is to be measured must be thermally isolated from the rest of the phantom� However�

the thermal di�usivity of water is much smaller than that of graphite� and Domen ������

showed that� under appropriate conditions� the temperature rise could be measured directly

at a point in a large water phantom� Ignoring for the moment various correction factors� the

dose to water� Dw� is given by

Dw � cw � �Tw� ���

where �Tw is the measured temperature increase and cw is the speci�c heat capacity of water�

At room temperature the speci�c heat capacity of water is approximately ���� �J�kg��K�

so an absorbed dose of � Gy gives a temperature rise of only ��� mK�

The NRC SW calorimeter is based on the design developed by Seuntjens ������ at the

University of Gent� Belgium� In this section we summarize the construction details� the

electronic circuitry and the measuring techniques for the NRC calorimeter� In addition� we

identify various correction factors which are required for accurate absorbed dose determina�

tion� These include corrections for conductive heat transfer� for radiation�induced chemical

reactions and for the e�ects of perturbations of the radiation �eld due to the presence of

non�water materials� Each of these e�ects may in�uence the actual measured temperature

increase� �Tw� and therefore the measured dose�

��� Overview of the Calorimeter

The main elements of the calorimeter are shown schematically in �gure �� Note that it is

intended for use in radiation beams that are directed horizontally� The water is held in a

Lucite tank� �� cm on each side� The exterior walls of the tank are insulated with 
 cm thick

Styrofoam� A magnetic stirrer for agitating the water is built into the bottom of the tank�

The lid on the tank contains several holes through which calibrated platinum resistor probes
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Figure �	 Side view of the sealed water calorimeter� The drawing is not to scale� but the sides

of the outer box are approximately �
 cm long� The principal elements of the calorimeter are

labelled on the drawing� Note that �uid is only allowed to �ow through the heat exchanger

in the water when a signi�cant change in operating temperature is required�
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are inserted to measure the water temperature� The lid also ensures a motion�free air space

above the water surface� The window of the tank through which the radiation �eld enters is

machined down to � mm over an area of �� cm by �� cm� The window is thermally isolated

with a removable� 
 cm thick Styrofoam plate� The calorimeter phantom is enclosed in an

insulated wooden box� �
 cm on each side� in which the temperature is stabilized using fans

and a heat exchanger� The cooling �uid can also be made to pass through a heat exchanger

in the water tank so as to accelerate the process of changing the operating temperature of the

water in the calorimeter� The calorimeter is designed for operation at any temperature from

�oC to �
oC� It typically takes � to � hours to bring the temperature to �oC when starting

from room temperature� The bath controlling the temperature of the liquid in the heat

exchangers is stable to ����oC� An additional calibrated platinum resistor probe monitors

the temperature of the air circulating around the calorimeter�

��� Glass Detection Vessel

The temperature increase due to irradiation is measured in the centre of a cylindrical glass

vessel which is designed to isolate a small volume of high purity water from the water in

the rest of the phantom� A typical detection vessel is shown in �gures � and �� It consists

of a central cylindrical portion� about �
 mm long� which is attached to conical end pieces�

Threaded �ttings on the end pieces hold the thermistor probes in place� The vessel is

mounted in the water tank on an adjustable slide so that its position along the beam axis

can be varied�

The cylindrical portion of the �rst vessel we used was formed using glass blowing tech�

niques� This approach led to considerable variation in the wall thickness �see �gure ��� and

the vessel was not perfectly round� Variation in the wall thickness lead to uncertainties in

the wall correction factors� and lack of roundness makes it di�cult to establish the probe

position within the vessel� This vessel is referred to as ��� and it has an outside diameter

of approximately 
� mm�

Later vessels have been formed by �rst grinding glass tubing to a wall thickness of � mm�

Because precision grinding techniques are used� similar to those used for making lenses� the

wall thickness is uniform and the vessels closely circular� The conical end pieces are attached
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Figure �	 Glass detection vessel No� �� with the thermistor probes aligned in the centre�

The thick white line in the upper left of the photograph is part of the thermistor signal cable

after it has emerged from the waterproof tubing�
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Figure �	 A close�up view of glass detection vessel No� �� with the thermistor probes aligned

in the centre� The alignment decals are visible on the glass wall�
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Figure �	 Variation of the vessel wall thickness along the length of the cylindrical portion�

The measurements were done using a liquid displacement technique� and thus represent the

average wall thickness at that position� Vessel �� was formed using glass blowing techniques�

while the cylindrical portion of vessel �� was formed by grinding glass tubing to the required

dimensions�
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to the central cylindrical section using glass blowing techniques� The �rst vessel constructed

in this way was labelled ��� and it has an outside diameter of 
��
� mm� Its wall thickness

as a function of position is shown in �gure ��

Because the rate at which heat from the glass vessel is transferred to the measuring point

depends strongly on the vessel diameter� it was decided to construct any additional vessels

with a diameter close to that of vessel ��� Vessels �� through �� have a mean outside

vessel diameter of approximately 
��

 mm� and the length of the cylindrical portion is

about �� mm� The variation of the diameter from vessel to vessel� and from point to point

on each vessel� is shown in �gure 
� The total variation in diameter is less than ��� mm� The

variation in wall thickness from vessel to vessel and within each vessel is shown in �gure 
�

The maximum deviation from the nominal � mm thickness is ��� mm�

Before the ends are attached to the cylinders� an indexing machine is used to mark the

circumference at ��o intervals� Ceramic decal lines are placed on each mark and �xed in

place by annealing the cylinders at 

�oC� These lines have a width of ��� mm and are used

for aligning the probes within the vessel� and the vessel within the phantom�

A glass valve is attached to either end of the vessel to allow it to be �lled� drained and

bubbled with various gases� Upon sealing o� the vessel� care is taken to be sure a small gas

bubble is left behind� This bubble allows the water to expand and contract between �oC

and ��oC without breaking the vessel�

Temperature measurements in the vessel are performed using glass thermistor probes� the

ends of which can be positioned at the centre of the vessel using a set of screws �see �gure ���

Originally� the appropriate positioning of the probe ends with respect to lines on the outside

of the vessel was done using a telescope� In a separate investigation we established that

optical distortion did not a�ect the alignment by more than ��� mm� Since then� we have

found that probe alignment can be done adequately by eye� certainly within ���� mm�

When preparing for measurements� the vessel is �rst �lled with high purity water� and

then bubbled for one to two hours with H�� H� and O�� N� or Ar gases� depending on the

aqueous system to be used� Then the probe position is adjusted and the vessel is suspended

in the water phantom� Calorimetric measurements can be started typically three hours

later if the water in the tank is at operating temperature and the bubbling is done at room
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Figure 
	 Variation of the vessel diameter from vessel to vessel and within each vessel� The

three data points in each vertical column correspond to measurements in one plane passing

through the axis of the cylinder� The second column associated with each vessel corresponds

to measurements in a plane at ��o with respect to the �rst� The positions labelled �End�

were approximately �� mm from each end of the cylinder� or about �
 mm from the centre�
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Figure 
	 Variation of the vessel wall thickness from vessel to vessel and within each vessel�

The positions labelled �End�� �Centre� and �End� have the same meaning as in �gure 
�
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temperature�

All the results given in this report have been obtained using either vessel �� or ���

��� Thermistor Probes

Our procedure for constructing thermistor probes is somewhat di�erent from that recom�

mended by Domen ������� We begin with Pyrex tubing having a diameter of � mm and a

wall thickness of � mm� The tubing is heated and pulled down to an outside diameter of

��
 to ��
 mm over a length of � cm� The inside diameter is checked using ��� mm diameter

wire� Probes of acceptable dimensions are then �ame�sealed on the small end and tested for

leaks using a helium leak detector� We estimate the thickness of the glass wall at the ther�

mistor bead to be ���
 mm to ���� mm� The ���� mm diameter wires of the Thermometrics

thermistors ����
 mm in diameter� are soldered to ��� mm diameter copper extension wires�

and one wire of the pair is inserted into ��� mm diameter microtubing to avoid electrical

shorts� The bead and lead assembly is then slid into the glass envelope� Using a piece of

microtubing� UV�curable adhesive is injected into the end of the probe to glue the thermistor

bead to the glass� A Delrin rod is �tted into the large end of the glass probe to act as a

strain relief for the screened cable to which the ��� mm copper extension wires are soldered�

Waterproo�ng is achieved by passing the signal cable through a latex rubber tube which

is stretched over the end of the glass tubing to form a water�tight seal� The latex tube is

su�ciently long that the open end is outside the water phantom� The details of the probe

construction are shown in �gure ��

��� Electronics

DC bridge techniques were used by Domen ������ for the NIST water calorimeter� while

Seuntjens ������ used an AC bridge� Either approach provides adequate sensitivity for

absorbed dose calorimetry� although the noise performance of the AC approach is probably

superior� Although all our previous work on calorimetry at NRC has used DC bridges� we

have chosen to use an AC bridge with the new water calorimeter�

Figure � is a schematic diagram of the electronics used with the calorimeter� The plat�
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Figure �	 Drawing showing the details of the thermistor probes�



�� PIRS��	
�

Figure �	 Schematic drawing of the electronics used with the water calorimeter� The lock�

in ampli�er� the decade box and the ��wire ohmmeter can all be controlled and read out

remotely� The stirrer� valve system and bath are also remotely controlled�
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inum resistor probes� which are used for temperature monitoring� are connected to a remotely

controlled scanning system �based on a Keithley ���� multimeter equipped with a scanner

card�� The bridge balancing resistor� the lock�in ampli�er and the multimeter are all con�

nected to a PC using a GPIB interface card� thus allowing each to be controlled and read out

remotely� The software allows the bridge to be balanced� the characteristics of the lock�in

ampli�er to be changed� the acquisition of data according to a preselected scheme and the

calculation of the extrapolation curves and the dose� In addition� the stirrer� valve system

and bath can be remotely controlled�

The drawing in �gure � accurately re�ects the con�guration of the bridge at ��oC� when

each thermistor has a resistance of approximately 
 k�� At �oC� the thermistor resistance

increases to approximately �� k�� so the �� k� decade box does not have enough range to

permit the bridge to be balanced� To compensate� an extra �� k� resistor is added in series

with the decade box�

The response of the bridge per unit change in thermistor resistance is obtained by chang�

ing the resistance of the decade box by a known amount� A detailed electrical model of

the bridge� including the impedances imposed by the lock�in ampli�er� is used to relate the

measured response to a change in the decade box to the response expected due to a change in

the thermistor resistance� The �� M� input impedance of the lock�in represents a signi�cant

loading of the bridge circuit� and its e�ect is largest when the bridge is asymmetric ��oC

operation�� If ignored� it can lead to errors of up to ���� in the estimated voltage change

per unit change of thermistor resistance�

� Determination of Absorbed Dose

The raw data obtained from a calorimeter run consists of the measured bridge voltage as

a function of time� Changes in bridge voltage can be converted to changes in thermistor

resistance� and these in turn can be converted to changes in temperature� if the thermistor

sensitivity is known�

The approximate relationship between the thermistor resistance� R� and the absolute
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temperature� T � is

R � R�e
����T���T��� ���

where R� is the thermistor resistance at temperature T�� and � is a constant� In fact� � is

not strictly constant� but is found empirically to change by about seven parts per thousand

per degree� From equation � the thermistor sensitivity� S� de�ned by

S �
�R

R

�

�T
� ���

can be shown to be given by

S � �
�

T �
� ���

Once the temperature change� �Tw� is known� the absorbed dose to water� Dw� can be

obtained from

Dw � �Tw � cw � kc � kv � kp � kdd � k� �
�

�� kHD
� �
�

where cw is the speci�c heat capacity of water� kc and kv are corrections for conductive and

convective heat transfer� respectively� kp is a correction for perturbations of the radiation

�eld by the glass vessel or probes� kdd is a correction for the non�uniformity of the lateral

dose pro�le� k� accounts for the change of the density of water with temperature and kHD is

the heat defect� The following sections describe brie�y the thermistor calibration procedure

and summarize our knowledge of the various correction factors�

��� Thermistor Calibration

Before use� the thermistor probes must be calibrated� The main requirement is that the

probes accurately measure temperature changes� because detailed knowledge of the absolute

temperature is not required for calorimetry� Our probes are calibrated against platinum

resistance probes �RTDs� which in turn are calibrated against NRC temperature standards�

Accurate knowledge of a measured temperature change requires accurate knowledge of

the thermistor constant� �� Domen ������ has reported signi�cant changes in � with time�

thus emphasizing the importance of routine checking of the calibration factors� We have

developed an automated calibration system in which the thermistors and RTDs are mounted

in a separate Dewar containing a solution of ��� water and ��� ethanol� The temperature
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of the solution in this Dewar is controlled using a bath running under computer control�

The thermistor probes are protected against breakage by supporting each probe in a glass

tube which is open at one end� The thermistor probes are connected to a Keithley K����

multimeter through a scanner card� and measurements of the thermistor resistance are carried

out using the instrument�s ��wire ohm mode �on the ��� k� scale� the bead power dissipation

is about ��
 �W�� The Dewar water temperature and corresponding thermistor resistance

is measured at a series of temperatures from �� to ��oC �for calorimeter operation at �oC�

and from �� to ��oC �for operation at ��oC�� From these measurements� the thermistor

sensitivity can be calculated� A full calibration for both temperature ranges for a set of three

thermistors typically takes about � hours but virtually no human interaction is required once

the system is running�

If equation � were an exact representation of thermistor response to temperature� then

lnR would be linear with ��T � In fact� measured data are better represented by a second

order polynomial of the form

lnR � a�  
a�
T
 

a�
T �

� �
�

We note from equation � that

� � d lnR�d���T ��

and if applied to equation 
 gives

��T � � a�  
�a�
T

� ���

If equation 
 is recast in the form of equation � with � de�ned according to equation �� then

R� is no longer a constant� but is a weak function of T � given by

R��T � � exp

�
a�  

��T �

T�
�

a�
T �

�
� ���

Of course� equation 
 could be used directly to calculate the thermistor sensitivity �equa�

tion �� without introducing � and R�� However� the temperature dependence of � and R�

as given by equations � and � is quite weak and thus equation � �with � and R� constant�

remains a useful starting point for estimating thermistor resistance and sensitivity�

Table � shows calibration data for six thermistor probes� The calibrations were separated

by six to nine months and any variations in � were less than ����� This suggests that our
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Probe No�� Time of calibration

Op� Temp�

May ���
 Jan��Feb� ���� Mar� ���� Sep� ����

�� �oC �������������
�� ����������������

�� ��oC ��

������
�����

�� �oC ��
��
����������

�� ��oC ������
�������
�

�� �oC ���
������
����� �����������
����

�� ��oC �����������
����

�� �oC �����
���������� ������
���������

�� ��oC ��
���
���
����� ��
�������
�����


� �oC ��
���
��
�
��
� ��
��

��
���
��


� ��oC ������
��
������ �����
����������


� �oC ��������������
� ����������������


� ��oC ��
����������
�� ��
��

�������
�

Table �	 Thermistor material constants measured at di�erent times� Probes �

to � were constructed in the spring of ���
� and had failed by January� �����

Probes � to 
 were constructed in the spring of ����� Thermistor 
 has not

yet been irradiated� The values of � and R� �in parentheses� were obtained

using equations � and �� The reference temperature� T�� was taken to be �
oC

������
 K�� and � is expressed in degrees �Kelvin� and R� is in ohms�

probes do not show the same variations in sensitivity as observed by Domen ������� but

more calibration sets are required before we can be con�dent of their stability�

Because of the electrical energy dissipated in the bead� the temperature of the bead is

higher than that of the water� This temperature di�erence is an indication of the quality

of the thermal coupling between the bead and the water� The excess bead temperature

is obtained by measuring the change in thermistor resistance as the thermistor power is

changed� We �nd that the bead temperature rises by about ��� mK per �W of power
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dissipated in the bead�

If the thermistor power is high� Domen ������ showed that the change in thermistor

resistance during an irradiation run can be large enough to change signi�cantly the ther�

mistor power and� thus� the temperature di�erence between the bead and the water� If not

corrected for� this change in temperature would erroneously be interpreted as part of the

temperature change caused by the absorbed dose� Our measured data are corrected for this

e�ect� although it is negligible �less than ����� for our standard operating power level of


�� �W�

��� Transient Thermistor Response to Radiation

Domen ������ has reported on results obtained at NIST which show that thermistors can

tolerate doses of several MGy with no adverse e�ects� Calorimetric measurements of the

absorbed dose for radiation therapy purposes are unlikely to require doses of more than a

few kGy� Thus� we can safely assume that radiation will have no e�ect on the quiescent

behaviour of our thermistor probes�

However� there remains the possibility that radiation might induce transient e�ects which

persist for tens of seconds and thus distort the post�irradiation drift curve� To test this

possibility� we constructed the apparatus shown in �gure �� Two closely matched thermistors

were placed in a �ow of temperature�regulated water� The thermistors were mounted in

opposite arms of a Wheatstone bridge so that the output voltage was close to zero when

water was �owing over the probes� A collimated electron beam was used to irradiate one of

the thermistors while the second remained in a �eld�free region� Because of the �owing water�

both probes continued to see approximately the same temperature� and any transient e�ects

after the beam was turned o� would be due to radiation�induced changes in the thermistor

response� Measurements were carried out at �oC and ��oC�

The results are summarized in �gure ��� The dose rate from the electron beam was

approximately �
� Gy�min� which would give a temperature rise of about 
� mK in ��� s

in stagnant water� This would correspond to a signal of approximately �
� �V in �gure ���

The radiation�induced signal when the beam was on amounted to � or � �V and was due to

local heating of the water and probe� However� any transient e�ects were over in less than
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e beam
-

temperature controlled
water flow in

temperature
controlled
water flow out

thermistor probe 1

thermistor probe 2

V1 V2

T1 T2

Figure �	 Schematic of the setup used to measure the transient response of thermistors to

radiation� The same temperature�regulated water �owed over both thermistor probes� The

whole assembly was insulated from the environment using Styrofoam sheets� One thermistor

was irradiated with a high dose rate ��
� Gy�min� electron beam and the di�erence in

response of the two thermistors was measured� The bridge circuit on the right shows how the

di�erence signal was obtained by placing the thermistors in opposite arms of a Wheatstone

bridge�
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Figure ��	 Measured transient response of a thermistor to radiation� The electron beam dose

rate was approximately �
� Gy�min� and measurements were carried out at both �oC and

��oC� A � �V change in bridge output corresponds to a temperature change of approximately

��� �K� and in ��� s the signal would have been about �
� �V if the water had been stagnant�
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�� s after the beam was turned o�� and were less than ��
 �V� or ���� of the signal due

to the absorbed dose in stagnant water� Assuming that thermistor response is not altered

by dose or dose rate� these results show that any transient change in thermistor response

should not a�ect the measured absorbed dose under normal operating conditions by more

that �����

��� Conductive Heat Transfer

Conductive heat losses in a large water calorimeter may result from two sources� Firstly�

because the heat capacity of glass is about one�sixth that of water� the radiation�induced

temperature rise in the glass would be about six times that in water� if it were not that

most of the heat generated in the glass is transferred to the water� Secondly� temperature

gradients within the water because of non�uniformities in the absorbed dose distribution will

lead to conductive heat transfer� We now examine each of these e�ects in more detail�

To calculate the e�ect of heat transfer from the glass we use the following simplifying

assumptions	 the calorimeter is irradiated uniformly� the glass vessel is an in�nitely long

cylinder� the thermistor bead is located symmetrically at the end of the glass probe� each

probe is semi�in�nite in length� Under these assumptions� rotational symmetry reduces the

problem to two dimensions� This two�dimensional space is divided by an irregular rectangular

grid with a high resolution in the neighbourhood of the probe� probe tip and vessel� and a

low resolution elsewhere� Heat transfer calculations begin at the start of the irradiation�

For every rectangular cell of the grid the transport of heat energy is calculated in discrete

time steps� The calculated e�ect on the temperature at the point of measurement can either

be subtracted from the measured signal before the run is analysed� or the run can �rst be

analysed to get an approximate temperature change which is then corrected for the e�ects of

heat conduction� Additional details have been reported by Seuntjens and Palmans �������

The calculated excess temperature rise in a ��Co beam� for the NRC geometry and for

di�erent irradiation times� is plotted in �gure �� for vessel dimensions similar to those of

vessel ��� Results for vessels similar to vessel �� are shown in �gure ��� The decrease in

temperature immediately after the irradiation is caused by excess heat from the probe that is

conducted away from the probe axis into the water� while the increase in temperature at later
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Figure ��	 Calculated excess temperature at the end of each thermistor probe� caused by

heat conduction from the probes and from the vessel wall� The results apply for vessels with

dimensions similar to those of vessel ��� The decrease in temperature immediately after

irradiation is due to heat �owing away from the probes� The increase in excess temperature

several minutes after the irradiation is due to heat produced in the vessel wall and transported

to the point of measurement�
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Figure ��	 Same as �gure ��� but for vessel ���
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times is due to excess heat from the vessel reaching the probes� Table � gives a summary of

Irradiation Post�irradiation drift interval �s�

time �s� �� 
� ��� ��� ���

�� ����
 ����� ����� ����� �����

�� ����
 ����� ����� ����
 �����


� ����� ����� ����� ����� �����


� ����� ����� ����� ����� �����

�� ����� ����� ����
 ����� �����

�� ����� ����� ����� �����  ����

��� ����� ����� ����� ����� �����

��� ����� ����� ����� �����  ����

��� ����� ����
 ����� �����  ����

��� ����� ����� �����  ����  ����

Table �	 Calculated correction factor� kc� expressed as �� on the linear extrap�

olation to mid�run due to excess heat produced in the end of thermistor probes

and in the vessel wall for vessels with dimensions similar to those of vessels ��

and ��� A positive value for the correction means the temperature rise ob�

tained by linear extrapolation should be increased accordingly� Calculations

were performed for di�erent irradiation times and for di�erent intervals used

to specify the post�irradiation drift curve� The �rst and second row for each

irradiation time is for vessels �� and ��� respectively� The post�irradiation

drift interval starts �� s after the end of the irradiation�

calculated values of kc for vessels �� and ��� For ��� s irradiations with probes of ��
 mm

diameter� corrections of less than ���� are calculated for �ts of the post�irradiation drift in

the range of �� to ��� s�

For beams of ��Co ��rays or high energy x�rays� the largest dose gradients occur in

the buildup region or at the edges of the �eld� If calorimeter measurements are restricted

to depths beyond the dose maximum� and if the �eld size is reasonably large ��� cm by
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�� cm or larger�� then the e�ect of conductive heat transfer due to dose nonuniformities is

very small �Roos ����� Seuntjens ������ However� dose gradients are much more severe for

electron beams and conductive heat transfer can be a problem� Although our current e�orts

are directed towards the use of the sealed water calorimeter for high�energy photon beams�

some initial calculations of the e�ect of conductive heat transfer in a �
 MeV electron beam

are presented in �gure ��� These preliminary results suggest that water calorimetry should

also be feasible for high�energy electron beams�

��� Convective Heat Transfer

In addition to heat transfer by conduction� heat transfer by convection can occur in a liquid

calorimeter� If the water in the calorimeter is heated nonuniformly� buoyant forces will

arise due to local density changes in the gravitational �eld� These forces may lead to �ow

within the liquid� and this �ow will contribute to heat transport� The �ow rate may depend

on the absorbed dose and on time� and thus the e�ective heat transfer coe�cient at the

point of measurement will not be constant� Under these conditions� the standard approach

of extrapolating initial and �nal drifts to mid�run �Laughlin and Genna ��

� may not

accurately account for convective heat transfer�

Convection in a water calorimeter can be caused in di�erent ways� It can arise at lo�

cations of sharp temperature gradients caused by uncontrolled temperature changes in the

environment� or by gradients due to successive irradiations �Domen ������ Depending on

construction details of the probes� sharp temperature gradients may be present in the vicin�

ity of the thermistor probe ends due to the dissipation of electrical power in the thermistors�

It can also be caused when non�water materials in direct contact with the water produce

excess heat when irradiated �e�g�� the Lucite window��

Schulz and Weinhous ����
� pointed out that one way of avoiding altogether the onset

of convection is to operate the calorimeter at �oC� because at this temperature the volume

expansion coe�cient of water is zero� Schulz et al ������� ������ constructed a calorimeter

which could operate at �oC and used it to perform detailed absorbed dose measurements� Our

calorimeter can be operated at any temperature from �oC to about ��oC and by operating

at both �oC and room temperature� one can check for systematic e�ects due to convection�
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Figure ��	 Calculated conductive heat�loss correction due to dose gradients in a �
 MeV

electron beam as a function of the depth of the measuring point� The peak of the depth

dose curve is at about ��
 cm� The correction was calculated for several irradiation times� as

indicated by the di�erent symbols� The series of identical symbols at each depth shows the

e�ect of using di�erent time intervals ��� to ��� s� to characterize the post�irradiation drift�
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It may also be desirable to investigate further the onset of convection around the tips of

the probes� Domen ������ studied this problem using forced convection� and concluded that

there was no evidence for thermistor�induced convection for power levels below 
� �W� On

the other hand� Seuntjens ������ presented data that suggested that convection may be

present for thermistor powers as small as 
 �W�

We assume that kv in equation 
 is unity when the calorimeter is operated at �oC� Data

presented later in this report indicate that kv may be about ����� at ��oC for our vessel

con�guration�

��� Radiation Field Perturbation

The presence of the calorimeter detection vessel and the glass thermistor probes perturbs

to some extent the radiation �eld when compared to the situation where these objects are

absent� The perturbation of the ��Co radiation �eld by the vessel has been measured using

a PTW�M���
�� ionization chamber� and amounts to ������ � �����
� Since ��� mm of

glass would attenuate the ��Co beam by about ��
�� these measurements show that photon

attenuation in the glass is partially compensated by the slightly increased dose contribu�

tion from scattered photons when the vessel is present� This observation was con�rmed by

performing a correlated sampling Monte Carlo simulation of the photon transport through

the water phantom� By scoring the �uence in a spherical region on the beam axis at the

position of the centre of the vessel with the vessel and probes absent and with both materials

present� the correction factor was found to be ������ � ������� in good agreement with the

measurements� Using the same measuring technique we determined kp to be �����
 � ������

at �� MV�

��� Dose Pro�le Non	Uniformity

The lateral pro�le of the dose in the x�y plane perpendicular to the beam axis at the measur�

ing point is slightly non�uniform depending on the �eld size and the source detector distance�

We measured the x�y dose pro�le using a PTW�M���
�� ionization chamber with a cavity

volume of ����
 cm�� and used these data to calculate the correction factor� kdd� required
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to obtain the dose at a point on the beam axis� For the calorimeter� kdd is ������ for ��Co

��rays and ������ for �� MV x�rays and depends slightly on the separation of the probe ends�

For the standard quartz Fricke vials the corresponding results are ������ for ��Co ��rays and

�����
 for �� MV x�rays�

��
 Density of Water

For practical reasons� ion chamber measurements need to be done at room temperature� If

the calorimetry measurements are done at �oC� a small correction� k�� is necessary to deter�

mine the dose at ��oC� Because the density of water increases by ����� as the temperature

decreases from ��oC to �oC� there will be more water overlying the measuring point at �oC

than at ��oC� Taking the dose gradient for ��Co to be 
��cm� the extra attenuation at the

calibration depth of 
 cm will be approximately ���

�� leading to a value for k� of �����

�

In order to estimate k� for �� MV x�rays� we have taken the depth�dose distribution

measured at ��oC and scaled the depth axis so that x� � x�������� This leads to a value for

k� of ������ at the calibration depth of �� cm�

��� Heat Defect

The use of calorimetry to measure absorbed dose is complicated by the fact that the measured

heat energy may not correspond to the energy absorbed from the radiation �eld� The heat

defect is used to quantify the di�erence between the energy absorbed� Ea� and the energy

appearing as heat� Eh� and it is de�ned by

kHD �
Ea � Eh

Ea
� ���

The heat defect is positive for endothermic processes� while it is negative if the radiation

induces exothermic processes in the calorimeter� For water irradiated by low LET radiation�

the heat defect is almost entirely due to radiation�induced chemical reactions �Ross et al

������

The heat defect can be calculated using the established model for the radiolysis of water�

In this model� the ionizing radiation �rst produces localized clusters of reactive species� called
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spurs� After about ��� �s� the spur products act as if they are homogeneously distributed�

and are assigned yields� Gi� where the subscript� i� identi�es the species� The concentrations

of the spur products and other reactive species within the aqueous solution are followed

using homogeneous reaction kinetics� where the reactions involved� the rate constants and

the values of Gi are obtained from the published literature on the radiolysis of water� In

general� there will be n species which participate in m reactions� The rate constant for

reaction i is denoted by ki� and for the aqueous systems we have studied to date� only �rst

and second order reactions are involved� Mathematically� the problem is equivalent to solving

a set of coupled �rst order di�erential equations of the form

dCi

dt
� �Gi

!D �
X

�st�Ci�

kjCi �
X

�nd�Ci�

kjCiCk  
X

�st�Ci�

kjCk  
X

�nd�Ci�

kjCkCl� ����

The concentration of species i is given by Ci� and there are n equations similar to equation ���

The �rst term in the equation gives the production rate of species i due to spur reactions�

where � is the density of water and !D is the dose rate� The labelling ��st� and ��nd� on the

sums indicate that they are to be taken over all relevant �rst and second order reactions�

respectively� while �Ci �� and �Ci �� indicate that they are to be taken over all reactions in

which species i is being consumed or produced� respectively� Speci�c values for the initial

yields and rate constants can be found in Klassen and Ross �������

At a speci�ed time after the irradiation� the yield of species i can be expressed as G�
i�

where the prime is used to distinguish it from the yield at ��� �s� Then the heat defect is

calculated using

kHD �
nX

i��

G�
i ��Hi� ����

where �Hi is the heat of formation for species i� Note that G
�
i can be negative or positive�

The model calculations can be tested experimentally by comparing the relative response

of di�erent aqueous systems� Klassen and Ross ������ have identi�ed several aqueous systems

which are suitable for water calorimetry� These include pure water� water saturated with H�

gas and water saturated with a 
��
� mixture of H� and O� gases�

In general� both Gi and ki depend on temperature� Because the calorimeter is operated

at both �oC and ��oC� the temperature dependence of the heat defect must be estimated�

For those systems which attain a steady state after some modest accumulated dose� the
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situation is quite straightforward� The only concern is whether or not the accumulated dose

required to reach steady state �and thus zero heat defect� depends on the temperature� Using

data from Elliot ������ on the change of Gi and ki with temperature� the heat defect for

H��saturated and pure water was calculated for a dose rate of ��
 Gy�min at �oC and ��oC�

At both temperatures� the heat defect after an accumulated dose of � Gy was less than �����

Furthermore� the reactions go to completion almost immediately after the irradiation stops�

The situation is more complicated for water saturated with H� and O� gases� This system

is exothermic over a wide range of accumulated dose� and requires that the heat defect be

calculated as a function of dose rate and accumulated dose� Although this might be seen as

a signi�cant disadvantage� it is largely outweighed by the fact that earlier work �Klassen and

Ross ����� had shown that H��O� water is insensitive to impurities� Furthermore� various

tests �Klassen and Ross ����� indicated that the standard model for the radiation chemistry

of water was su�ciently well established so as to introduce no signi�cant uncertainty into

the calculated heat defect�

This perspective has been called into doubt by some recent work based on a revised model

for the radiolysis which shows that the reactions take more than ��� s to go to completion

�Klassen and Ross ������ This means that the �nal drift interval will have some curvature�

thus complicating the standard procedure of estimating heat losses by extrapolating to mid�

run� Figure �� shows how the calculated e�ective exothermicity depends on irradiation

temperature and on the time after irradiation� Earlier models for the radiolysis showed that

the exothermicity was within ���� of its �nal value within the �rst �� s after irradiation�

The reasons for this di�erence are presently not known but are under investigation�

� Calorimeter Performance

Figure �
 shows the response of the NRC calorimeter to ��Co ��rays at a dose rate of

about ��
 Gy�min� The calorimeter was operated at �oC� and the power dissipated in each

thermistor bead was 
�� �W� The irradiation time was ��� s� and ��� s of pre� and post�

irradiation drift is shown� The resistance change of the thermistors corresponding to this

measurement amounted to ��

 � on a total resistance of ������ �� In the inset� the bridge
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� mixture of H� and O� gases� Results

are shown for three di�erent dose rates� but the irradiation time was adjusted so that the

same dose was delivered in each case�
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response to an increase of � � in the bridge arm opposite to the thermistors is shown� By

analysing the bridge circuit� this change can be related to a corresponding change in the total

thermistor resistance� Tests for reproducibility of the calorimeter response showed that� for

��� s runs� the sample standard deviation �obtained from a set of � to �� runs� was ��� to

����� If the irradiation times were shorter� i�e�� �� s or 
� s� the sample standard deviation

was ���� and ����� respectively�

Figure �
 shows an expanded view of the noise level on a pre�irradiation drift curve just

before a �� s irradiation run� The amplitude of the noise signal converted to equivalent

temperature amounts to about �� �K �a typical run leads to a temperature change of about

��� �K� and the pre�irradiation drift rate �heating� is ��
� �K�s�

Figure �
 shows a sudden� but small� change in response when the radiation beam is

turned on and o�� The e�ect can be made substantially larger by irradiating various com�

ponents of the bridge circuit� More recent work has shown that this jump was due to a

combination of ground loops and improper cable shielding in the bridge circuit� The present

bridge con�guration shows no such beam�related transient response� but there is no evidence

that the transient had any impact on the measured absorbed dose�

� Relative Absorbed Dose Measurements

The measurement of absorbed dose using water calorimetry requires a correction for the heat

defect of the aqueous system used in the calorimeter� We tested the calorimeter response

at ��Co for several aqueous systems� including water saturated with Ar or N� gas �i�e�� pure

hypoxic water�� water saturated with a mixture of H� and O� gases in a ratio ���
�� and

water saturated with H� gas� The water used was puri�ed using a Milli�Q UV Plus water

puri�er� The results were obtained using vessel �� and are summarized in �gure ���

The H��O� gas mixture system� at the indicated ratio� is calculated to produce an exother�

mic heat defect which is approximately constant up to ��� Gy and amounts to ��
��� The

other two systems are expected to produce a zero heat defect� Each of the points in the

�These calculations were based on the model referred to as Model III in Klassen and Ross ������� and

include an estimate of the e�ect of the sluggish approach to equilibrium �	gure �
��
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aqueous systems� The measurements were done using ��Co ��rays� with the calorimeter
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correction was applied to any of the measured results� The solid horizontal lines represent

the mean values of each data set� The dashed horizontal line is the predicted result for the

H��O� system�



The NRC sealed water calorimeter �March� ����� ��

�gure represents the average of a number of measurements �� � �� individual runs�� Each

run was corrected using the heat�loss correction discussed in section � and the averages are

corrected for decay to refer to the dose rate of the NRC ��Co source on October �� ���
�

The pure hypoxic water measurements were performed twice� once using Ar�saturated

water and once using N��saturated water� With these systems� after an initial settling period�

there was no signi�cant dose dependence of the calorimeter response although the individual

measurement sets� performed at di�erent accumulated doses� di�ered by up to ��
�� The

H� system also showed an initial dose dependence which is usually associated with removal

of traces of oxygen� The measurements with the H��O� mixture were performed at low dose

as well as after about ��� Gy accumulated dose� and showed no signi�cant dose dependence�

The full lines in �gure �� represent the averages of each of the systems for which the nu�

merical values are summarized in table �� The horizontal dashed line is the model prediction

Chemical system Apparent dose rate � di�� Heat defect ���

in Gy�min �Oct� �� ���
� from pure water �model calc��

pure water ��
�� � ���
� ��� ���

H��O� ��
�� � ���
� ��� ��
 �exo�

H� ��
�� � ����� ��� ���

Table �	 Summary of results obtained using three aqueous systems� i�e�� pure

hypoxic water �Ar or N� saturated�� H��O� ����
�� mixture and H� satu�

rated water at �oC� The heading of column � is labelled �Apparent dose rate�

because the measurements have not been corrected for the heat defect� The

indicated uncertainties �one standard deviation� exclude systematic uncertain�

ties associated with the heat defect� heat loss correction factors� positioning�

and thermistor calibration�

for the H��O� system �assuming zero heat defect for the other systems� and lies about ����

below the measured response� Earlier models for the radiolysis of water �Klassen and Ross

����� give results which are in much better agreement with experiment� The di�erences

between the various models which lead to this discrepancy are under investigation but for
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the present work we use the heat defect predicted by the most recent model�

� Comparisons of Absorbed Dose for 
�Co

The �rst NRC standard for absorbed dose to water due to ��Co ��rays was based on graphite

calorimetry �Henry ������ The dose has also been measured using Fricke dosimetry which

was calibrated using stirred water calorimetry� In this section� the value of the absorbed

dose obtained using the new� sealed water calorimeter will be compared to the values of dose

obtained previously�

��� Dose Based on Sealed Water Calorimetry

Because the dose rate at the standard � m position from the ��Co source was too low to

achieve adequate precision� the calorimeter was positioned approximately �� cm from the

source� and the �eld size was adjusted to be �� cm by �� cm at the measurement depth

of 
 cm� A pointer system attached to the head of the ��Co unit was used to accurately

position the calorimeter�

Figure �� summarizes all of the ��Co absorbed dose results obtained using the SW water

calorimeter� This �gure includes the data presented in �gure �� as well as several additional

measurement sets� All of the correction factors� including that for the heat defect� have

been applied� As pointed out in section 
� there appears to be a problem with our current

estimate of the heat defect of the H��O� system at �oC� In addition� we note that the ��oC

results are systematically higher than the �oC results� Work underway suggests that this

discrepancy is due to convective heat transfer at ��oC� so we do not include the ��oC results

in estimating the absorbed dose rate� Using all of the other data in �gure �� and referencing

the dose rate to October �� ���
 gives

!Dw�SW � ��
��� ��
�� Gy�min� ����

Leaving out the H��O� data reduces the dose by about ���
�� The overall uncertainty

�� 	� includes uncertainties on the heat loss correction factors �������� positioning ��������
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�eld perturbation correction ����
��� thermistor calibration constant ������ and heat defect

���
���

Once the dose was established calorimetrically� the glass vessel was removed from the

calorimeter phantom� and Fricke dosimeters were irradiated at the reference position� The

ferrous sulfate solution was held in pillbox�shaped vials with either quartz or Lucite walls�

The centre of each vial was positioned at a depth of 
 g�cm� and the vials were irradiated

to nominal doses of �� ��� �
 and �� Gy� The absorbed dose� Dw�F� can be determined from

the measured change in optical density� �OD� using

Dw�F �
�OD

�l�G
fkvialkdd� ����

where � is the density of the ferrous sulfate solution ������ g cm���� l is the optical pathlength

through the solution� � is the extinction coe�cient of the ferric ion� Fe�	� and G is its

radiation�induced chemical yield� The factor� f � converts the dose�to�Fricke to dose�to�water�

kvial corrects for the e�ect of the vial wall and kdd accounts for transverse dose gradients over

the vial� Values of f and kvial were taken from Ma et al ������� while kdd was obtained from

measured dose distributions �section ��
�� The results are summarized in table ��

Radiation kvial f kdd depth

Quality Lucite quartz �cm�

��Co ������ ������ ������ ������ 


�� MV ������ ����
� ������ ������ ��

Table �	 Conversion factors and correction factors used in conjunction with

the Fricke dosimeter vials for ��Co ��rays and �� MV x�rays �TPR��
�� � ���
���

The values of f and kvial are from Ma et al ������� while kdd was measured for

the present work� The uncertainties quoted on the calculated values of f and

kvial are about ���
�� while those on kdd are small enough to ignore�

In a typical experiment� � to �� vials were irradiated and two to four vials were kept as

controls� The precision obtained using the quartz vials was generally much better than that

obtained using the plastic vials� but the measurements with both vial materials con�rmed

that the vial wall correction factor is close to unity for ��Co�
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The determination of Dw�F using equation �� requires knowledge of �G� Alternatively� we

can substitute the dose determined calorimetrically� Dw�SW� for Dw�F and solve equation ��

for �G� Doing so gives

�G�SW� ��Co� � ������ ����� cm��J� ����

��� Dose Based on Stirred Water Calorimetry

The Fricke calibration factor� �G� has also been determined using stirred water calorimetry

�Ross et al ����� Klassen et al ������ From measurements using �� MV x�rays the result is

�G�AW� ��MV � � ��
�
� ����� cm��J� ��
�

where the label �AW� has been used to indicate �agitated water��

More recently� the stirred water calorimeter was used to establish the dose at ��Co and

calibrate Fricke solution at this radiation quality� These measurements led to a value for �G

of �Ross et al ����� Klassen et al �����

�G�AW� ��Co� � ������ ����� cm��J� ��
�

This result is ���� lower than that obtained using the sealed water calorimeter �equation ���

and ���� lower than the value at �� MV�

Rather than expressing the relationship between the two calorimeters in terms of �G� the

Fricke results can be used to compare the absorbed dose values that the two calorimeters

would give� The result is

Dw�SW�Dw�AW � ������ ������ ����

The uncertainty presented in equation �� includes ��
� for kHD� Because the ratio of

absorbed dose obtained using di�erent water calorimeters is being reported� it might be

expected that the correction for the heat defect cancels out� However� the results obtained

with the stirred water calorimeter are based mainly on the H��O� aqueous system� while those

obtained using the sealed water calorimeter are based mainly on hypoxic water� Figure ��

shows that our present model for the radiolysis of water leads to a signi�cant discrepancy

between these two systems� and this should be re�ected in the uncertainty estimates�
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��� Dose Based on Graphite Calorimetry

The NRC ��Co source has also been calibrated in terms of absorbed dose to water using

a graphite calorimeter �Henry ������ This calibration is maintained using ion chambers

and Fricke dosimetry and� until recently� constituted the Canadian absorbed dose to water

standard at ��Co� We calibrated a typical thimble chamber �model NE�
��� s�n 

�� against

the Henry standard and used it to determine the dose to water at the reference point in the

SW calorimeter� Comparing the dose established this way to that obtained using the SW

calorimeter gives

Dw�SW�Dw�gr � ������� ������ ����

We note that if the gap correction of ����� were applied to the Henry calorimeter �Shortt

et al ����� this ratio would become ����

�

Figure �� summarizes the present status of our data relating to the measurement of

absorbed dose for ��Co ��rays� The value based on the NIST standard was obtained from

a recent intercomparison using ion chambers�� The results indicate that the absorbed dose

measured with the Henry calorimeter is low by ��� to ��
��

On � July� ����� NRC declared that the sealed water calorimeter operating at �oC will be

the basis of its ��Co standard for absorbed dose to water� Values for absorbed dose obtained

using this new standard will be larger than the old Henry standard by about �����

� �	 MV Results

The �� MV x�ray beam was produced by allowing �� MeV electrons from the NRC accelerator

to impinge on an aluminum target� ��
 cm thick� A �at x�ray �eld was generated by sweeping

the electron beam as described by Ross et al ������ and no �attening �lter was required�

The beam was collimated using a Therac��� collimator to a �eld size of �� cm by �� cm

at the measuring depth of �� cm� The beam quality indices� TPR��
�� and �dd����x� were

measured to be ���
� and ����� respectively�

�Private communication from one of the authors �Ken Shortt�� Ken used a series of ion chambers to

compare the NRC and NIST standards in �����
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Figure ��	 Summary of absorbed dose measurements for ��Co obtained using various tech�

niques� Di�erences are expressed as a percentage with respect to the original NRC standard

for absorbed dose� which was based on the Henry graphite calorimeter� Three of the NRC

results are no longer considered relevant	 �NRC graphite standard� because no gap correc�

tion was applied� ��� MV stirred water� because of the variation of �G with energy� and

���oC sealed water� because of convective e�ects�
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The calorimeter was positioned so that the entrance window on the Lucite tank was ap�

proximately � m from the upstream side of the target� and the dose rate at the measuring

position was approximately ��
 Gy�min� The x�ray beam was monitored using two trans�

mission monitor chambers� one situated on the upstream side of the collimator and one on

the downstream side� Day�to�day variations in the monitor chambers were tracked using a

thimble chamber mounted in an aluminum block thick enough to provide full buildup� This

assembly was placed in the beam just upstream of the calorimeter at least once a day and

the thimble chamber output used to normalize the readings from the monitor chambers� The

day�to�day changes in the monitor chambers was generally less than �����

All of the calorimeter measurements were done using vessel ��� and measurements were

carried out at ��oC and �oC� Once a series of measurements was completed� an NE�
��

thimble chamber �s�n 

�� was placed at the measurement point and its calibration factor

determined� The ion chamber response was corrected for pressure and temperature� but no

other corrections were applied� The results are summarized in �gure ��� and the following

features are evident	

� For the pure water system� the absorbed dose measured at ��oC is about ��
� bigger

than at �oC�

� The H� system gives a value for the dose which agrees well with that obtained using

the pure water system�

� At ��oC� the dose obtained using the H��O� system may be slightly larger �������

than that measured using the pure water system�

� At �oC� the dose obtained using the H��O� system is signi�cantly larger �������

than that measured using the pure water system�

Both the discrepancy with the H��O� system and the di�erence between ��oC and �oC

are consistent with the ��Co results�

Fricke dosimeters were also irradiated at the reference point in the calorimeter phantom�

The same procedure was used as for the ��Co irradiations� and the various factors required

in equation �� are given in table �� The value obtained for �G for �� MV x�rays is given in
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Figure ��	 Summary of absorbed dose measurements for �� MV x�rays obtained using the

sealed water calorimeter� The results are given as the calibration factor �absorbed dose to

water� obtained for a thimble ion chamber� �The ion chamber response was corrected for

pressure and temperature� but no other corrections were applied�� Each datum point is the

mean of several calorimeter runs� and the statistical uncertainty on the mean is shown by the

error bars� The horizontal lines represent the mean values of the data within each cluster�
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table 
� along with the ��Co result� Table 
 shows that the value of �G obtained with the

Radiation Number of independent �G

Quality experiments �cm� J���

��Co 
 ����� �� ��
���

�� MV�TPR��
�� � ���
�� � ��
�� �� ��

��

Change in �G between �� MV and ��Co ��
�� �� ��
���

Table 
	 Values of �G for the Fricke dosimeter based on the NRC sealed water

calorimeter operated at �oC� The measured change in �G is shown in the last

line� The uncertainties incorporate the systematic uncertainties associated

with Fricke dosimetry and water calorimetry� including the ��
� uncertainty

on the heat defect� However� the uncertainty on the heat defect is not included

in the uncertainty on the change of �G�

sealed water calorimeter increases by about ��
� as the photon beam quality increases from

��Co to �� MV� This change is consistent with the change of ���� obtained with the stirred

water calorimeter �section 
���� All of our data on the variation of �G with beam quality is

summarized and compared to the results obtained by others in a recent paper by Klassen

et al �������

Equation �
 gives the value of �G obtained for �� MV x�rays using the stirred water

calorimeter� while the equivalent result for the sealed water calorimeter is given in table 
�

These results can be used to compare the values of the absorbed dose to water for the two

calorimeters� and the result is

Dw�SW�Dw�AW � ����
� ������ ����

Equations �� and �� show that the absorbed dose measured with the sealed water calorimeter

is lower that that obtained using the stirred water calorimeter by ��
 to �����
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 Discussion

Building on the work of others over the past twenty years� we have constructed a water

calorimeter which will serve as the basis of the Canadian standard for absorbed dose to

water for ��Co ��rays and high energy x�rays� Preliminary measurements and calculations

indicate that it can also be used to establish the dose in electron beams with energies greater

than �
 MeV� Some modi�cations to the sealed glass vessel may be necessary if the absorbed

dose is to be measured for electron beams with energies below �
 MeV�

The main characteristics of the calorimeter can be summarized as follows	

� Separate glass vessel to control the water purity� and thus the heat defect� in the

vicinity of the measuring point�

� Operation at any temperature from �oC to ��oC�

� Designed for operation in horizontal beams�

� Computer�controlled operation�

� At clinical dose rates of about ��
 Gy�min� the standard deviation is about ���

Thus� a set of �� runs leads to a standard uncertainty on the mean of about ����� The

precision improves as the dose rate increases�

Radiation�induced chemical reactions are thought to be the most likely mechanism giving

rise to a heat defect in water calorimetry �Ross et al ������ However� we continue to consider

other mechanisms which might contribute to a heat defect� or which might a�ect the response

of the calorimeter� The following have been examined during the course of this work	

� The e�ects of pressure on the speci�c heat of water� The glass vessel is �lled and

sealed at room temperature� but may be operated at �oC� The volume occupied by the

water decreases as the temperature decreases� but the size of the glass vessel changes

very little� leaving the water under slight negative pressure�

� The e�ect of the �ow of charge set in motion as a result of the radiation� High energy

beams tend to transport charge along the beam axis and this charge must eventually

�ow back upstream�
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� The radiation beam carries momentum into the water phantom which might lead to

water movement along the beam axis�

Rough estimates indicate that none of these mechanisms will have a measurable impact on

the calorimeter response�

The results of absorbed dose measurements at ��Co and �� MV are summarized in table 
�

All known corrections� except for the heat defect� have been applied� The main results can

be summarized as follows	

� Type A standard uncertainties of ���� or better are achievable� The largest type B

uncertainty is due to the heat defect and is about ��
��

� The measurements are consistent with a heat defect of ���� for the H��O� system

at both � and ��oC� Calculations based on Model III predict only ��
� at �oC� The

reason for this discrepancy is under investigation�

� The calorimeter response at ��oC is about ��
� greater than at �oC� This is now

understood to be due to convective heat transfer at ��oC� and a paper on this work is

in preparation�



The NRC sealed water calorimeter �March� ����� ��

��Co
Apparent Dose Rate

System No� of No� of �Gy�min� Ratio to pure Ratio
sets runs ��oC �oC ��oC �oC ��oC��oC

pure ���� ��
���� ��
�� ��
�
 ������ ������ ����
�
�� ������ �� ������

H��O� ��� ���� � ��
�� � ����
� �
�� ������

hydrogen ��� ��
� � ��
�� � ������ �
�� ������

�� MV
Apparent ND�w

System No� of No� of �NE�
��� s�n 

�� Ratio to pure Ratio
sets runs ��oC �oC ��oC �oC ��oC��oC

pure 
�� �����
 ����
 ����� ������ ������ ����
�
�� ������ �� ������

H��O� 
�� ����
 ����� ����� ������ ������ ����
�
�� ������ �� ���
��

hydrogen ��� ���� ����� � ������ � �
�� ���
��

Table 
	 Results of SW calorimeter measurements using ��Co ��rays and �� MV

x�rays� Measurements were carried out at �oC and ��oC using three aqueous

systems� In columns � and �� the number before the slash refers to ��oC and

the number after to �oC� The number of individual irradiations contributing

to each result is given in column �� A set �column �� represents ten or more

individual runs which have been averaged to produce a single datum in �g�

ures �� and ��� The ��Co results are reported as a dose rate� while the �� MV

results are expressed as the calibration factor �corrected for only pressure and

temperature� for a NE�
�� thimble chamber� The adjective �apparent� is

used because no heat defect correction has been applied� Only the statistical

uncertainties are listed in columns � and 
�
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