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1 Introduction 

Program UMAR,  which stands for Unified Method of Analysis for Rehabilitation, is a general-

purpose finite element program for rehabilitation analysis and design of various structural and 

building components. UMAR solves for the static response of linear and non-linear two- and 

three-dimensional structural systems under the action of mechanical loads. The computer 

program can include time-dependent phenomena such as creep, shrinkage and cyclic loading. 

UMAR also offers transient analysis capabilities for parabolic initial-value problems in fluid 

mechanics, and it can couple this type of analysis with that due to mechanical loads. Some 

features which are available in the program include: 

! Multi-field/physics analysis capabilities to couple heat-mass transfer problems with stress 

problems; 

! Element options to model addition or removal of elements (material) in the physical system 

to simulate construction/rehabilitation processes;  

! Six basic elements for structural analysis: a space truss element, a shear connector element, a 

quadrilateral membrane element, a quadrilateral plate-bending element, a quadrilateral shell 

element, and a layered-solid element. All the quadrilateral elements can be layered in the out-

of-plane direction. The membrane and solid elements can also be used for transient analysis;  

! Prescribed nodal displacements and/or surface traction options for structural analysis; 

! Prescribed nodal values and/or surface flux options for transient analysis; 

! Prescribed arbitrary load-time functions (both mechanical and environmental); 

! Comprehensive library of material models: isotropic linear-elastic, orthotropic linear-elastic, 

transversely-isotropic linear-elastic, orthotropic hypo-elastic, elasto-(plastic)-damage, and a 

family of multi-yield elasto(-visco)-plastic; 

! Several symmetric and non-symmetric matrix equation solvers: LU decomposition solvers for 

banded and full matrices, a sky-line solver for banded matrices, a domain decomposition 

solver, a symmetric frontal solver, and a Gauss-Seidel iterative solver; 

! ASCII input file, where data is organised into recognisable blocks.  

Program UMAR is written in Fortran 90, and the executable is available for PC computing 

platforms by compiling and linking the code with the Compaq Visual Fortran 6.1a compiler.  
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2 Program structure 

UMAR is a general purpose finite element program with a modular structure. A series of options 

can be specified by the user in order to select different components that constitute the system of a 

particular field of application and the manner in which it is solved. The modular nature of UMAR 

gives the program tremendous flexibility, and facilitates the addition to the program of 

mathematical models not included in the current UMAR library. Its basic modular nature ensures 

that all the steps in a finite element analysis are transparent, so that the user can modify the 

element matrix formation and introduce new element types and/or solution procedures.  

The two main application fields of UMAR are: 

! structural mechanics (static analysis, removal analysis, and restoration analysis), and 

! scalar field analyses (all physical processes described by a diffusive-type equation). 

These two basic application fields may be used independently, but they are both based on the 

same finite element model database. Program UMAR has been structured into the following 

libraries (see Figure 2-1):  

! element library (two-dimensional and three-dimensional elements), 

! material library (elasticity, plasticity, continuum damage mechanics), 

! loading library (uniform load, concentrated load, removal load, hygrothermal load), 

! analysis library (structural analysis, removal analysis, restoration analysis, transient analysis), 

! solver library (direct and iterative methods), and 

! math and utilities libraries (collection of routines that perform many of the basic tasks 

required by a finite element program).  

Element

library

Material

library

Loading

library

Solver

library

UMAR

SOLUTION

Analysis

library

Math & utilities

libraries

 

Figure 2-1: Modular nature of program UMAR. 

Program UMAR is written in Fortran 90 and conforms to the Standard. The actual structure 

of the program is based on an object-oriented concept intended to reduce the overall program 
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complexity and enable ease of implementation. The objects are generated by means of the TYPE 

feature of Fortran 90 (which can be found in file types.f90). Further, several objects of similar 

functionality are grouped into modules by means of the MODULE feature of Fortran 90. The 

library software and any programs written using the library are very portable. This makes the use 

of the library attractive in many different research applications. 
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3 Element library 

Equation Section (Next)There are six basic elements implemented in program UMAR: 

! a two-node truss element; 

! a two-node shear connector element; 

! a quadratic, four-node, quadrilateral plane element; 

! a four-node quadrilateral plate-bending element; 

! a four-node shell element; and 

! a layered solid isoparametric element.  

All elements in UMAR are integrated numerically, which allows for independent material 

response at each integration point and irregular element shapes. The above elements are 

implemented in the module <formulate_structural_elements_library>, which can be found in the 

file formulate_structural_elements.f90. A discussion of the formulation of each element follows. 

3.1 Space truss element 

A truss element is a bar which can resist only axial forces (compressive or tensile) and can 

deform only in the axial direction. The truss element implemented in UMAR has two end nodes, 

each with three degrees of freedom u, v, and w in the x, y, and z directions, respectively, as 

illustrated in Figure 3-1. The displacement field between the nodes is assumed to be linear, i.e., 

 ( )1 2 1
( )

x
u x q q q

l
= + −  (3.1) 

Equation 3.1 is expressed in matrix form as: 

 { } [ ] { }
1 1 2 11 2x xx

u N q=  (3.2) 

where 

 [ ] { } 1

2

1 ;
qx x

N q
ql l

   = − =   
    

 (3.3) 

where q1 and q2 are the nodal degrees of freedom in the local co-ordinate system and l is the 

element length. The strain along the length of the element is given by: 

 { } [ ] { }2 1

1 1 1 2 2 1
orx x x x x

u q q
B q

x l
ε ε∂ −= = =

∂
 (3.4) 

where 

 [ ] 1 1
B

l l

 = −  
 (3.5) 

The element stiffness matrix in the local co-ordinate system is obtained from: 
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 [ ] [ ] [ ][ ]
( )

2 2 0

1

1 11 1

1 1 1e

lT

x x
V

AEl
k B D B dV A E dx

l l l

l

=

 −  −    = = − =     −    
  

∫ ∫ ∫ ∫  (3.6) 

where A is the cross-section area of the truss bar and E is the Young�s modulus of the material. 

X

O Y

Z

x

l

ui

vi

wi

uj

vj

wj

u(x)

q2

q1 global node j
local node 2

global node i
local node 1

 

Figure 3-1: Space truss element. 

The local displacements q1 and q2 are resolved into the global components u, v, and w through 

a transformation matrix, i.e., 

 { } [ ] { }q T Q=  (3.7) 

where the transformation matrix [T] and the vector of global nodal displacements {Q} are given 

by: 

 [ ]
0 0 0

0 0 0

ij ij ij

ij ij ij

l m n
T

l m n

 
=  
 

 (3.8) 

 { } { }T

i i i j j jQ u v w u v w=  (3.9) 

and lij, mij, and nij respectively denote the direction cosines of the angles between the line ij  and 

the global x-, y- and z-axis. The direction cosines are calculated from: 

 , ,
j i j i j i

ij ij ij

x x y y z z
l m n

l l l

− − −
= = =  (3.10) 

where (xi, yi, zi) and (xj, yj, zj) are the global co-ordinates of nodes i and j, respectively. Thus, the 

element stiffness matrix in the global co-ordinate system is obtained from: 

 [ ] [ ] [ ]*

6 2 2 2 2 66 6

T

x x xx
k T k T  =   (3.11) 

The total nodal load vector in the local co-ordinate system is given by: 
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 { }
due to initial thermal strains due to constant body force 

1 1

1 12

Al
f AE T

φ

φα
−   

= +   
   14243 14243

 (3.12) 

Likewise, the load vector is referred to the global co-ordinate system by: 

 { } [ ] { }* T
f T f=  (3.13) 

where [T] is given by Eq. 3.8. 

3.2 Shear connector element 

This element, developed by Nofal [27], can be used to model the relative deformation or slip at 

the interface of two different materials or structural elements under mechanical load. The load-

slip characteristics of this element are defined by the empirical load-slip relationship proposed by 

[43]: 

 ( )λbeaF −−= 1  (3.14) 

where F is the shear force acting on the shear connector, λ is the slip or relative deformation 

between its ends, a and b are empirical constants, and e is the base of natural logarithm.  

u1, F1

u2, F2

u3, F3 u4, F4

u5, F5

u6, F6

 

Figure 3-2: Shear connector element. 

To write the stiffness matrix of this element, consider the two-node bar element with six 

displacement degrees of freedom of Figure 3-2. Because shear connectors are relatively short and 

they transfer the load primarily by shear, it is assumed that their flexural and torsional stiffness 

are equal to zero. From basic finite element procedures, the nodal forces {F} of this element can 

be related to the nodal displacements {u} as: 
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 (3.15)  

where 
1

k EA L= , E is the Young's modulus, and A and L are the cross-sectional area and length 

of the element, respectively. Constants k2 and k3 are the shear stiffness coefficients of the bar. 

They can be determined from the experimental load-slip curve proposed by [44] and illustrated in 

Figure 3-3. 

                                ( )1 bF a e λ−= −

Slip,  λ

L
o
a
d

, 
F

∆λ
∆F

k

 

Figure 3-3: Load-slip relationship for the shear connector [44]. 

The increment of shear force ∆F shown in Figure 3-3 can be related to the increment of slip ∆λ  

as:  

 λ∆=∆ kF  (3.16) 

where k is the slope of the load-slip curve and is given by:  

 
λd

dF
k =  (3.17)  

By differentiating Eq. 3.14, 

 
λbabek −=  (3.18) 

and substituting in Eq. 3.16, the following relationship results: 

 λλ∆=∆ −babeF  (3.19) 

For the element in Figure 3-2, the slip in the y and z directions can be written respectively as:  

 
2 5

3 6

y

z

u u

u u

λ
λ

= −
= −

 (3.20) 

or in incremental form:  
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2 5

3 6

y

z

u u

u u

λ
λ

∆ = ∆ − ∆
∆ = ∆ − ∆

 (3.21) 

where ∆ ui is the increment of displacement due to an increment of shear force ∆ Fi. 

Note that in some cases the location of shear connectors may not coincide with the nodal 

points in the finite element mesh. In these cases, the actual connector is substituted by two 

equivalent connectors which are positioned at the nearest nodal points. The cross-sectional area of 

the substitute connectors is found by linearly interpolating the area of the actual connector. This 

procedure is akin to the determination of equivalent nodal forces in the customary finite element 

procedures. 

In the non-linear incremental/iterative analysis procedure used in UMAR, increments of slip 

are summed up to obtain the total slip at any load level. Then, the shear force corresponding to 

the total slip is determined from Eq. 3.14, and the shear stiffness of the bar for the next iteration is 

calculated using Eq. 3.18. The axial stiffness of the bar is found the same way as for an ordinary 

truss element (see Section 3.1).  

3.3 Refined quadrilateral plane element (RQD4) 

This four-node quadrilateral element is geometrically isotropic, and its stiffness can be derived 

from the stiffness matrix of QUAD8, the eight-node isoparametric element. Element RQD4 has 

three degrees of freedom per node as illustrated in Figure 3-4, and its displacement functions can 

be derived from the displacement functions of QUAD8, also shown in Figure 3-4. Typical nodal 

displacements ui and vi in the x and y directions, respectively, are the same as in QUAD8, while 

wi is a typical nodal-rotation normal to the plane of the element. This element was developed by 

Razaqpur and Nofal [32] using the classical beam displacement function. 
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Figure 3-4: Elements QUAD8 and  RQD4. 

Using the kinematics relationship described below, the degrees of freedom in QUAD8 are 

related to the degrees of freedom in the new element. Consider side 1-2 of RQD4, and introduce a 

unit rotation w1 = 1 at node 1 as in Figure 3-5. The displacement normal to side 1-2, un, due to 

this rotation can be expressed as a cubic polynomial similar to the lateral displacement function 

for an ordinary beam, i.e., 

 
( )

2

2

l

sls
un

−−=  (3.22) 

where s is a local co-ordinate running from node 1 to 2, and l is the length of side 1-2. For 
2

l
s = , 

 ( )
2 8
ln s

l
u

=
= −  (3.23) 

Similarly, for w2 = 1: 

 ( )
2 8
ln s

l
u

=
=  (3.24) 

Therefore, for end rotations w1 and w2, the normal displacement un is given by: 

 
( )

8

12 ww
lun

−=  (3.25) 

Decomposing un in Eq. 3.25 into its components in the x and y directions results in: 
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( )

( )

2 1

2 1

sin
8

cos
8

x

y

n

n

w w
u l

w w
u l

θ

θ

−
=

−
=

 (3.26) 

From Figure 3-5, ( )2 1sin y y lθ = −  and ( )2 1cos x x lθ = − , where xi, yi are the co-ordinates of 

node i (i = 1, 2). By substituting these quantities in Eq. 3.26, the total displacement components at 

the middle of side 1-2 are: 

 

( ) ( )( )

( ) ( )( )

2 1 1 2 2 1

5

2 1 1 2 2 1

5

2 8

2 8

u u y y w w
u

v v x x w w
v

+ − −
= −

+ − −
= −

 (3.27) 

Equation 3.27 can be written in matrix form as: 

 

1

1

5 1

5 2

2

2

1 1
0 0

2 2

1 1
0 0

2 2

u

v
a a

u w

v u
b b

v

w

 
 

   −      =     
    −
    

 
  

 (3.28) 

where ( )1 2 8a y y= −  and ( )1 2 8b x x= − . 

1

( ) ( )
1

2

21n

s l s
u

lω =

−
= −

un

2

l

ω1=1

ω2=0

θ

s

 

Figure 3-5: Normal displacement un to side 1-2 due to w1 = 1. 
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By writing similar equations for the other mid-side nodes, the nodal displacements in 

QUAD8, {d}
QUAD8

, are related to the corresponding displacements in RQD4, {d}
RQD4

, as: 

 { } [ ] { }QUAD8 RQD4

16 1 12 116 12
d T d

× ××
=  (3.29) 

where [T] is a 16 x 12 transformation matrix. In expanded form, Eq. 3.29 is given by: 
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 (3.30) 

where ( )1 8i i ia x x += −  and ( )1 8i i ib y y += −  for i=1,2,3; and ( )4 1 4 8a x x= −  and 

( )4 1 4 8b y y= − . 

Using the principle of virtual work, the stiffness [k
*
] and nodal load vector {f

*
} of RQD4 can 

be related to the corresponding matrices [k] and {f} of QUAD8 as: 

 [ ] [ ] [ ][ ]TkTk
T=*

 (3.31) 

and 

 { } [ ] { }*

12 16 16 112 1

T

x xx
f T f=  (3.32) 

The last two equations show that once the transformation matrix [T] has been established, the 

remaining steps of the analysis are relatively straightforward. Although Eqs. 3.31 and 3.32 yield 
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the desired stiffness and load matrices, it is possible to introduce further simplifications and to 

reduce the amount of calculations. The stiffness matrix, [k], is given by: 

  [ ] [ ] [ ][ ]∫= dVBDBk
T

 (3.33) 

where, as usual, [B] is the strain-displacement matrix, [D] is the material matrix, and V is the 

element volume. According to Eq. 3.31, [k
*
] can be written as: 

 [ ] [ ] [ ] [ ][ ]( )[ ]TdVBDBTk
TT

∫=*
 (3.34) 

Rewriting the above equation results in: 

 [ ] [ ] [ ] [ ][ ][ ]∫= dVTBDBTk
TT*

 (3.35) 

By letting 

 [ ] [ ]*

3 16 16 123 12 x xx
B B T  =   (3.36) 

then, 

 [ ] [ ] [ ][ ]∫= dVBDBk
T ***

 (3.37) 

Therefore, if matrix [B] of QUAD8 is transformed according to Eq. 3.36, then the stiffness matrix 

of RQD4 can be derived from Eq. 3.37. By doing so, computation time is reduced, because Eq. 

3.36 involves fewer multiplications. Several performance tests of element RQD4 can be found in 

[27] and [32]. 

3.4 Plate bending elements 

Plate bending elements implemented in UMAR include the quadrilateral bending element (QBE) 

and the improved discrete Kirchoff quadrilateral (IDKQ). 

3.4.1 Quadrilateral bending element (QBE) 

This element is the quadrilateral version of the rectangular bending element developed by [47]. It 

was formulated by [11], and its performance has been reported to be satisfactory for moderate 

deviations from the rectangular shape. The general features of this element are briefly discussed 

below; complete details can be found in [11]. 

Element QBE, which is illustrated in Figure 3-6, is a four-node quadrilateral element with 

three degrees of freedom per node: the lateral displacement w, and the normal rotations w x∂ ∂  

and w y∂ ∂ . The displacement function in terms of the natural co-ordinates ξ and η is given by: 

 [ ]{ }Apw =  (3.38) 

where 

 [ ] 2 2 3 2 2 3 3 3
1p ξ η ξ ξη η ξ ξ η ξη η ξ η ξη =    (3.39) 
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and { }A  is a vector that contains the polynomial coefficients. In this element, as in element 

RQD4, the geometry of the element is interpolated using the following relationships: 

 

( )( )

( )( )

4

1

4

1

1
1 1

4

1
1 1

4

i i i

i

i i i

i

x x

y y

ξξ ηη

ξξ ηη

=

=

= + +

= + +

∑

∑
 (3.40) 

where x, y are the Cartesian co-ordinates of a general point, and ξ, η are the natural co-ordinates 

of the same point. Variables xi, yi, ξi and ηi are, respectively, the Cartesian and natural co-

ordinates of node i. Note that the summation is carried out over the four nodes of the element. 

2

3
4

θx1

θy1

ω1

x

y

ξ

η

 

Figure 3-6: Plate bending elements QBE and IDKQ. 

3.4.2 Improved discrete Kirchhoff quadrilateral (IDKQ) 

This type of element, like element QBE, is also a four-node quadrilateral element with three 

degrees of freedom at each node (see Figure 3-6). Element IDKQ is developed based on the 

Mindlin plate theory where the nodal rotations are defined independently of the transverse 

displacements [41]. The element shape functions are derived as the least square polynomial 

version of the customary Lagrange functions. Kirchhoff�s hypothesis is only applied to the 

Lagrange element at the rotational degrees of freedom θx and θy. This element is designed to 

analyse thin plates where the transverse shear energy may be considered negligible compared to 

the bending one. The essential step in its formulation is the enforcement of the so-called 

Kirchhoff constraints ( )0== zxyz γγ  at certain discrete points in such a manner that all shear-

strain modes are totally suppressed. Feasible discrete points are the element nodes where the 

displacement modes are represented by the discrete values of the nodal displacements. 

The starting point in the formulation of the IDKQ is the Mindlin isoparametric finite element 

QUAD9 that accounts for shear deformations and requires only 
( )0C -continuity. By imposing the 

Kirchhoff constraints on all shear strain modes, the 27 degrees of freedom (9 nodes x 3 dof per 
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node) of the QUAD9 may be transformed into 12 equivalent degrees of freedom (4 nodes x 3 dof 

per node) in the IDKQ element.  

Similarly to the displacement transformation of RQD4, the aim of the transformation 

illustrated in Figure 3-7 is to derive the transformation matrix [ ]T  that maps the degrees of 

freedom of element QUAD9 into the equivalent degrees of freedom of element IDKQ, i.e., 

 { } [ ] { }9

18 1 12 118 12

QUAD IDKQ

d T d
× ××

=  (3.41) 

The nodal loads transformation may be also expressed by means of the transformation matrix 

[ ]T : 

 [ ] { } { }9 4

12 18 18 1 12 1

T QUAD IDKQ
T f f

× × ×
=  (3.42) 

s

9

s

n

s

n

s

n

n

η,y
η,y

ξ,x

6

7
4

3

2

1

yiθ

i

5

4

T

uX ,uX ,

vY ,

QUAD9 IDKQ

i xiθ

yiθ

1

2

3

8

xiθ

 

Figure 3-7: Transformation of element QUAD9 into element IDKQ. 

The transformation matrix [ ]T  in Eqs. 3.41 and 3.42 is determined by relating the mid-side and 

central nodes degrees of freedom of QUAD9 to the corner nodes degrees of freedom. This 

relation is established by imposing the Kirchhoff constraints so that 0=zγ  is exactly 

represented over the element. It should be noted that the element strains and the strain energy in 

QUAD9 depend only on rotations θx and θy, which are independent of the out-of-plane 

displacements w. Consequently, only the eighteen rotational degrees of freedom xixi w,≠θ  and 

yiyi w,≠θ  at nodes 1 through 9 of the QUAD9 must be expressed in terms of the twelve degrees 



  Element library 

   15

of freedom iw , xixiw θ=,  and yiyiw θ=,  (i = 1,�, 4) at the corners of the IDKQ element. This 

transformation is achieved by imposing the Kirchhoff constraints at the nodal points 

corresponding to the element sides and centrelines as follows: 

Transverse shear strains yzγ  and zxγ  vanish at the corner nodes 

 xixi w,=θ  yiyi w,=θ  at nodes   9,4,3,2,1=i  (3.43) 

Transverse shear strains szγ  (expressed in edge tangent co-ordinate s ) vanish at the mid-side 

nodes 

 sksk w,=θ  at nodes   8,7,6,5=k  (3.44) 

Normal slopes nnw θ=,  of the cubic displacement function along the element sides are assumed 

to vary linearly 

 ( )
njnink θθθ +=

2

1
 at nodes   8,7,6,5=k    for  

1,4,3,2

4,3,2,1

=
=

j

i
   (3.45) 

In order to determine the transformation matrix [ ]T , the foregoing Kirchhoff constraints are 

applied along the element sides and centrelines making use of the corresponding co-ordinate 

transformations and a redefinition of the out-of-plane displacement field w, which must be 

assumed cubic in the edge tangent co-ordinate s  along the element sides in order to be able to 

satisfy the Kirchhoff constraints as stated in Eqs. 3.43, 3.44 and 3.45, i.e., 

 
( )[ ]3 3 2

( )

1
| 2 3 2 3 1 1 1

4 8

1,2,3,4 2,3,4,1

i siij

side ij

j sj

w l
w

w

i j

ζ

θ
ζ ζ ζ ζ ζ ζ ζ θ

   
 = − + + − + − − +    

   

= =

 (3.46) 

where ζ  and ijl  are respectively the natural co-ordinate and the length of the element side ij, and 

siθ  and sjθ  are the nodal tangential rotations along the element side ij at the end nodes i and j, 

respectively. The expression in Eq. 3.46 is obtained from a standard cubic Lagrangian function in 

natural co-ordinates 11 +≤≤− ζ  so that 0=ζ  at the mid-side nodes. In order to express the 

rotations ss w,=θ , the derivatives of ζw  in Eq. 3.46 must be related to the physical co-ordinate 

s  by means of the co-ordinate transformation illustrated in Figure 3-8. 
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k
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l l
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Figure 3-8: Co-ordinate transformation along of the side of a QUAD9 element. 

The rotations sksk w,=θ  ( )8,7,6,5=k  at the mid-nodes of the QUAD9 element are thus 

obtained by differentiating Eq. 3.46 with respect to s , i.e., 

 sjj

ij

sii

ij

sk w
l

w
l

θθθ
4

1

2

3

4

1

2

3 −+−−=  (3.47) 

or in matrix form: 

 











































 −−−
=









nj

sj

j

ni

si

i

ijij

nk

sk

w

w

ll

θ
θ

θ
θ

θ
θ

2

1
00

2

1
00

0
4

1

2

3
0

4

1

2

3

     (3.48) 

 

where 4,3,2,1=i , 1,4,3,2=j , and  8,7,6,5=k . Two other equations similar to Eq. 

3.47 can be expressed for the centrelines of the QUAD9 element: 

 66

68

88

68

9
4

1

2

3

4

1

2

3
xxx w

l
w

l
θθθ −+−−=  (3.49)  

 55

57

77

57

9
4

1

2

3

4

1

2

3
yyy w

l
w

l
θθθ −+−−=  (3.51) 
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The set of six equations expressed in Eqs. 3.48, 3.49 and 3.51 provides the relationships needed 

to transform the rotational degrees of freedom xkθ  and ykθ  ( )9,,5 K=k  of the QUAD9 element 

into the out-of-plane displacements iw  and rotational degrees of freedom xixiw θ=,  and 

yiyiw θ=,  ( )4,,1K=i  at the corners of the IDKQ element. 

Equation 3.48 needs to be expressed in terms of the element Cartesian co-ordinates x and y. The 

transformation between side co-ordinates s,n and Cartesian co-ordinates x,y is achieved by means 

of the Jacobian transformation matrices of each element side: 

 [ ] 








−
=








=

ijij

ijij

ijrr

ss

ij
yx

yx
J

αα
αα

cossin

sincos

,,

,,
 (3.52) 

where 4,3,2,1=i , 1,4,3,2=j , and [ ] [ ] 1−= ijij JJ . Thus, 

 [ ] 







=









yk

xk

ij

nk

sk
J θ

θ
θ
θ

 (3.53)  

and Eq. 3.48 is expressed in Cartesian co-ordinates as: 

 [ ]

[ ]
[ ]

[ ]
[ ] 










































 −−−
=









niij

xjij

j

niij

siij

i

ijij
ij

yk

xk

J

J

w

J

J

w

ll
J

θ
θ

θ
θ

θ
θ

2

1
00

2

1
00

0
4

1

2

3
0

4

1

2

3

 (3.55) 

The transformation matrix [ ]
18 12

T
×

 of Eq. 3.41 is thus given by: 
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 
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  
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 
 
 
 
   

 (3.56) 

where 

 

( )
( )

( )
( )

2 2

2 2

(9,1) 1.50 (1) (1)

(9,2) -0.75 (1) (1) (1)

(9,3) -0.25 2.0 (1) - (1) (1)

(9,4) -1.50 (1) (1)

(9,5) -0.75 (1) (1) (1)

(9,6) -0.25 2.0 (1) - (1) (1)

T a c

T b a c

T b a c

T a c

T b a c

T b a c

= ∗
= ∗ ∗

= ∗ ∗

= ∗
= ∗ ∗

= ∗ ∗

 (3.57) 

 

( )
( )

( )
( )

2 2

2 2

(10,1) 1.50 (1) (1)

(10,2) 0.25 2.0 (1) - (1) (1)

(10,3) 0.75 (1) (1) (1)

(10,4) -1.50 (1) (1)

(10,5) 0.25 2.0 (1) - (1) (1)

(10,6) 0.75 (1) (1) (1)

T b c

T a b c

T b a c

T b c

T a b c

T a b c

= ∗

= ∗ ∗

= ∗ ∗
= ∗

= ∗ ∗

= ∗ ∗

 (3.58) 
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( )
( )

( )
( )

2 2

2 2

(11,4) 1.50 (2) (2)

(11,5) 0.75 (2) (2) (2)

(11,6) 0.25 2.0 (2) - (2) (2)

(11,7) -1.50 (2) (2)

(11,8) 0.75 (2) (2) (2)

(11,9) 0.25 2.0 (2) - (2) (2)

T a c

T b a c

T b a c

T a c

T a b c

T b a c

= ∗
= − ∗ ∗

= − ∗ ∗

= ∗
= − ∗ ∗

= − ∗ ∗

 (3.59) 

 

( )
( )

( )
( )

2 2

2 2

(12,4) 1.50 (2) (2)

(12,5) 0.25 2.0 (2) - (2) (2)

(12,6) 0.75 (2) (2) (2)

(12,7) -1.50 (2) (2)

(12,8) 0.25 2.0 (2) - (2) (2)

(12,9) 0.75 (2) (2) (2)

T b c

T a b c

T b a c

T b c

T a b c

T a b c

= ∗

= ∗ ∗

= ∗ ∗
= ∗

= ∗ ∗

= ∗ ∗

 (3.60) 

 

( )
( )

( )
( )

2 2

2 2

(13,7) 1.50 (3) (3)

(13,8) 0.75 (3) (3) (3)

(13,9) 0.25 2.0 (3) (3) (3)

(13,10) 1.50 (3) (3)

(13,11) 0.75 (3) (3) (3)

(13,12) 0.25 2.0 (3) - (3) (3)

T a c

T a b c

T b a c

T a c

T a b c

T b a c

= ∗
= − ∗ ∗

= − ∗ ∗ −

= − ∗
= − ∗ ∗

= − ∗ ∗

 (3.61) 

 

( )
( )

( )
( )

2 2

2 2

(14,7) 1.50 (3) (3)

(14,8) 0.25 2.0 (3) (3) (3)

(14,9) 0.75 (3) (3) (3)

(14,10) 1.50 (3) (3)

(14,11) 0.25 2.0 (3) - (3) (3)

(14,12) 0.75 (3) (3) (3)

T b c

T a b c

T a b c

T b c

T a b c

T a b c

= ∗

= ∗ ∗ −

= ∗ ∗
= − ∗

= ∗ ∗

= ∗ ∗

 (3.62) 

 

( )
( )

( )
( )

2 2

2 2

(15,1) 1.50 (4) (4)

(15,2) 0.75 (4) (4) (4)

(15,3) 0.25 2.0 (4) (4) (4)

(15,10) 1.50 (4) (4)

(15,11) 0.75 (4) (4) (4)

(15,12) 0.25 2.0 (4) - (4) (4)

T a c

T a b c

T b a c

T a c

T a b c

T b a c

= ∗
= − ∗ ∗

= − ∗ ∗ −

= ∗
= − ∗ ∗

= − ∗ ∗

 (3.63) 
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( )
( )

( )
( )

2 2

2 2

(16,1) 1.50 (4) (4)

(16,2) 0.25 2.0 (4) (4) (4)

(16,3) 0.75 (4) (4) (4)

(16,10) 1.50 (4) (4)

(16,11) 0.25 2.0 (4) - (4) (4)

(16,12) 0.75 (4) (4) (4)

T b c

T a b c

T a b c

T b c

T a b c

T a b c

= − ∗

= ∗ ∗ −

= ∗ ∗
= ∗

= ∗ ∗

= ∗ ∗

 (3.64) 

 

4

1

4

1

4

1

(17,1) 12.0 (1)

(17,2) (1) 2.0 (1) 2.0 (4) ( )

(17,3) (1) 2.0 (1) 2.0 (4) ( )

(17,4) 12.0 (3)

(17,5) (3) 2.0 (1) - 2.0 (2) ( )

(17,6) (3)

i

i

i

T d

T d b b b i

T d a a a i

T d

T d b b b i

T d

=

=

=

= − ∗∆ ∗

 = ∆ ∗ ∗ ∗ − ∗ + 
 

 = −∆ ∗ ∗ ∗ − ∗ + 
 

= − ∗ ∆ ∗

 = −∆ ∗ ∗ ∗ ∗ + 
 

= ∆ ∗

∑

∑

∑
4

1

4

1

4

1

2.0 (1) 2.0 (2) ( )

(17,7) 12.0 (1)

(17,8) (1) 2.0 (2) 2.0 (3) ( )

(17,9) (1) 2.0 (2) 2.0 (3) ( )

(17,10) 12.0 (3)

(17,11) (3) 2.0 (4) 2.0

i

i

i

a a a i

T d

T d b b b i

T d a a a i

T d

T d b

=

=

=

 ∗ ∗ − ∗ + 
 

= ∗ ∆ ∗

 = ∆ ∗ ∗ ∗ − ∗ − 
 

 = −∆ ∗ ∗ ∗ − ∗ − 
 

= ∗ ∆ ∗

= −∆ ∗ ∗ ∗ − ∗

∑

∑

∑

4

1

4

1

(3) ( )

(17,12) (3) 2.0 (4) 2.0 (3) ( )

i

i

b b i

T d a a a i

=

=

 − 
 

 = ∆ ∗ ∗ ∗ − ∗ − 
 

∑

∑

 (3.65) 
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4

1

4

1

4

1

(18,1) 12.0 (2)

(18,2) (2) 2.0 (1) 2.0 (4) ( )

(18,3) (2) 2.0 (1) 2.0 (4) ( )

(18,4) 12.0 (4)

(18,5) (4) 2.0 (1) - 2.0 (2) ( )

(18,6) (4) 2

i

i

i

T d

T d b b b i

T d a a a i

T d

T d b b b i

T d

=

=

=

= ∗ ∆ ∗

 = −∆ ∗ ∗ ∗ − ∗ + 
 

 = ∆ ∗ ∗ ∗ − ∗ + 
 

= ∗ ∆ ∗

 = ∆ ∗ ∗ ∗ ∗ + 
 

= −∆ ∗ ∗

∑

∑

∑
4

1

4

1

4

1

.0 (1) 2.0 (2) ( )

(18,7) 12.0 (2)

(18,8) (2) 2.0 (2) 2.0 (3) ( )

(18,9) (2) 2.0 (2) 2.0 (3) ( )

(18,10) 12.0 (4)

(18,11) (4) 2.0 (4) 2.0

i

i

i

a a a i

T d

T d b b b i

T d a a a i

T d

T d b b

=

=

=

 ∗ − ∗ + 
 

= − ∗∆ ∗

 = −∆ ∗ ∗ ∗ − ∗ − 
 

 = ∆ ∗ ∗ ∗ − ∗ − 
 

= − ∗ ∆ ∗

= ∆ ∗ ∗ ∗ − ∗

∑

∑

∑

4

1

4

1

(3) ( )

(18,12) (4) 2.0 (4) 2.0 (3) ( )

i

i

b i

T d a a a i

=

=

 − 
 

 = −∆ ∗ ∗ ∗ − ∗ − 
 

∑

∑

 (3.66) 

with 

 

( ) ( )

[ ] [ ]

[ ] [ ]

[ ]

4 4
2 2

1 1

4 4

1 1

4 4

1 1

( ) ( ) - ( ); 1,2,3,4

( ) ( ) - ( ); 2,3,4,1

( ) ( ) - ( )

(1) 2 (1) (4) ( ); (2) 2 (1) (4) ( )

(3) 2 (1) (2) ( ); (4) 2 (1) (2) ( )

0.125 (3) - (1) (4) - (2

i i

i i

i i

a i x i x j i

b i y i y j j

c i a i b i

d b b b i d a a a i

d b b b i d a a a i

a a b b

= =

= =

= =

= =
= =

=

= + − = + −

= + − = + −

∆ =

∑ ∑

∑ ∑

∑ ∑

[ ] [ ] [ ]{ }) (4) - (2) (3) - (1)a a b b−

 (3.67) 

The stiffness transformation can be easily derived by substituting Eqs. 3.41 and 3.42 into the 

stiffness relationship for element QUAD9: 

 [ ] [ ]{ }
{ }

{ } [ ] [ ] [ ] [ ]
9

9 99

QUAD

QUAD IDKQ T QUADIDKQ QUAD

d

K T d f K T K T= ⇒ =
14243

     (3.68) 

As it can be observed, Eq. 3.68 does not change the element properties or its orientation in the 

global co-ordinate system. Rather, it represents a static condensation of the central and mid-node 
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degrees of freedom of the element QUAD9 in terms of the degrees of freedom at the corner nodes 

of the IDKQ element. 

Further simplifications similar to that already shown for the RQD4 element are possible in 

order to reduce the amount of calculations required in the numerical integration process. These 

are achieved by rewriting [ ] IDKQ
K  as follows: 

 [ ] [ ] [ ] [ ][ ]( )[ ]
9 9

IDKQ T T

QUAD QUAD
K T B D B dV T= ∫  (3.69) 

or 

 [ ] [ ] [ ] [ ][ ] [ ] [ ] [ ][ ]
9 9

IDKQ T T T

QUAD QUAD IDKQ IDKQ
K T B D B T dV B D B dV= =∫ ∫  (3.70) 

where 

 [ ] [ ] [ ]9

3 12 3 18 18 12

IDKQ QUAD
B B T

× × ×
=  (3.71)  

Finally, the stiffness matrix of the IDKQ element may be expressed as: 

 [ ] [ ] [ ] [ ]
1 1

12 12

1 1

IDKQ T

IDKQ b IDKQ
K B D B J d dξ η

+ +

×
− −

= ∫ ∫  (3.72) 

in which [ ]
IDKQ

B  is the curvature-transformation matrix of the IDKQ element, [ ]bD  is the 

bending elasticity matrix, and J  is the determinant of the Jacobian matrix of the co-ordinate 

transformation. As it can be observed, [ ]
18 12

T
×

 is not a square matrix, and it cannot be inverted. 

For this reason, the transformation of degrees of freedom by means of the matrix [ ]T  can be only 

done from element QUAD9 to element IDKQ. 

The fact that the transformation matrix [ ]
18 12

T
×

 relates only to the rotational degrees of 

freedom makes it difficult to formulate the work equivalent nodal loads corresponding to 

distributed load. The cubic out-of-plane displacements w in Eq. 3.46 apply only on the border and 

centre lines of the element. Therefore, it is not simple to formulate the work equivalent load 

vector for distributed loads. However, a lumped nodal load vector IDKQ

lf  can be employed as an 

approximation for the normal distributed load [ ]00zi

T

z qq = . For quadrilateral elements, 

bilinear shape functions can be used to represent the equivalent lumped nodal loads of the 

distributed load. For a rectangular element, the lumped nodal loads are: 

 { } 0 0 0 0 0 0 0 0
4 4 4 4

IDKQ e e e e
l z

A A A A
f q

 =  
 

 (3.73) 
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where Ae is the area of the element. Since w  is represented by a cubic interpolation as shown in 

Eq. 3.46, a cubic polynomial expansion cN  may be more consistent with the derivation of the 

equivalent nodal loads IDKQ

cf : 

 { }
e

T
IDKQ

cc z e

A

f N q dA= ∫  (3.74) 

where 

 [ ]{ }aN
T

c
333223221 ξηηξηξηηξξηξηξηξ=  (3.75) 

is a complete two-dimensional expansion from the Pascal Triangle, completed by the two bi-

cubic extra terms ηξ 3
 and ηξ 3

 corresponding to the twelve generalised co-ordinates { }a  that 

must be exchanged with the twelve degrees of freedom { }IDKQd . Such exchange corresponds to 

the derivation of the shape function for w  in the Kirchhoff Plate Bending Theory. For a general 

quadrilateral shape of the element, numerical integration must be employed to obtain either 

IDKQ

lf  or IDKQ

cf . Numerical experiments on element IDKQ show that the lumped nodal load 

vector IDKQ

lf  is a very good approximation for practical applications [41]. 

3.5 Quadrilateral facet shell element (QFSE) 

The quadrilateral facet shell element QFSE, illustrated in Figure 3-9, is obtained by coupling the 

in-plane element RQUAD4 with the plate bending elements of Section 3.4 [27], [28] . The 

element has four nodes with six degrees of freedom per node: three displacements (u, v, w) and 

three rotations (θx, θy, ωz). Because of material non-linearity, this element is an anisotropic shell 

in which the membrane and bending actions are assumed to be coupled. 

θxi

θyi

ωi

ui

vi

Nodal degrees of
freedom for RQUAD4

2

3
4

ξ

η

1

wi

Nodal degrees of
freedom for IDKQ or

QBE

 

Figure 3-9: The facet shell element QFSE. 

The strain {ε} at any point within the element is obtained from: 

 { } { } { }χεε zo −=  (3.76) 
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where {εo} is the vector of in-plane strains of the projection of a given point on the reference 

plane, {χ} is the vector of curvatures due to bending, and z is the local z-co-ordinate through the 

thickness of the element of the point under consideration (see Figure 3-10). The z-axis is 

considered normal to the middle plane, and its origin coincides with the middle plane of the 

element. From basic theory:  

 { } [ ]{ }m mB dε =  (3.77) 

 { } [ ]{ }bb dB=χ  (3.78) 

where subscripts m and b denote respectively membrane and bending actions. Equation 3.76 can 

be re-written as: 

 { } [ ] [ ] [ ] { }m

m b

b

d
B z B B d

d
ε  

 = − =  
 

 (3.79) 

By substituting [B] from Eq. 3.79 into the element stiffness equation, matrix [k] results in: 

 [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ][ ]

[ ] [ ]
[ ] [ ]2

T T

m m m b mm mb

T T

bm bbb m b b

B D B z B D B k k
k dV

k kz B D B z B D B

   −
 = =  
 −    
∫  (3.80) 

The diagonal terms in Eq. 3.80 are the respective stiffness matrices of element RQUAD4 and the 

plate bending element. The off-diagonal terms are the coupling matrices, which are non-zero if 

the material properties are not symmetric with respect to the middle surface of the shell. This 

situation can occur when yielding and/or cracking takes place in some fibres above or below the 

middle surface and not in others. In program UMAR, plate and shell elements are divided into 

layers of different materials, as illustrated in Figure 3-10. Each layer is assumed to be in a state of 

plane stress. Within the thickness of each layer, the stresses and material properties are assumed 

to be constant. 
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Figure 3-10: Layered shell element. 

In evaluating the sub-matrices that comprise the stiffness matrix [k] in Eq. 3.80, the volume 

integral is split into a summation over the number of layers through the thickness and an area 

integral over the surface of the element. For example, 

 [ ] [ ] [ ] [ ] [ ] [ ] [ ]T T

m m m mmm

z

k B D B dV B D dz B dxdy
 

= =  
 

∫ ∫∫ ∫  (3.81) 

The line integral along the thickness of the shell of Eq. 3.81, denoted by [D]mm, is calculated in 

the following fashion: 

 [ ] [ ] ( )[ ]1

1

n

i imm i
iz

D D dz z z D+
=

= = −∑∫  (3.82) 

where zi+1 and zi are the z co-ordinates of the top and bottom surfaces of layer i, and n is the total 

number of layers in a given element. The constitutive matrix [D]i for each layer will depend upon 

the material forming that layer. The remaining sub-matrices in Eq. 3.80 are evaluated in a similar 

way, the line integral for the remaining terms resulting in: 
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 [ ] [ ] ( )[ ]2 2

1

1

1

2

n

i imb i
iz

D z D dz z z D+
=

= = − −∑∫  (3.83) 

 [ ] [ ] ( )[ ]i

n

i

ii

z

bb DzzdzDzD ∑∫
=

+ −==
1

33

1

2

3

1
 (3.84) 

The equivalent nodal forces { } σF  and { } εF  due to initial stresses and strains are similarly 

calculated, i.e., 

 { } [ ] { }
[ ] { }

T

m m

T

b b

B
F dxdy

B

ε

ε
ε

σ

σ

  =  
  

∫∫  (3.85) 

 { } [ ] { }
[ ] { }

T

m m

T

b b

B
F dxdy

B

σ

σ
σ

σ

σ

  =  
  

∫∫  (3.86) 

where 

 { } [ ] { } ( ) [ ] { }1

1

n

i im ii
i

D dz z z Dεσ ε ε+
=

= = −∑∫  (3.87) 

 { } [ ]{ } ( )[ ] { } ii

n

i

iib
DzzdzDz εεσ ε ∑∫

=
+ −−=−=

1

22

1
2

1
 (3.88) 

 { } { } ( ) { }1

1

n

i im i
i

dz z zσσ σ σ+
=

= = −∑∫  (3.89) 

 { } { } ( ){ }2 2

1

1

1

2

n

i ib i
i

z dz z zσσ σ σ+
=

= − = − −∑∫  (3.90) 

3.6 Solid isoparametric element 

Program UMAR has two hexahedral isoparametric elements of the �serendipity� family (i.e., 

containing boundary nodes only): a linear brick element (8 nodes) and a quadratic brick element 

(20 nodes), see Figure 3-11.  

8 nodes
(linear)

20 nodes
(quadratic)

 

Figure 3-11: Hexahedral elements of the �serendipity� family implemented in UMAR. 

The element geometry and field quantity φ of a solid isoparametric element are given by: 

 i i i i i i i ix N x y N y z N z Nφ φ= = = =∑ ∑ ∑ ∑  (3.91) 
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where i ranges over the number of nodes in the element. The shape functions Ni are functions of 

the isoparametric coordinates ξ, η, and ζ, and the faces of the element lie at 1ξ = ± , 1η = ± , and 

1ζ = ± , respectively (see Figure 3-12). The node numbering convention used in Figure 3-12 is 

that of corner nodes being numbered first, followed by mid-side nodes for the second-order 

element (20-node brick element).The shape functions for the 8-node brick element can be 

summarized in: 

 ( )( )( )1
1 1 1

8
i i i iN ξξ ηη ζζ= + + +  (3.92) 

where ξi, ηi, and ζi denote the natural co-ordinates of the i
th
 node. The shape functions of the 20-

node brick can be grouped as follows: 

 ( )( )( )( )1
For the corner nodes 1,2, ,8 : 1 1 1 2

8
i i i i i i ii N ξξ ηη ζζ ξξ ηη ζζ= = + + + + + −K  (3.93) 

 ( )( )( )21
For the midside nodes 9,11,13,15 : 1 1 1

4
i i ii N ξ ηη ζζ= = − + +  (3.94) 

 ( )( )( )21
For the midside nodes 10,12,14,16 : 1 1 1

4
i i ii N ξξ η ζζ= = + − +  (3.95) 

 ( )( )( )21
For the midside nodes 17,18,19,20 : 1 1 1

4
i i ii N ξξ ηη ζ= = + + −  (3.96) 
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Figure 3-12: Eight-to-twenty nodes solid isoparametric element. 
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In structural mechanics, the nodal degrees of freedom are given by the displacements u, v, 

and w, which are respectively parallel to the x, y, and z directions. The strain-displacement 

relation is { } [ ]{ }B dε = , where { } [ ]1 1 1 2

T

nd u v w u w= L , n being the number of nodes, 

and [B] is the product of [M]1, [M]2, and [M]3 as given by Eqs. 3.97, 3.98, and 3.99. 

 

[ ]
1

,

,
1 0 0 0 0 0 0 0 0

,
0 0 0 0 1 0 0 0 0

,
0 0 0 0 0 0 0 0 1

,
0 0 0 0 0 1 0 1 0

,
0 0 1 0 0 0 1 0 0

,
0 1 0 1 0 0 0 0 0

,

,

x

y

x

z

y

x

z

y

yz

z

zx

x

xy

y
M

z

u

u

u

v

v

v

w

w

w

ε
ε
ε
γ
γ
γ

 
 
    
    
    
       =     

    
    
    
      

 
  

144444424444443

 (3.97) 
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,

M

u
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v
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w
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w

ξ
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η
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ξ

η

ζ

 
 
 
 
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 
    
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 (3.98) 

 

[ ]
3
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, 0 0 0 0

, 0 0 0 0
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, 0 0 0

n

n

n

M

u N N

u N N

u N N

v N

v N

v N

w N N

w N N

w N N

ξ ξ ξ

η η η

ζ ζ ζ

ξ ξ

η η

ζ ζ

ξ ξ ξ

η η η

ζ ζ ζ

   
   
   
   
   
   
   =       

        
       

L

L

L

L

L

L

L

L

L
1444444424 3

1

1

1

2

n

u

v

w

u

w

 
 
 
  
 
 
 
 
  

M

444444

 (3.99) 

Matrix [Γ] is the inverse of the Jacobian matrix [J], which is given by: 
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 [ ]
, , ,

, , ,

, , ,

, , ,

, , ,
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i i i i i i

i i i i i i
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   = =   
   
   

∑  (3.100) 

For the three-dimensional element, the structural element stiffness is given by: 

 [ ] [ ] [ ] [ ]1 1 1

1 1 1
6 6 6 6

T

dof dof dof dof

k B D B J d d dξ η ζ
− − −

× × × ×
= ∫ ∫ ∫  (3.101) 

where [D] is the material property matrix and J is the determinant of the Jacobian matrix. The 

latter parameter expresses the ratio of volume dx dy dz to dξ dη dζ. Contributions to the element 

load vector include the terms 

 [ ] [ ] { } [ ] { } [ ] { }1 1 1

0 0
1 1 1

6 1 6 1 3 16 6 6 6 3

T T T

n n n

B D B N F J d d dε σ ξ η ζ
− − −

× × ×× × × ×

 − + 
 

∫ ∫ ∫  (3.102) 

where {ε0} and {σ0} represent the initial strain and stress fields, respectively, and {F} is the 

vector of body forces. Equations 3.101 and 3.102 are numerically integrated by Gauss quadrature 

in program UMAR.  

For a scalar field problem in three dimensions, with n the number of nodes per element, the 

element characteristic matrix becomes: 

 [ ] [ ] [ ][ ]1 1 1

1 1 1
3 3 3 3

T

n n n n

K B D B J d d dξ η ζ
− − −

× × × ×
= ∫ ∫ ∫  (3.103) 

where [D] is the principal axes diffusivity/permeability tensor,  

 [ ]
0 0

0 0

0 0

x

y

z

D

D D

D

 
 =  
  

 (3.104) 

and matrix [B] is given by: 

 [ ] [ ] [ ] [ ]









∂
∂

∂
∂

∂
∂=

z

N

y

N

x

N
B

TTT
T

 (3.105) 

3.6.1 Layered solid isoparametric element 

The three-dimensional element can be used for the analysis of laminated composite solids by 

specifying several layers of different materials in different orientations. The material layers can 

be stacked in any of the three isoparametric directions, parallel to opposite faces of the parent 

isoparametric element. Layering directions 1, 2, and 3 correspond respectively to isoparametric 

directions ξ, η, and ζ. The layered solid element uses the same shape functions as the 

homogeneous one, but integration along the layering direction takes into account the variation of 

material properties.  
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The element matrices and vectors are obtained by numerical integration using Gauss 

quadrature. Whereas Gauss quadrature in the plane of the lamina is carried out in the same 

manner as a two-dimensional isoparametric element, the order of integration along the layering 

direction is given by the number of layers specified in that direction. Program UMAR can 

calculate the weights of any number of Gauss points given their co-ordinates. Thus, there is not a 

maximum on the number of layers that can be specified in the program. Yet, it is desirable the 

minimum number of layers be at least the order of integration used in the plane of the lamina. 

After having specified the number of layers and the layering direction, program UMAR calculates 

the co-ordinate of the centre plane of each layer where Gauss points are to be positioned and 

element matrices and vectors are to be evaluated. 
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4 Material library 

To address the behaviour of different types of materials, UMAR provides a broad library of linear 

and non-linear, isotropic and anisotropic constitutive models. These material models are 

described in the following sub-sections. 

4.1 Theory of elasticity 

A stressed body is said to behave elastically if its strains are recovered when the stresses are 

removed, i.e., there is a one-to-one correspondence between stresses and strains, irrespective of 

the history of loading. All elastic models that are implemented in UMAR can be found in the 

module <elasticity_library> in the file elasticity.f90. 

4.1.1 Linear elastic model 

A body is said to be linearly elastic if each stress component can be expressed as a linear 

combination of all the strain components, i.e., 

 { } [ ]{ }Dσ ε=  (4.1) 

where {σ } and {ε } respectively denote the stress and strain vectors, and [D] is a symmetric 

square matrix that contains the elastic properties of the material. Program UMAR can handle both 

isotropic problems, in which the material elastic parameters are independent of orientation, and 

anisotropic problems, in which the elastic constants vary according to the orientation. 

Isotropic linear-elastic models 

Isotropic materials are those whose material properties are independent of orientation. These 

materials are described by two independent elastic constants: Young�s modulus (also called 

modulus of elasticity) E and Poisson�s ratio ν. The stress-strain relations for an isotropic, linearly 

elastic material implemented in UMAR are given by: 

 Uniaxial stress:
x x

Eσ ε=  (4.2) 
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1
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1 0

Plane stress ( 0): 1 0
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0 0

x x
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    
    = = = =    −        

 (4.3) 
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    −    =    −+ −            

 (4.4) 
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 (4.6) 

The above relations can be found in subroutine <isotropic_D_matrix> in the module 

<mechanics_library> (file mechanics.f90.) 

Orthotropic linear-elastic models 

An orthotropic material is an anisotropic material that has different elastic properties in the three-

principal directions (directions of elastic symmetry). Such material is characterised by nine 

independent elastic constants: three Young�s moduli (Ex, Ey, Ez), three Poisson�s ratios (νxy, νyz, 

νzx), and three shear moduli (Gxy, Gyz, Gzx).  

The compliance matrix [C] of an orthotropic material takes the form: 
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    
    
       
 
 
 
 
  

 (4.7) 

In general, νij is not equal to νji; however, they are related by ij i ji jE Eν ν= for i≠j. Thus, matrix 

[C] can be written as: 
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 (4.8) 

The stiffness matrix [D] for orthotropic materials is found from the inverse of the compliance 

matrix, i.e., [D] = [C]
-1

. The stress-strain relations for orthotropic, linearly elastic materials 

implemented in UMAR are given by: 

 Uniaxial stress:
x x x

Eσ ε=  (4.9) 
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 (4.10) 
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 (4.11) 



  Material library 

   34

 

2

2 2

2 2

0 0 0

0 0 0
Curved shell:

0 0 0 0

0 0 0 0

0 0 0 0

xy x yx

x xy y x xy yx x

y xy x y x y y

yz yzx xy y x xy y

zx zxyz

xy xyzx

xy

E EE

E E E E

E E E E

E E E E

G

G

G

ν
ν νσ ε

σ ν ε
τ γν ν
τ γ
τ γ

 
 − −    

    
       − −=     

    
    
       
 
  

 (4.12) 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

2

3-D:

0 0 0

0 0 0

0 0

y yz z x xy y yz xz z x y xz xy yz x y z

x xz z yxy y yz xz z x y yz x xy xz y y z

x xy y y zxz xy yz x y z yz x xy xz y y z

E E E E E E E E E E

x

E E EE E E E E E E E
y

E E E EE E E E E E Ez

yz

zx

xy

ν ν ν ν ν ν ν

νν ν ν ν ν ν

νν ν ν ν ν ν

σ
σ
σ
τ
τ
τ

− + +
∆ ∆ ∆

−+ +
∆ ∆ ∆

−+ +

∆ ∆ ∆

 
 
 
   = 
 
 
 
  

( ) ( )2 2

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

with 2

x

y

z

yz

yz
zx

zx
xy

xy

x y z yz y y xy z xz xz yz xy

G

G

G

E E E E E E v v

ε
ε
ε
γ
γ
γ

ν ν ν ν

 
  
  
  
    
  
  
  
  
    

  

 ∆ = − − + + 

 (4.13) 

The above relations can be found in subroutine <orthotropic_D_matrix> in the module 

<mechanics_library> (file mechanics.f90.) 

Transversely isotropic linear-elastic models 

This is a special case of orthotropic materials, since the elastic properties are the same in one 

plane (e.g. the x-y plane) but change in the direction normal to that plane (e.g. the z-axis). A 

transversely isotropic material is described by five independent elastic constants: two Young�s 

moduli (Ep, Ez), two Poisson�s ratios (νp, νzp) and one shear modulus (Gzp), where subscript p 

denotes the plane of symmetry. The compliance matrix [C] for transversely isotropic materials 

takes the form: 
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 (4.14) 

where pz p zp zE Eν ν= . The stress-strain relations for a transversely isotropic, linearly elastic 

material implemented in UMAR are given by: 

 Uniaxial stress: x p xEσ ε=  (4.15) 
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The above relations can be found in subroutine <transversely_isotropic_D_matrix> in the module 

<mechanics_library> (file mechanics.f90.) 

4.1.2 Orthotropic hypoelastic model 

A material is said to be hypoelastic if the stress rate is a linear elastic function of the rate of 

deformation, i.e., 

 { } [ ]{ }d D dσ ε=  (4.20) 

where {dσ} and {dε} are respectively the vectors of incremental stresses and strains, and [D] is 

the constitutive matrix. Equation 4.20 implies that the material is assumed to behave linear 

elastically at each load increment. Assuming orthotropy, the constitutive matrix [D] is written as 

[6]: 

[ ]

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2
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µ µ µ µ µ µ µ
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µ µ µ µ µ µ µ
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φ
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φ

 − + +
 
 + − +
 
 + + −=  
 
 
 
   

 (4.21) 

with 

 

2 2 2

12 12 21 23 23 32 31 31 13

2 2 2

12 23 31 12 23 311 2

µ ν ν µ ν ν µ ν ν
φ µ µ µ µ µ µ

= = =

= − − − −
 (4.22) 

In Eqs. 4.21 and 4.22 subscripts 1, 2, and 3 refer to the axes of orthotropy, Ei is the orthotropic 

modulus of elasticity in the i
th
 direction, νij is the Poisson�s ratio, and Gij is the shear modulus. It 

is assumed here that the material directions 1, 2, and 3 coincide with the principal stress 

directions. The sign convention used here is tension positive. 
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It is desirable that no particular direction be favoured with respect to the shear stiffness of the 

material. By imposing the requirement that the shear modulus be invariant under any axes 

transformation, Gij becomes: 

 ( )21
2

4
ij i j ij i j i jk j kiG E E E E E Eµ µ µ

φ
 = + − − +  

 (4.23) 

If working on a co-ordinate system other than the one given by the material orthotropy, the 

constitutive matrix [D] given in Eq. 4.21 needs to be transformed into the new co-ordinate 

system, i.e., 

 [ ] [ ] [ ][ ]' T
D T D Tε ε=  (4.24) 

where [Tε] is the matrix that transforms strains between axes [4], 

{ } [ ] { } [ ]

2 2 2

1 1 1 1 1 1 1 1 1

2 2 2

2 2 2 2 2 2 2 2 2

2 2 2

' 3 3 3 3 3 3 3 3 3

2 3 2 3 2 3 2 3 3 2 2 3 3 2 2 3 3 2

3 1 3 1 3 1 3 1 1 3 3 1 1 3 3 1 1 3

1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2

;
2 2 2
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l m n m n n l l m
d T d T

l l m m n n m n m n n l n l l m l m

l l m m n n m n m n n l n l l m l m
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ε εε ε= =
+ + +
+ + +
+ + + 1

 
 
 
 
 
 
 
 
  

 (4.25) 

li, mi, ni, for i=1,2,3, are the direction cosines between the two co-ordinate axes, and strains {dε} 

and {dε�
} are ordered as in Eq. 4.19. 

Equivalent uniaxial strain 

Using the concept of equivalent uniaxial strain developed by Darwin and Pecknold [5], the 

multiaxial state of stress in any material can be treated as three uniaxial stress states. This concept 

permits the use of experimental data from uniaxial tests to develop the constitutive matrix for a 

combined stress case, by separating the Poisson effect from the cumulative strain in any given 

direction.  

The equivalent uniaxial strain εiu in the i
th
 direction for a non-linear material is defined as: 

 ∑
∆=

increments all i

i

iu
E

σε  (4.26) 

where ∆σ i is the increment in stress during the load step, and Ei represents the tangent modulus 

in the i
th
 direction at the start of the load increment. The above expression is applicable for the 

entire stress history (both the pre- and the post-peak regions). Here, the equivalent uniaxial strains 

εiu are associated with the principal stress axes. The incremental elastic moduli of Eq. 4.21 are 

then obtained from: 
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 i
i

iu

d
E

d

σ
ε

=  (4.27) 

Equivalent compressive uniaxial stress-strain curve 

The curve used in UMAR for compression loading is illustrated in Figure 4-1. Part I of the curve 

is represented by the equation proposed by Saenz [33]: 

 
2

1 2

o iu
i

o iu iu

s ic ic

E

E

E

εσ
ε ε
ε ε

=
   

+ − +   
   

 (4.28) 

where Es is the secant modulus of elasticity at peak stress (i.e., s ic icE σ ε= , σic being the 

compressive strength in the i
th
 direction), Eo is the initial tangent modulus, and εic is the 

compressive strain at peak stress in the i
th
 direction. Part II of the compressive curve traces the 

Smith-Young model [37] according to: 

 exp 1iu iu
i ic

ic ic

ε εσ σ
ε ε
   

= −   
   

 (4.29) 
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εcr

 σit

10 εcr

σ

σ

 

Figure 4-1: Uniaxial stress-strain curve for compressive and tensile loading. 

Values of σic are determined from the ultimate-strength surface envelopes to be discussed 

later in the text. To finalise the shape of the equivalent compressive uniaxial stress-strain curve, 

the value of the equivalent uniaxial strain at which peak compressive stress is attained, εic, needs 

to be defined. Darwin and Pecknold [5] proposed the following relationships based on 

experimental data on Portland cement concrete specimens: 



  Material library 

   39

 : 3 2ic
ic c ic cu

c

σσ σ ε ε
σ

 
≥ = − 

 
 (4.30) 
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ic c ic cu
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σ σ σσ σ ε ε
σ σ σ

    
 < = − + +   
     

 (4.31) 

where σc is the material compressive strength and εcu is the compressive strain at peak stress for 

the real uniaxial compression curve. The values of εic are constrained to ensure that the ratio Eo/Es 

in Eq. 4.28 is always greater than or equal to 2. This prevents the shape of the stress-strain curve 

from becoming concave upward. 

By differentiating Eqs. 4.28 and 4.29 with respect to εiu, the incremental elastic moduli 

needed for the constitutive matrix [D] in Eq. 4.21 are obtained from: 
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E
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 (4.32) 

 Part II: exp 1 1ic iu iu
i

ic ic ic

E
σ ε ε
ε ε ε

   
= − −   

   
 (4.33) 

Equivalent tensile uniaxial stress-strain curve 

The material is modelled in tension as a linear elastic material up to cracking. When the tensile 

stress along one principal direction exceeds the tensile strength of the material σt, cracking is 

assumed to initiate perpendicular to that particular direction (see Figure 4-2(a)). Cracking is 

modelled by reducing the value of E to zero along the original principal stress direction. If, for 

example, 1 tσ σ≥ , then the constitutive matrix [D] reduces to: 

 [ ]

( )2

2 31 23 2 3

23 2 3 3

23

31

12

0 0 0 0 0 0

0 1 0 0 0
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0 0 0 0 0
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µ µ
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 
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 
 =
 
 
 
 
  

 (4.34) 

where 2 2

23 311φ µ µ= − −  and β is a shear retention factor (β <1). Equation 4.34 results from setting 

E1 to zero. The factor β  is used to account for the shear transferred along the crack due to 

aggregate interlock. 
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Figure 4-2: (a) Crack formation in principal tension direction; (b) Tensile uniaxial stress-strain 

curve. 

After initiation of cracking, the tensile stress-strain curve follows a linear strain-softening 

branch intended to represent the post-cracking tensile stresses carried by the material (Figure 4-1 

and Figure 4-2(b)). Actually, the post-cracking residual capacity, commonly known as tension 

stiffening in reinforced concrete, stems from the transfer of tensile stresses from the 

reinforcement to the concrete in between cracks (i.e., bond). After the formation of cracks at a 

given point, the cracked material can still carry some tension, but it is assumed to have zero 

stiffness normal to the direction of the crack (see the step line in Figure 4-2(b)). This effect is 

smeared over a finite area, which is given by the tributary area of a Gauss integration point in 

UMAR. 

Poisson�s ratios 

In order to determine the values of Poisson�s ratio appearing in Eq. 4.22, Elwi and Murray [6] 

developed a least-squares fit of a cubic polynomial from uniaxial compression data tests in 

concrete specimens, i.e., 

 

2 3

1.0 1.3763 5.3600 8.586 0.5iu iu iu
i o

ic ic ic

ε ε εν ν
ε ε ε

    
 = + − + ≤   
     

 (4.35) 

where νo is the initial value of ν. Equation 4.35 assumes that an axially symmetric Poisson�s ratio 

can be applied to each equivalent uniaxial strain, resulting in three independent Poisson�s ratios. 

Equation 4.22 can now be written as: 

 2 2 2

12 1 2 23 2 3 31 3 1µ ν ν µ ν ν µ ν ν= = =  (4.36) 

Material ultimate-strength surfaces 

The material ultimate-strength surfaces are surfaces in stress space that define the ultimate 

compressive and tensile strengths, σic and σit, respectively, for any ratio of principal stresses. The 
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ultimate strength envelope developed by Kupfer and Gerstle [21] to model the behaviour of 

concrete under biaxial stresses has been extended here to consider a three-dimensional stress 

field. The triaxial compressive and tensile strength envelopes are illustrated in Figure 4-3 and 

Figure 4-4, respectively.  

If the ratios of principal stresses are defined as: 

 1 2 1
12 23 13

2 3 3

σ σ σα α α
σ σ σ

= = =  (4.37) 

where 1 2 3σ σ σ≥ ≥  are the principal stresses, the increase in compressive strength due to either 

biaxial or triaxial compression is given by [21]: 
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 (4.39) 

where subscripts i, j, and k can take any value from 1 to 3, provided that i j k≠ ≠ . Equations 4.38 

and 4.39 describe the surface illustrated in Figure 4-3. Once the ratios of principal stresses are 

determined, the value of σic as given by Eqs. 4.38 and 4.39 is used to define the shape of the 

equivalent compressive uniaxial stress-strain curve (Eqs. 4.28 and 4.29). 
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Figure 4-3: Triaxial compressive strength envelope. 

Regarding the tensile strength envelope (see Figure 4-4), the tensile strength of the material 

along one principal direction does not change with the introduction of a tensile stress in another 
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principal direction (i.e., it tσ σ=  for triaxial tension), but it does linearly decrease with increased 

compressive stress according to [21]: 

 1 0.8 with 0, 0
j

it t i j

c

σ
σ σ σ σ

σ
 

= − ≥ < 
 

 (4.40) 

The compressive strength is also decreased with the presence of tensile stresses according to: 

 

( )2

1 3.28
with 0, 0

1

ij

jc c i j

ij

α
σ σ σ σ

α

+
= ≥ <

+
 (4.41) 

σt

σt

σt

σ1

σ2

σ3

σc

σc

σc

321 0.8 1 0.8t

c c

σσσ
σ σ

   
− ⋅ −   

   

( ) ( )
13 23

2 2

13 23

1 3.28 1 3.28

1 1
c

α ασ
α α

+ +⋅
+ + 31 0.8t

c

σσ
σ

 
− 

 

( ) ( )
3212

2 2

12 32

1 3.651 3.28

1 1
c

αασ
α α

++ ⋅
+ +

( ) ( )
13 23

2 2

13 23

1 3.28 1 3.65

1 1
c

α ασ
α α

+ +⋅
+ +

1 2 3, 0 0σ σ σ≥ <

1 2 30 , 0σ σ σ≥ <

 

Figure 4-4: Triaxial tensile strength envelope. 

The foregoing procedure can be found in the subroutine <hypo_elasticity> (file elasticity.f90). 

4.1.3 Resilient modulus models 

The mechanical behaviour of supporting materials in pavement structures (i.e., base, sub-base and 

subgrade) is generally characterised by means of the resilient modulus Mr. Resilient modulus 

models characterise the stress-strain properties of soils through a stress-dependent elastic 

modulus and a constant Poisson ratio. The following resilient modulus models are implemented 

in UMAR. These can be found in the subroutine <resilient_modulus_models> (file elasticity.f90). 

Granular materials 

k-θ Model 

 2

1

K

r
kM θ=  (4.42) 
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where θ is the bulk stress (i.e., θ =I1=σ1+σ2+σ3) and k1 and k2 are two material constants obtained 

from regression analysis of repeated load triaxial tests on granular materials. The model 

represented by Eq. 4.42 is the most commonly used to reflect the mechanical behaviour of 

granular materials [10]. It is a simple model; however, it neglects the effect of shear stress on the 

resilient response of these materials. 

Uzan Model 

 32

1

kk

r dM k θ σ=  (4.43) 

where σd is the deviator stress (i.e., 23J , J2 being the second invariant of the deviatoric stress), 

and k1, k2, and k3 are material constants obtained from regression analysis of repeated load triaxial 

tests on granular materials. Equation 4.43 was proposed by Uzan [40] as an improvement to the k-

θ model by including the shear stress effects (through the term σd.) 

UT-Austin Model [30] 

 32

1 3

kk

r dM k σ σ=  (4.44) 

where σ3 is the minor principal stress (confining stress in triaxial tests) and k1, k2, and k3 are 

material constants obtained from regression analysis of repeated load triaxial tests on granular 

materials. 

IRC�s Model 

 3 52 4

1

k kk k

r d dM k wθ σ γ=  (4.45) 

where w is the moisture content (%), and k1 to k5 are model parameters obtained from multiple 

regression analyses of repeated load triaxial tests performed on granular materials. The bulk θ and 

deviator σd stresses in Eq. 4.45 are given in kPa, whereas the resilient modulus Mr is given in 

MPa.  

Cohesive materials 

Bilinear Approximation 

 
( )
( )

1 3 2 2

1 4 2 2

for

for

d d

r

d d

k k k k
M

k k k k

σ σ
σ σ

 + − <=  + − ≥
 (4.46) 

where k1, k2, k3, and k4 are material constants. 
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Khogali�s Model 
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


+++Ψ+= τ

τ
γ  (4.47) 

where Ψ is the soil matric suction (kPa), γd is the soil dry density (kg/m
3
), T is the average soil 

temperature (
o
C), J2 is the second invariant of the deviatoric stress (kPa), and τoct is the octahedral 

shear stress (kPa). Constants B0 to B4 are dependent on the soil type. Note that Mr as given by Eq. 

4.47 is given in kPa. The model given by Eq. 4.47 was proposed by Khogali [18] to characterise 

the resilient deformation characteristics of cohesive subgrade soils. 

4.2 Theory of plasticity 

The theory of plasticity provides a theoretical description of the relationship between strain ε and 

stress σ for materials which exhibit plastic behaviour, i.e., they undergo irreversible straining 

once a certain level of stress has been reached (yield criterion). Two plastic models are 

implemented in UMAR, namely: classic plasticity (where inelastic straining is time independent) 

and visco-plasticity (where inelastic straining is rate sensitive). Both of them are based on the so-

called incremental theory of plasticity, in which the total irreversible strain is obtained as the sum 

of the increments. In order to formulate both models, three requirements have to be met: 

! a yield function, which signals if the material is yielding plastically or not; 

! a hardening function, which indicates the manner in which the yield function changes (if at 

all) with plastic straining; and, 

! a flow rule, which determines the direction of plastic straining. 

All plastic models that are implemented in UMAR can be found in the module 

<plasticity_library> in the file plasticity.f90. 

4.2.1 Yield criteria 

By defining a yield function F as a function of stress σij and quantities σb
ij and κ associated with 

the hardening rule, yielding occurs when: 

 ( ), , 0
b

ij ijF σ σ κ =  (4.48) 

If F < 0 then the material is in the elastic range; however, if F = 0, it is yielding. The result of F > 

0 is not physically possible for rate-independent plasticity, as it indicates a state of stress that does 

not satisfy the constitutive law. Similarly, the results dF < 0 and dF = 0 (consistency condition) 

respectively imply elastic unloading and continued yielding. The result dF > 0 is not possible in 

the plastic regime [4]. 
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Isotropic failure surfaces 

Isotropic failure surfaces implemented in UMAR that are independent of the mean stress are 

Tresca and Von-Mises. Generalisation of these two also implemented in program UMAR are 

respectively the Mohr-Coulomb and Drucker-Prager yield criteria, created by adding the angle of 

internal friction φ, which develops hydrostatic pressure-dependent behaviour.  

Tresca yield criterion 

The Tresca yield criterion assumes that plastic deformation occurs when the maximum shear 

stress attains a critical value. If the principal stresses are σ1, σ2, and σ3, where 
1 2 3

σ σ σ≥ ≥ , then 

the onset of plastic straining occurs when: 

 ( )1 3 y hσ σ σ− ≥  (4.49) 

where σy is a material parameter and h is the hardening parameter. The threshold value σy is 

usually the yield stress determined from one-dimensional tension tests. This yield criterion is 

represented in the principal stress space as an infinitely long regular hexagonal cylinder equally 

inclined to the three principal axes.  

Von-Mises yield criterion 

By using the Von-Mises yield criterion, plastic flow occurs when: 

 23 yJ σ≥  (4.50) 

where J2 is explicitly given by: 

 2 2 2 2 2 2

2

1 1

2 2
ij ij x y z xy yz xzJ s s s s s τ τ τ = = + + + + +   (4.51) 

where sij is the deviatoric stress defined as 1
3ij ij ij kks σ δ σ= − . Equation 4.50 represents a circular 

cylinder of radius 2 3 yσ  inclined at equal angles to the three principal axes. 

The quantity on the left-hand side of Eq. 4.50 is referred to as the effective or equivalent 

stress σ . According to the Von-Misses criterion, if the effective stress σ  equals or exceeds the 

uniaxial yield stress σy, then plastic flow is assumed to occur. 

Mohr-Coulomb yield criterion 

Mohr-Coulomb yield criterion is based on the maximum shear stress of the material, i.e., 

 tanncτ σ φ= −  (4.52) 
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where τ is the shearing stress, σn is the normal stress, c is the cohesion, and φ is the angle of 

friction. Both c and φ are material constants. If principal stresses are denoted as 1 2 3σ σ σ≥ ≥ , the 

Mohr-Coulomb criterion can be written as: 

 ( ) ( )1 3 1 32 cos sincσ σ φ σ σ φ− = − +  (4.53) 

In principal stress space, Eq. 4.53 represents a conical yield surface whose normal section at any 

point is an irregular hexagon. Expressing Eq. 4.53 in terms of stress invariants results in: 

 ( ) 2

1 2 1 2

1
, , sin sin cos sin cos 0

3 3 3 3

J
F I J I J c

π πθ φ θ θ φ φ   = + + + + − =   
   

 (4.54) 

where I1 is the first invariant of the stress tensor (i.e., 1 1 2 3x y zI σ σ σ σ σ σ= + + = + + ) and J2 is 

the second invariant of the deviatoric stress tensor (given by Eq. 4.51). The parameter θ is defined 

by the second and third invariants of the deviatoric stress tensor as: 

 3

3

2

3 3
cos3

2

J

J
θ =  (4.55) 

where 0 3θ π≤ ≤  and 

 ( )3

3 1 1 2 3

1
2 9 27

27
J I I I I= + +  (4.56) 

with 
2 2 2

2 x y y z x z xy xz yzI σ σ σ σ σ σ τ τ τ= + + − − −  and 3 det( )I σ= . 

Drucker-Prager yield criterion 

The Drucker-Prager yield criterion is given by: 

 ( )1 2 1 2, 0F I J I J kα= + − =  (4.57) 

where α and k are defined by the cohesion c and the angle of internal friction φ. The yield surface 

represented by Eq. 4.57 has the form of a circular cone. In order to make the Drucker-Prager 

circle coincide with the outer apices of the Mohr-Coulomb hexagon at any section, α and k are 

given as: 

 
( ) ( )
2sin 6 cos

,
3 3 sin 3 3 sin

c
k

φ φα
φ φ

= =
− −

 (4.58) 

Coincidence with the inner apices of the Mohr-Coulomb hexagon is provided by: 

 
( ) ( )
2sin 6 cos
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 (4.59) 
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4.2.2 Hardening laws 

When a material is subjected to plastic flow, its microstructure is altered resulting in a change of 

the properties observable at the macro-scale level. Due to this micro-structural changes in the 

material, the domain at which the material behaves elastically changes its size, its position, or 

both. This phenomenon is captured in plastic models by means of a hardening function, which 

describes the manner in which the yield function of the material is modified due to plastic 

straining. Hardening functions implemented in program UMAR are described in the following. 

Isotropic hardening 

In isotropic hardening, the progressive development of the yield surface is characterised by a 

single parameter: the hardening variable κ. Using the work hardening hypothesis, the hardening 

parameter κ is defined as: 

 
p

ji ijd dκ σ ε=  (4.60) 

The yield criterion can then be rewritten as: 

 ( ) ( ) 0ij YF σ σ κ− =  (4.61) 

where σY is the current yield stress. The simplest case of isotropic hardening is a linear function: 

 Y o pHdσ σ ε= +  (4.62) 

in which σo is the initial yield stress. Parameter H in Eq. 4.62 is the plastic modulus, defined as 

pd dσ ε , where dσ  and pdε  are respectively the effective stress and effective plastic strain. If 

H > 0, true hardening occurs (i.e., the yield stress increases). If H = 0, perfect plasticity takes 

place (i.e., there is not hardening at all). And if H < 0, softening of the material takes place (i.e., 

there is a decrease in the yield stress.) For uniaxial yielding, the plastic modulus becomes: 

 

1

T

T

E
H

E

E

=
−

 (4.63) 

where E is the elastic modulus and ET is the elasto-plastic tangent modulus, i.e., TE d dσ ε=  for 

oσ σ> . 

Linear kinematic hardening 

In kinematic hardening, the yield surface does not expand or contract, but it moves as a rigid 

body within the stress space. This type of hardening is generally used to model behaviour of 

materials under cyclic and transient loads.  
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Kinematic hardening leads to a shift of the origin of the initial yield surface. The shifted yield 

surface is thus described by: 

 ( ) 0
b

ij ij oF σ σ σ− − =  (4.64) 

where σb
ij is the back-stress that represents the centre of the shifted elastic domain. Tensor σb

ij is 

assumed to be zero in the initial state. There are two linear kinematic hardening models 

implemented in UMAR: 

Melan-Prager hardening rule [25] 

 
b p

ij ijcσ ε= &&  (4.65) 

according to which the rate of the back-stress is proportional to the plastic strain rate. The 

proportionality factor c in Eq. 4.65 is a constant directly related to the plastic modulus. Negative 

values of c leads to softening. A model with purely kinematic softening does not make physical 

sense, but a model with mixed isotropic and kinematic softening can be useful for materials in 

which tensile loading induces a degradation of both tensile and compressive strength, with the 

degradation in tension being faster than in compression. 

Prager-Ziegler hardening rule 

 ( )b b

ij ij ijσ µ σ σ= −& &  (4.66) 

which means that the yield surface moves in the direction of the vector connecting the centre of 

the actual yield surface to the stress point. The multiplier µ&  is obtained from: 

 
{ } { }

{ } { }
T

T b

a d
c

a

σ
µ

σ σ
=

−
&  (4.67) 

where parameter c has the same meaning as in the Melan-Prager hardening rule and {a} is the 

flow vector, which is computed from: 

 { } T

ij x y z yz zx xy

F F F F F F F
a

σ σ σ σ τ τ τ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂= =  

∂ ∂ ∂ ∂ ∂ ∂ ∂  
 (4.68) 

The flow vector {a} in Eq. 4.68 depends on the yield criterion chosen. If vector {a} is written as: 

 { } { } { } { }1 1 2 2 3 3a C a C a C a= + +  (4.69) 

where 
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{ } { }
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= =
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∂
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− − −

 (4.70) 

and 

 

( )

( )

1

1

2 1 2 ''
22

3 3 2
'

2

tan3

3 1

2cos3

F
C

I

F F
C

JJ

F
C

J

θ
θ

θ θ

∂=
∂

∂ ∂= −
∂∂

− ∂= −
∂

 (4.71) 

then the different yield criteria are defined by constants Ci. Table 4-1 lists constants Ci for the 

isotropic yield surfaces used in UMAR. 

Table 4-1: Constants defining isotropic yield surfaces implemented in UMAR. 

Yield criterion C1 C2 C3 

Tresca 0 ( )2cos 1 tan tan 3θ θ θ+  
'

2

3 sin

cos3J

θ
θ

 

Von-Mises 0 3  0 

Mohr-Coulomb 
1

sin
3

φ  
( )
( )

cos 1 tan tan 3

sin tan3 tan 3

θ θ θ

φ θ θ

 +

+ − 

 
'

2

3 sin cos sin

2 cos3J

θ θ φ
θ

+
 

Drucker-Prager α 1.0 0 

Non-linear kinematic hardening 

Realistic modelling of engineering materials often requires non-linear hardening laws. For 

isotropic hardening, non-linearity can be easily incorporated through the function σY(κ), but for 

kinematic hardening this is not so straightforward. Non-linear kinematic hardening is 
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implemented in program UMAR by means of the Armstrong-Frederick rule, for which the 

evolution of the back-stress is governed by: 

 
2

3

b p p b

ij ij ij ijcσ ε γ ε σ= −& &&  (4.72) 

where c and γ are material constants. 

Mixed hardening 

The hardening behaviour of most materials seems to be a combination of both isotropic and 

kinematic type of hardening, sometimes even accompanied by a change of shape of the yield 

surface. Mixed hardening results in a modification of the yield surface by simultaneous 

translation and expansion (or contraction). The yield surface is therefore rewritten as: 

 ( ) ( ) 0
b

ij ij YF σ σ σ κ− − =  (4.73) 

which covers Eqs. 4.61 and 4.64 as special cases. 

4.2.3 Rate-independent plastic model 

In the classical theory of plasticity, it is assumed that the total strain increment dεij is given by: 

 
p

ij

e

ijij ddd εεε +=  (4.74) 

where 
e

ijdε  and 
p

ijdε  are the elastic and plastic strain increment tensors, respectively. The elastic 

strain increment can be obtained from the following tensor equation: 

 
e

ij ijkl kld C dε σ=  (4.75) 

where Cijkl is the compliance of elastic moduli. The plastic strain increment is obtained from the 

flow rule: 

 
ij

p

ij

Q
dd

σ
λε

∂
∂=  (4.76) 

where Q is a plastic potential, which has units of stress and is a function of the stresses 

( ), ,
b

ij ijQ σ σ κ , and dλ is a constant called the �plastic multiplier�. The flow rule is called 

�associated� if Q = F, where F is the yield function, and it is called �non-associated� otherwise. 

Associated flow rules are commonly used for ductile metals, but non-associated rules are better 

suited to soil and granular materials [4], [42]. Associated flow rules imply that the plastic strain 

increment is normal to the yield surface, known as the normality condition. 
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During plastic flow, the stress state must remain on the yield surface, satisfying the 

consistency condition. For a yield function of the type ( ), , 0
b

ij ijF σ σ κ = , the consistency 

condition is given by: 

 { } { }0

T T

b

b

F F F
dF d d dσ σ κ

σ σ κ
∂ ∂ ∂   = = + +   ∂ ∂ ∂   

 (4.77) 

The terms {dσb
ij} and dκ are respectively obtained by assuming a kinematic hardening law (e.g., 

Eq. 4.65) and using Eq. 4.60. The complete elasto-plastic incremental stress-strain relation is 

given by: 

 { } [ ]{ } [ ]{ }e p
d D d D d dσ ε ε ε= = −  (4.78) 

where [D] is the elastic material matrix. By substituting Eqs. 4.60, 4.65, 4.76, and 4.78 into Eq. 

4.77, the plastic multiplier dλ is obtained in explicit form as [4]: 

 

[ ]

[ ] { }
{ }

T

T T
T

b

F
D

d d
F Q F Q F Q

D c

σλ ε
σ

σ σ σ σ κ σ

∂ 
 ∂ =

∂ ∂ ∂ ∂ ∂ ∂         − −         ∂ ∂ ∂ ∂ ∂ ∂         

 (4.79) 

Finally, substituting Eq. 4.76 into Eq. 4.78, the elasto-plastic constitutive matrix is given by: 

 [ ]
[ ] [ ]

[ ] { }

T

ep T T
T

b

Q F
D D

D D
F Q F Q F Q

D c

σ σ

σ
σ σ σ σ κ σ

∂ ∂  
  ∂ ∂    = −  ∂ ∂ ∂ ∂ ∂ ∂         − −         ∂ ∂ ∂ ∂ ∂ ∂         

 (4.80) 

Matrix [Dep] is symmetric if F = Q. 

4.2.4 Isotropic visco-plastic model 

In visco-plasticity, plastic strains in the material (called visco-plastic strains) are developed with 

time (as opposed to instantaneously as it is the case in classical plasticity.) Figure 4-5 illustrates a 

rheological analogue of elasto-visco-plastic materials. It consists of a spring that is in series with 

a dashpot and a slider system in parallel. The slider represents yielding and permanent straining; 

however, the latter is not instantaneous since the viscous dashpot needs time to strain. Thus, it is 

assumed that instantaneously the material behaves elastically, with all the stresses being taken by 

the spring. 
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SliderDashpot

Spring

σ

σ
 

Figure 4-5: Rheological analogue of elasto-visco-plastic model. 

Similar to rate-independent plasticity, here the total strain ε is separated into elastic εe and 

visco-plastic εvp components, so that the total strain rate can be expressed as: 

 vpe εεε &&& +=  (4.81) 

The onset of visco-plastic behaviour occurs when 0>−
o

FF , where F is a scalar yield function 

and Fo is the uni-axial yield stress. Unlike the theory of rate-independent plasticity, here it is 

postulated that stress trajectories can cross the yield surface, giving rise to visco-plastic strains. A 

steady-state is reached when the stress is on the yield surface, i.e., there is not a further increase in 

visco-plastic strains. This situation leads to the same results given by rate-independent plasticity. 

For associated visco-plasticity, the visco-plastic strain rate vpε&  is given by [28]: 

 ( )
σ

γε
∂
∂Φ= F

F
vp
&  (4.82) 

where γ  (s
-1

) is a fluidity parameter controlling the plastic flow rate (γ = 1/µ, where µ is the 

viscosity), and Φ(x) is a positive monotonic increasing function for x > 0 (Φ(x) = 0 for 0≤x ). 

The flow function Φ(x) in program UMAR can take any of the following forms: 

 ( ) FF =Φ  (4.83) 

 ( )
m

o

o

F

FF
F 







 −
=Φ  (4.84) 

 ( ) 1−=Φ









 −

o

o

F

FF
n

eF  (4.85) 

The visco-plastic strain increment 
n

vpε∆  occurring in a time interval 
nnn

ttt −=∆ +1
is calculated 

from: 

 
nn

n

n

vp

n

vp Ct σεε ∆+∆=∆ &  (4.86) 

with 
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 n

n

n HtC ∆=θ  and 

n

vpn
H 









∂
∂

=
σ
ε&

 (4.87) 

Parameter θ  is a weighting factor ranging from 0 to 1 (θ = 0 corresponds to the forward 

difference time integration scheme; θ = 0.5 corresponds to the Crank-Nicolson time integration 

scheme; and, θ = 1 corresponds to the backward difference time integration scheme.) Although 

the time integration scheme is unconditionally stable for 5.0≥θ  regardless of the value of the 

time step ∆tn, the accuracy of the solution is not guaranteed, and thus limits for ∆tn need to be 

imposed. Matrix H
n
 must be explicitly determined for the yield criterion assumed for material 

behaviour. For the Von-Mises yield criterion, matrix [H] is given by: 

 ( )
( )
( )1 1 2 2 1 21/ 2 3/ 2'

' '
2

2 2

33 3
, ,

42 4

d
H p M p M p p

J dFJ J
γ γ

ΦΦ= + = ⋅Φ = −
 (4.88) 
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

 (4.89) 

The stress change ∆σn
 occurring in the time interval ∆tn is obtained from: 

 ( )n

vp

nn
D εεσ ∆−∆=∆  (4.90) 

By substituting Eq. 4.86 into Eq. 4.90, ∆σn
 is then calculated as: 

 ( )
n

n

vp

nnn
tD ∆−∆=∆ εεσ &�  with ( ) 11� −− += nn CDD  (4.91) 
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Time step length 

The time step can be either constant or allowed to vary at each time interval. If it varies, its value 

is limited by a factor τ which limits the maximum effective viscoplastic strain increment 
n

vpε∆  as 

a fraction of the total effective strain nε , i.e., 

 ( ) ( ) ( ){ } n

nvp

n

ijvp

n

ij

n

vp t ετεεε ≤∆=∆ 2/1

3

2 &&  (4.92) 

The time step 
n

t∆  needs to be calculated at each integration point according to Eq. 4.92, and the 

least value taken for analysis. Parameter τ gives accurate results in the range 0.01< τ < 0.15 for 

θ = 0  and τ < 10 for 5.0≥θ  [28]. The change in the time step length between any two intervals 

is limited according to 
nn

tkt ∆≤∆ +1
, where k is a constant (a value of 1.5 is suggested by [28].) 

Theoretical restrictions have been provided by [2] for associated viscoplasticity, Φ(F)= F, 

and θ = 0 for the following yield criteria: 
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 (4.93) 

4.3 Theory of continuum damage mechanics 

Load-induced damage of brittle materials can be assessed by solving the equations of mechanics 

at the meso-scale [28], since the mechanisms that consume most of the applied energy are only 

activated at this level. However, it is at the macro-scale level where the collective effect of 

mechanisms acting at the microstructure level of the material are manifested. To evaluate the 

global mechanical response at the macro-scale level (i.e., laboratory specimens, real structures, 

etc.), a mapping of the field variables (e.g., cracks, shear bands, flaws, etc.) can be used between 

the two levels [20]. Such a mapping requires adopting a proper homogenisation procedure. To 

employ the principles of mechanics in deriving the required model within a minimum 

representative volume element (RVE), the governing variables can be assumed to be smooth and 

continuous up to their second derivatives with respect to their positions in the material space [26]. 

This means that the elasticity and plasticity theories can be used at this scale to find the 

mechanical response of a material due to the existence of a single crack or an ensemble of cracks 

[43].  

In developing the following set of unified elasto-visco-plastic damage-based constitutive 

equations, the material is assumed to be isothermal and free of body forces. The total strain tensor 
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is decomposed into three components: an elastic strain, 
e

ije , a damage strain, 
cr

ije , and a visco-

plastic strain, 
vp

ije , i.e. 

 
e cr vp t vp

ij ij ij ij ij ijε ε ε ε ε ε= + + = +  (4.94) 

The visco-plastic and part of the damage strains are permanent in nature and irreversible. The 

stress-strain relationship of the cracked material can be written as: 

 
t

ij ijmn mnCe s=  (4.95) 

where ijmnC  is the effective elastic compliance and 
t

ije  is the sum of elastic strain, 
e

ije , and 

damage strain, 
d cr

ij ije e= . The increment of the total strain can therefore be written as: 

 
t vp

ij ij ijd d de e e= +  (4.96) 

By substituting Eq. 4.95 in Eq. 4.96, the material constitutive relationship is written as: 

 ( )vp

ij ijmn mn mnd D d ds e e= -  (4.97) 

where ijmnD  is the effective material stiffness that reflects the impact of a crack and the 

heterogeneity of the quasi-brittle solid on its mechanical properties.  

Inclusions presence at the micro-level of the material, such as cracks, introduces disturbances 

into the elastic stress and strain fields of the material. These disturbances are influenced by the 

geometry and mechanical properties of the inclusion [7]. These strains must satisfy the general 

statement of equilibrium, i.e., 

 

1

1

s

s

s

ij ij

V

s

ij ij

V

dV
V

dV
V

σ σ

ε ε

=

=

∫

∫
 (4.98)  

where superscript s takes the symbol e or cr  for the matrix and the inclusion (crack), 

respectively, and V is the total volume of the RVE. The strains, ijε , in the right-hand side of Eq. 

4.98 must satisfy the general requirement of equilibrium, i.e., 

 ( ), ,

1

2
ij i j j iu uε = +  (4.99) 

Substituting Eq. 4.99 into Eq. 4.98, and making use of the divergence theorem [16] yields: 

 ( ) ( ), ,

1 1 1 1

2 2cr cr

cr cr

ij i j j i i j j i

V S

u u dV u n u n dS
V V

ε = + = ⋅ + ⋅∫ ∫  (4.100) 

where S
cr

 is the surface of the crack. Equation 4.100 can be written in terms of applied stresses as:  
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cr cr

ij ijmn mnCε σ=  (4.101) 

By substituting Eq. 4.101 into Eq. 4.95, the following expression results: 

 ( )t e cr

ij ijmn mn ijmn ijmn mnC C Ce s s= = +  (4.102) 

Equation 4.102 can be written in incremental form as: 

 

cr

ijmnt cr

ij ijmn mn ijmn mn ijmn mn mn

mn

C
d C d dC C de s s s s

s

æ ö¶
= + = +ç ÷¶è ø

 (4.103) 

The overall effective elastic moduli can be obtained from Eq. 4.103 as: 

 

1
cr

ijmn

ijmn ijmn mn

mn

C
D C s

s

-
é ù¶

= +ê ú
¶ê úë û

 (4.104) 

It can be shown that the overall effective elastic moduli given in Eq. 4.104 can be written in terms 

of the virgin material elastic moduli as: 

 ( )I e

ijmn ijkl klmnD Dw= -  (4.105) 

where ijklω is the damage parameter due to cracking, I is the unity tensor, and 
e

klmnD  is the fourth-

order elastic material tensor. The damage parameter in Eq. 4.105 is calculated based on the 

evolution of the micro-cracks at the micro-level. A description on the method used to calculate 

the crack compliance for a given applied state of stresses follows. 

4.3.1 Crack compliance 

The compliance of a given single crack can be determined from the relationships between the 

crack displacements and stresses, depending on whether the crack is open or closed. Here, the 

crack compliance is calculated at the end of the application of a given load increment. This means 

that the damage model implemented in the program is applied when the cracks reach their 

expected final sizes, and their diameters remain unchanged for the current loading increment. 

Equation 4.103 is general in nature so that it can be used to obtain the constitutive relationships 

for either 2-D or 3-D applications. For the sake of brevity, the calculation of the crack compliance 

is only described here when the material is subjected to plane stress conditions. An element of 

material, as illustrated in Figure 4-6(a) and (b), is replaced by an equivalent solid containing a 

single elliptical crack of length, 2a , Figure 4-6(c), with the axis of the ellipse being x′ and y′ . 

The crack position and orientation is defined in the space of the material by the angle, θ , of the 

axis, x′ , with respect to the major axes of applied principal stress, X . If the element in Figure 
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4-6(c) is subjected to stresses, { }σ , the elastic and damage strain, { }tε , can be calculated using 

Eq. 4.102. 

According to Lekhnitskii [22], for an open crack of length, 2a , in an anisotropic, 

homogeneous, and linearly-elastic solid, the displacement discontinuities, xu ′ , and yu ′ , across the 

crack faces are given by: 
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( )( )
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 (4.106) 

where α  and β  are the real and imaginary parts of the roots r r riλ α β= ±  of the characteristic 

equation of the governing strain compatibility equation of an anisotropic body, i.e., 

 ( ) ( ) ( )4 3 2

11 13 31 12 21 33 23 32 22 0C C C C C C C C Cl l l l- + + + + - + + =¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢  (4.107) 

where ( 1,2r = ) and 1i = − , with 1 2 1 2, 0;β β β β> ≠ . The characteristic equation is written in 

terms of the overall effective inelastic compliance in the primed (crack) co-ordinate system. This 

means that the solutions of these equations are required for each crack orientation. Fortunately, 

the latter solutions can be obtained by solving for their roots, rλ , for each trial compliance, 

n

C   , at the orientation plane 0
kaθ = only. For other orientations, (i.e. 0

kaθ ≠ ) according to 

Lekhnitskii [22], the local roots, rλ ′ , can be expressed in terms of the roots rλ  at 0
kaθ =  = 0 as 

follows: 

 
cos sin cos sin

;
cos sin cos sin

r r
r r

r r

λ θ θ λ θ θλ λ
θ λ θ θ λ θ

− −′ ′= =
+ +

 (4.108) 
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Figure 4-6: Typical section subjected to general state of stresses. 

The crack strains, { } crε ′ , can now be obtained according to: 
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∫  (4.109) 

where cA  is the representative-surface area ( RSA), the square brackets [ ]  indicates the jump of 

the displacement functions inside them, and 1n′  and 2n′  are the direction cosines of the normal to 
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the crack surface, S . Note that for a slit (line crack), 1 0n′ = , 2 1n′ = . Substituting for xu ′  and yu ′  

from Eq. 4.106 into Eq. 4.109, Eq. 4.109 can be rewritten as: 
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 (4.110) 

Determination of the coefficients in Eq. 4.110 depends on the type of crack openings. A 

discussion illustrating the calculation of the compliance for open, closed, and kinked cracks 

follows.  

Open crack compliance 

For open cracks, the elements of the ijG  in Eq. 4.110 are given by: 

 [ ] ( )( )
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 (4.111) 

Closed crack compliance 

In the case of a closed crack, 0yu ′ = , the crack is able to transmit both compression and shear. 

However, if the shear, x yτ ′ ′ , across the crack surfaces is less than the frictional shear resistance, 

y yµσ ′ ′ , where µ  is the coefficient of dry friction and y yσ ′ ′  is the normal compression on the 

crack, then no crack displacements can occur. This means that: 

 [ ] 0
cr

C =¢  (4.112) 

which according to Eq. 4.104 clearly indicates that under these cases of overall compression the 

inelastic damage strains, { } crε ′ , become zero. However, experiments on Portland cement 

concrete [45] and rock materials [16] show non-linear responses for these cases of loading, which 

contradicts the above conclusion. This paradox has puzzled many investigators, but the 

experimental work of Zaitsev [45] and Horii and Nemat-Nasser [16] has indicated that 

heterogeneous brittle materials under these loading conditions ignore the existing cracks and 

deform in a ductile manner. Therefore, the proposed model calculates the inelastic strain using the 

theory of plasticity, assuming that the non-linearity beyond this point is solely ascribed to plastic 

flow and yield-like deformations. The above stress distribution on the crack will occur when the 

applied principal external stress ratio, 1 2rs σ σ= , exceeds a certain critical value. This value is 
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known as the ductility parameter, c∆ , which separates brittle behaviour from ductile one [28]. 

The heterogeneous materials behaviour is load dependent.  

On the other hand, if x yτ ′ ′  is greater than y yµσ ′ ′ , then the crack will slide. The non-vanishing 

displacements and normal stress, respectively, can be written as [15]: 

( )( ) ( ) ( )( )2 2

11 1 2 2 1 1 22 sgnc c

x y y y y x y x y y yu a x C a b a b s s b b t m t s¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
é ù= - + - + + +¢ ¢
ë û

(4.113) 

with 
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 (4.114) 

where the symbol sgn can be 1, 0, or -1, depending on whether its argument is positive, zero, or 

negative. This leads to the elements ijG  in Eq. 4.110: 
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0 0
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C R C Ra b a b b b
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 (4.115) 

with the quantities, 1R  and 2R , given by: 
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where the coefficient, ca , is: 
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 (4.117) 

Kinked crack compliance 

Experimentally, it has been observed that a closed crack may branch in the matrix due to 

increased applied compressive load [45]. The crack shows first curving for a finite length 

(referred to henceforth as the opening wing) and then propagates (snaps) in a straight-line fashion 

(referred to as the sliding wing) until it gets arrested by the energy barrier of the matrix. 

Nofal [28] made use of the kinked crack displacement function proposed by Horii and 

Nemat-Nasser [16] to develop the kinked crack strain. Following the same procedure given by 

Eqs. 4.109 and 4.110, the kinked crack strain is the sum of the strain of the open wing, i.e., 

 

0 sin 2 sin 2
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x x x x
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′ ′ ′ ′
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   − 
    = −    
    −    

 (4.118) 
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and the strain of the sliding wing, i.e., 
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 (4.119) 

where 
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E  being the Young�s modulus, ν  the Poisson�s ratio, and cA  its surface area. The function, 

( )1 , ,M kF D lθ  is defined as: 
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 (4.121) 

in which MD  is the maximum crack diameter, ln  denotes natural logarithm, and the distance is 

calculated from sink Md Dα θ . The coefficient kα  can be chosen such that the results of this 

proposed approximate solution fits the exact numerical solution given by Horii and Nemat-Nasser 

[16] over the entire spectrum of the inclination angle, θ , for a given kink length, kl . Fenalla [8] 

has found out that a value of 0.25kα =  will yield results close to these numerical solutions. The 

same value has been used in the pavement mechanistic model. The kink length kl  is calculated 

according to Nofal [28] as: 
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 (4.122) 

where the ratio, r X Ys σ σ= , signifies the degree of confinement provided by the applied 

stresses, in which Xσ  and Yσ  are the minor and major applied principal stresses, respectively. 

Variable D , on the other hand, is the parent crack (without kink) diameter, m

ICK  is the mode-I 

crack intensity factor of the matrix, and the stress transformation function, ( ),rG s θ , is obtained 

by combining two other stress transformation functions, ( ),rN s θ  and ( ),rS s θ ,  as: 

 ( ) ( ) ( ), , ,r r rG s S s N sθ θ µ θ= −  (4.123) 

where ( ),rN s θ  and ( ),rS s θ  are given by: 
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Compliance of an element with an array of cracks 

For an element with cN  cracks, each with orientation kθ  and initial diameter 2 ka , the crack 

ensemble compliance, is written as: 

 [ ] [ ] [ ] [ ]
1

cN
cr T cr

k k k
k

C T C T
=

=∑  (4.125) 

where [ ]
k

T  is the appropriate transformation matrix. Earlier discussion on the calculation of the 

crack compliance showed that [ ]cr
C  is both an explicit and implicit function of the as yet 

unknown overall compliance C   . The solution can be obtained by utilising the self-consistent 

model [13]. In this model, the iterative process outlined by Horii and Nemat-Nasser [15] is 

adopted. Subsequently, the overall non-linear damage compliance for the (n+1)th iteration can be 

written as: 

 [ ] [ ] ( ) [ ]1
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cN cr
n nT

k k
kk

C C T C C T
+

=

 ′   = +     ∑  (4.126) 

where 
n

C    is the desired overall compliance which corresponds to the nth iteration. The process 

is terminated if the following convergence criteria are met: 
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which are based on 2L , L∞  norms [2]. The tolerance value assumed in the program is 10-6. 

Equation 4.125 is not, however, directly useful in numerical implementation, because the 

number of cracks is a non-deterministic quantity. To overcome this limitation, the summation in 

Eq. 4.125 is replaced by an integral relation, i.e., 

 [ ] ( )[ ] [ ] [ ],
cr T cr

a

C p a T C T dad
θ

θ θ′= ∫ ∫  (4.128) 

where ( ),p aθ  is the joint probability density function of the crack size and orientation. 

Assuming that the sizes of the existing cracks are independent of their orientations, the latter 

function can be decomposed into a product of two separate functions, i.e., 

 ( ) ( ) ( ) ( )2
,p a p p a p aθ θ

π
= =  (4.129) 
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where the joint probability density function of the micro-crack orientation angle, ( )0
2

πθ≤ ≤ , is 

assumed to be Gaussian (normal), ( ) 2p θ π= , while different forms for the function that 

describes the crack diameter variable are used. 

In carrying out the integration of Eq. 4.128, two types of cracks need to be differentiated: 

stable cracks and propagating cracks. Thus, Eq. 4.125 can be written as: 

 [ ] [ ] [ ]cr cr cr

g a
C C C= +  (4.130) 

where [ ]cr

g
C  and [ ]cr

a
C  are the compliance contributions from the growing and arrested micro-

cracks, respectively. Stable and propagating cracks can be identified by the critical crack 

orientation angle, kθ , the magnitude of the applied stress ratio, rs , and the mode-I and II fracture 

parameters. To evaluate the critical angles, kθ , the following kinetic algorithm and associated 

damage evolution law are utilised. 

4.3.2 Crack evolution criteria 

It is sufficient to assume that failure of brittle materials is of a �Cleavage 1� or �Cleavage 2� 

deformation type, and, therefore, linear fracture mechanics laws can be applied [1]. It is likely 

that an open crack will experience mode-I type deformation, a closed crack will display mode-II 

deformation, while an open/closed crack will undergo mixed mode-I/II deformation. For mixed 

mode-I/II, the strain-energy release rate governs the crack movements. The strain-energy release 

rate, G′ , along the weak plane for the mixed mode-I/II should include the contribution 1G′  of 

mode-I and 2G′  of mode-II [35], i.e., 

 ( )2 2

1 2 11 12 21 22

1

2
I I II IIG G G G K G G K K G K′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ = + = + + +   (4.131) 

where IK ′  and IIK ′  are respectively the mode-I and mode-II stress intensity factors, at a given 

orientation, kθ . The coefficients ( ), 1,2ijG i j′ = =  are given by Eqs. 4.111 and 4.115 for open and 

closed cracks, respectively. The calculated value of G′  should be calibrated against a given 

critical strain energy release rate cG  to determine whether a micro-crack is experiencing 

propagation or it has been arrested. The micro-crack kinetic algorithm need be considered for (i) 

tension-tension (mode-I); (ii) compression-compression (mode-II); and, finally, (iii) tension-

compression (mixed mode-I/II) stress regimes. 
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Uniaxial and biaxial tension (Mode-I) 

According to the fracture criterion utilised, the stress intensity factors, IK  and IIK , can be 

written as a function of the applied stress, Yσ , a given crack size, 2a , and the crack orientation 

angle, θ , as: 
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 (4.132) 

where the two stress transformation functions, ( ),rN s θ  and ( ),rS s θ , are given by Eq. 4.124. 

The determination of the effective stiffness of the cracked material can be achieved by 

employing Eq. 4.126, which requires the calculation of the cracks� compliance. In order to carry 

out the computation of the integrals in Eq. 4.126, the exact amount of arrested, aη , and 

propagating, gη , cracks, their sizes, 'D s , as well as their orientation, θ , must be evaluated a 

priori. Making use of the first equation from Eq. 4.132, propagating cracks are differentiated from 

arrested ones as: 
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 (4.133) 

where the threshold stress, r

tf , to initiate crack evolution is estimated as: 
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if
r IC
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K
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Dρ π
=  (4.134) 

where 02

M

a
D

ρ =  is a scalar (less than one) that designates the fraction of the initially de-

bonded interfaces. The magnitude of ρ  depends on the mix of the material, the compaction 

method, and the curing procedure of the material, and it can be obtained via micro-graphic 

analysis of a typical specimen [9] or via microscopic observation [36]. It can also be measured 

using radioactive techniques such as gamma or x-ray radiography, or the method of acoustic 

emission [10]. 

It is assumed here that the expected crack diameter varies from min2 ia D=  to only 2 f Ma D= . 

Thus, the crack diameter, ( )D θ , at any orientation angle, θ , may be obtained by considering 

Eqs. 4.132 and 4.134, i.e., 

 ( ) ( )

2

,

r

t
M

Y r

f
D D

N s

ρθ
σ θ
 

=  
  

 (4.135) 
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Using Eqs. 4.133 and 4.135 in Eq. 4.125, and carrying out the necessary integration over the 

domains defined above, the propagating unstable cracks compliance is given by: 
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and the arrested stable cracks compliance is: 
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where the functions, ( ),
t

g rp s a  and ( ),
t

a rp s a , can be determined, respectively, according to: 
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in which min
t

M

D

D
γ =  and the current propagating crack portion, t

gη , can be calculated as [27]: 
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Uniaxial and biaxial compression (Mode-II) 

Under uniaxial and biaxial compressive stresses, pre-existing cracks are mainly closed and may 

grow in a mode-II manner. Strictly speaking, the fracture criterion of Eq. 4.131 should be 

employed; however, since the cracks will not grow in mode-I fashion, it is sufficient to employ 

mode-II fracture criterion only [18]. The effective shear stresses acting on the crack faces can be 

obtained from: 

 ( ),s Y rG sτ σ θ=  (4.140) 

Assuming Coulomb's type friction, micro-cracks surfaces will slide relative to each other if the 

normal stress, 0n yσ σ ′= <  and the absolute net shear stresses 0sτ ≥ . Hence, Eq. 4.123 can be 

solved for the upper and lower bounds 
2 1
,s sθ θ ± ±   of micro-crack orientation for the given stress 

combination: 
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 (4.141) 
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where 
( ) ( )1

X r
s

Y X r

s
C

s

µσ µ
σ σ

= =
− −

. It should be realised that cracks oriented at the critical angle 

given by Eq. 4.141 are the only ones that will slide. The minimum required value of 0θ  for 

sliding to occur is: 

 1 2

0 tan 1θ µ µ−  = + +
 

 4.142 

In a similar fashion to the previous loading case, the crack orientation and diameters need to 

be calculated to compute their compliance. In this loading case, in addition to the sliding cracks, 

there is a need to define propagating, kinked, and arrested cracks. 

For propagating closed cracks, the orientation angle can be calculated according to: 
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The kinked crack is defined by: 
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, while its diameter is calculated using: 
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Note that these cracks will begin to grow beyond the stress level, ( )
0 0
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Following a similar procedure for the tensile loading case, the propagating crack compliance 

is calculated according to: 
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and the arrested stable crack compliance is: 
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The kinked crack contribution is calculated from: 
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where the functions, ( ),
c
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a rp s a , and ( ),
c

k r kp s l , can be determined from: 
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The crack amount, c

kη , for kinked cracks is calculated as: 
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∫  (4.151) 

whereas the crack amount, c

kη , for the growing cracks portion is obtained from: 
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∫  (4.152) 

Biaxial compression-tension (Mixed Mode-I/II) 

In the tension-compression stress regime, two possibilities of crack growth exist. Some cracks 

may open while others may close under this loading condition. Furthermore, open cracks may 

close, or closed cracks may open during the loading process. Open cracks grow in a mixed mode-
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I/II fashion, while closed cracks grow in mode-II. To identify the domain of open cracks from the 

closed cracks, the normal stress at the crack site is equated to zero, i.e., 

 ( ),n y Y rN sσ σ σ θ′= =  (4.153) 

the solution of which indicates that the limit angle, lθ , is: 

 1 1
tanl

rs
θ −=  (4.154) 

Thus, for a given load combination, mode-II fracture takes place for the cracks oriented at lθ θ< , 

while cracks oriented at lθ θ>  experience mixed mode-I/II. The upper and lower bounds for 

open cracks are 
2

π
 and lθ , respectively. 

Closed crack kinematics 

For closed cracks (i.e., 0nσ < ), the shear stress, sτ , is evaluated in a similar fashion as for the 

biaxial compression case, bearing in mind that the biaxial stress ratio, rs , is negative. Hence, the 

bound of the sliding angle sθ  can also be evaluated now as: 
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1
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s s

s s

s

C C
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C

µ
θ −

 ± − +
 = <
  

 (4.155) 

The threshold angle, 0II
θ , at which cracks deform in mode-II fashion can also be obtained from 

Eq. 4.142. The domain 
1 2f fθ θ −   of unstable cracks can also be found in a similar fashion from 

Eq. 4.143. The latter equation is applicable if min2 if

X IICK Dµσ π< , which is nearly always the 

case. However, when min2 if

X IICK Dµσ π> , which is unlikely to occur, it has again only one root, 

i.e., 
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f
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µ
θ −

 ± − +
 =
 
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 (4.156) 

Open crack kinematics 

Unlike the biaxial tension case, an open crack subjected to the current loading condition will be 

subjected to normal tensile stresses and significant shear stresses. This implies that the crack is 

experiencing both opening and sliding modes. Therefore, the mixed mode fracture criterion 
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specified by Eq. 4.131 must be applied in order to determine the micro-cracks stability. The 

governing fracture criterion can be written as: 

 
22 2 2 if

I II IICK K Kζ ′ ′+ =  (4.157) 

where 
2

2
2 1.0II

if

IIC

K

K
ζ

′
= > . Solution of Eq. 4.156 requires the introduction of the transformation 

matrix, ( ), ,rM s θ ζ , which can be calculated according to Nofal [28] as: 

 ( ) ( )2 22 2 2
, , cos sin 1 sin cosr r rM s s sθ ζ ζ θ θ θ θ = + + −     (4.158) 

The threshold angle, θ , for the open crack domain can be obtained by maximising the function 

( ), ,rM s θ ζ  with respect to θ , i.e., 
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 (4.159) 

The critical crack diameter of the tensile cracks in the open domain is calculated from: 
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with the threshold stress, ( )
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where the constants, ( ), 1,2,3ic i =  are given by: 
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 (4.162) 
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Finally, the compliance for the cracks that lie in the closed crack domain are: 

the sliding (propagating) closed cracks 
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the arrested (stable) closed cracks 
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 (4.164) 

the kinked closed cracks 
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where the functions, ( ),
c

g rp s a , ( ),
c

a rp s a , and ( ),
c

k r kp s l , are given by Eq. 4.150. The amount of 

kinked cracks, c

kη , is obtained from: 
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and the amount of cracks growing because of sliding is calculated as: 
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∫  (4.167) 

In this case, some cracks lie in the open domain. The amount of these cracks is computed using: 
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∫  (4.168) 

At the same time, open cracks will contribute the following growing and arrested compliance to 

the overall effective material compliance: 
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the growing (propagating) open cracks  
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the arrested (stable) open cracks 
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where the functions, ( ),
t

g rp s a  and ( ),
t

a rp s a , can be calculated using Eq. 4.138. The amount of 

evolving and arrested cracks can be computed using Eq. 4.139. 

The proposed damage-based model can be used to predict the behaviour of brittle and 

cracked materials as well as composites subjected to various types of loading. The model 

application is limited to small deformation and static or cyclic non-proportional loading. The 

basic steps for implementing the proposed micro-mechanical damage-based model in the finite 

element method are illustrated in Figure 4-7. The code implementation of the damage-based 

model can be found in the module <damage_library> in file damage.f90. 
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[1] Mode-I 
[2] Mode-II

[2] Mixed mode-I/II 

or 

Calculate crack critical angles 
e.g. Eqs. (4.133), (4.141) (4.159), ��, etc.

Calculate crack diameters 
e.g. Eqs. (4.135), (4.146) (4.160), ��, etc.

Calculate propagating and arrested crack portions 
e.g. Eqs. (4.139), (4.151) (4.152), ��, etc.

Calculate matrix [G] 
Eqs. (4.111), (4.115), (4.118) and (4.119)

Calculate crack compliances [C]� 
e.g. Eqs. (4.136), (4.147) or (4.163), ��, etc.

Obtain new stiffness D
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− For other planes use Eq. (4.108). 
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u
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ep
 

Solution converged? 
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Figure 4-7: Flowchart to implement micro-mechanical damage-based model [27].  
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5 Structural analysis 

Structural mechanics problems are solved with the computer program UMAR by minimising the 

total potential energy, resulting in the following equation of equilibrium: 

 [ ]{ } { } { } { } { } { }
b s

K d R F F F Fε σ= + + + +  (5.1) 

where [K] is the structural stiffness matrix, {d} is the vector of nodal displacements, {R} is the 

vector of applied nodal forces, {F}b is the vector of nodal forces due to body forces, {F}s is the 

vector of nodal forces due to surface tractions, { }F
ε

is the vector of nodal forces due to initial 

strains, and { }F
σ

 is the vector of nodal forces due to initial stresses. The displacement field {δ} 

inside an element can be related to the nodal displacements {d}e as: 

 { } [ ]{ } e
dN=δ  (5.2) 

where [N] is the shape functions vector (superscript e is used to denote quantities at the element 

level.) The strains {ε} and nodal displacements {d}e are related by the strain-displacement matrix 

[B] as: 

 { } [ ]{ } e
dB=ε  (5.3) 

Using the constitutive matrix [D], the element stresses are computed from the element strains as 

follows: 

 { } [ ] { } { }( ) { }σεεσ +−= D  (5.4) 

where { }ε is the vector of initial strains and { }σ  is the vector of initial stresses. 

By using Eqs. 5.2 to 5.4, elements of Eq. 5.1 can now be written in more detail as: 

 [ ] [ ]e

e

K k=∑  with [ ] [ ] [ ][ ]∫= eTe
dVBDBk  (5.5) 

 { } [ ] { }∑∫=
e

eT

b dVgNF  (5.6) 

 { } [ ] { }∑∫=
e

eT

s dSpNF  (5.7) 

 { } [ ] [ ]{ }∑∫=
e

eT
dVDBF εε  (5.8) 

 { } [ ] { }∑∫=
e

eT
dVBF σσ  (5.9) 

where {g} and {p} are respectively the vectors of body forces and surface tractions.  
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5.1 Boundary conditions 

Matrix [K] in Eq. 5.1 is singular, and hence its inverse does not exist. This means that no unique 

solution for {d} is possible if the structure is unsupported. The physical significance of this is that 

the loaded structure is free to undergo unlimited rigid body motion unless some support 

constraints are imposed to keep the structure in equilibrium under the applied loads. Thus some 

boundary conditions need to be applied to Eq. 5.1 before solving for the vector of displacements 

{d}.  

There are two types of boundary conditions: essential and natural. In structural mechanics 

problems, only the essential boundary conditions need to be specified, i.e., those values of the 

entries in the displacement vector {d} that are known. 

5.2 Solution procedure 

An incremental-iterative procedure is applied to solve the system of non-linear equations 

resulting from Eq. 5.1 [26]. This non-linearity can result from either of two sources: 

! Material non-linearity, in which the nature of the stress-strain relationship of a particular 

material is non-linear, making the constitutive matrix [D] a function of the stress level, i.e., 

[ ] ( )σfD = . 

! Geometric non-linearity, resulting from �large strain� or �large displacement� analysis. 

5.2.1 Material non-linearity 

In the case of material non-linearity, since stresses are dependent on the calculated nodal 

displacements, the stiffness matrix [K] (Eq. 5.5) is also a function of the nodal displacements, 

making Eq. 5.1 non-linear. Equation 5.1 can be simplified as: 

 [ ]{ } { }K d F=  (5.10) 

where {F} is the total nodal force vector. In order to solve Eq. 5.10, the applied load is divided 

into a number of increments. For a load increment i, the tangent stiffness evaluated at the end of 

the preceding load increment, [K]i-1, is used to evaluate the incremental displacements of the 

current increment, i.e., 

 [ ] { } { }
1 i ii

K d F
−

∆ = ∆  (5.11) 

where {∆F}i is the vector of incremental load corresponding to increment i. Using {∆d}i, the 

incremental strains {∆ε}i are calculated from Eq. 5.3. The resulting incremental strains are added 

to the previous total strains to obtain the new total strains. These total strains are then used in 

conjunction with the available stress-strain relations to obtain the new total stresses. The internal 

nodal forces corresponding to the total stresses are next evaluated, and then equilibrium is 

checked between the internal and external forces. If there are any residual forces, these are 
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reversed in direction and applied as new nodal forces. This procedure is repeated until 

equilibrium is satisfied within prescribed limits. A flowchart of the just described algorithm is 

illustrated in Figure 5-1. More details of non-linear finite element analysis are given by [1] and 

[45]. The code implementation of UMAR can be found in the module <structral_analysis_library> 

(file structural_analysis.f90). 
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Apply next load scenario

Increment time step

Increment load step

Compute total load vector

Assemble load vector

Input data:
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* geometry
* material properties
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Generate elements’ 
stiffnesses & load vectors

Input load data:
* external loads
* no. of load steps
* convergence criteria

Compute incremental
load vector

 Yes  No 

Increment iteration

STOP

Is convergence achieved 
or

max. no. of iterations reached?

Solve system
of equations

Assemble stiffness matrix

 when all load steps considered 

 when all load scenarios applied 

when all time 
steps considered

 

Figure 5-1: Algorithm implemented in UMAR for non-linear analysis. 

5.3 Convergence criteria 

The efficiency and reliability of the incremental/iterative procedure are dependent on the 

convergence criteria used in terminating the iteration process when the desired degree of accuracy 
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is achieved. At the end of each iteration, accuracy of the solution is checked, and if it falls in the 

specified tolerance limits, the iterations are stopped and the solution procedure is continued with 

the next load increment. The tolerance limits that are usually set by the user play an important 

role in achieving the desired accuracy. In the case of a too large convergence tolerance, the 

iterations are terminated prematurely leading to inaccurate solution. When the convergence 

tolerance is too severe, the increase in computational effort may not be justified by the gains in 

the accuracy of the solution. Similarly, an ineffective divergence check may stop the iterations 

prematurely indicating divergence when in fact the solution is slowly converging. In conclusion, 

the choice of the convergence criteria may influence the quality of the results significantly. For 

practical purposes, the user should check the response using different convergence criteria for the 

same problem in order to get more confidence in the solution accuracy. 

There are three convergence criteria used in program UMAR: 

1. Displacement norm 
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∆

∑

∑

=

=
N

i

i

N

i

i

d

d

1

2

1

2

 (5.12) 

2. Force norm 
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 (5.13) 

3. Energy norm 

 ε≤
⋅
∆⋅∆
Fd

Fd
 (5.14) 

Convergence is achieved in Eqs. 5.12, 5.13, and 5.14 when the specified norm becomes smaller 

than the specified tolerance ε. 
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6 Construction analysis 

Equation Section (Next)Program UMAR is capable of simulating a construction process by 

means of two modules: one simulating the removal of material or structural members from the 

initial structure, and another simulating restoration or inclusion of new members. 

6.1 Removal analysis 

When certain number of elements are removed from a structure, the remaining structure needs to 

experience a degree of stress-relief so that the surface corresponding to the removed material is 

free from any stresses (see Figure 6-1). To simulate this process, UMAR applies removal forces 

along this boundary. These forces depend on the state of stress (σ) and the self-weight (γ) of the 

removed elements, i.e., 

 removal

T T

V V
F B dV N dVσ γ= +∫ ∫   (6.1) 

where B is the strain-displacement matrix, σ is the tensor of stresses in the removed elements 

prior to removal, V is the volume of removed elements, N is the vector of shape functions 

(dependent on the type of finite element used in the analysis), and γ is the unit weight of the 

removed material [39]. 

= +

Excavation forces

Initial stress
state

Both bodies A & B are in equilibrium

A

B
σA0

σB0

σA0

σB0

σB1

FAB

FBA

FBA

 

Figure 6-1: Removal forces (adapted from [38]). 

The code implementation of the removal analysis in UMAR can be found in the module 

<removal_analysis_library> (file removal_analysis.f90). 

6.2 Restoration analysis 

Restoration analysis is currently under development. 
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7 Transient analysis 

Equation Section (Next)Program UMAR is capable of solving problems related to physical 

phenomena that are described by parabolic partial differential equations.  

7.1 Governing equation 

The equation governing transient analysis in program UMAR is that of unsteady, three-

dimensional diffusive processes, i.e., 

 0
yx z

JJ J

t x y z

φκ
∂∂ ∂∂ + + + =

∂ ∂ ∂ ∂
 (7.1) 

where φ is the field variable under consideration, κ is a coefficient, t denotes time, and Jx, Jy, and 

Jz are respectively the diffusive fluxes along the x-, y-, and z-directions. Table 7-1 shows the 

correspondence between Eq. 7.1 and the different field equations implemented in UMAR. 

Table 7-1: Correspondence between Eq. 7.1 and the governing differential equations. 

Physical problem φ κ Jx Jy Jz 

Heat transfer T ρcq x

T

x
λ ∂−

∂
 y

T

y
λ ∂−

∂
 

z

T

z
λ ∂−

∂
 

Moisture diffusion h 
w

h

∂
∂

 
hx

h
D

x

∂−
∂

 y

h
D

y

∂−
∂

 
z

h
D

z

∂−
∂

 

Chloride diffusion C 1 cx

C
D

x

∂−
∂

 cy

C
D

y

∂−
∂

 
cz

C
D

z

∂−
∂

 

In the above table, T denotes temperature, ρ is the density, cq is the specific heat capacity, λx, λy, 

and λz are respectively the thermal conductivities in the x-, y-, and z-directions, h is humidity, 

w h∂ ∂  is the moisture capacity (slope of the equilibrium adsorption isotherm), Dhx, Dhy, and Dhz 

are respectively the humidity diffusion coefficients in the x-, y-, and z-directions, C is the chloride 

concentration, and Dcx, Dcy, and Dcz are respectively the chloride diffusion coefficients in the x-, 

y-, and z-directions. 

7.2 Boundary conditions 

To obtain a solution for Eq. 7.1, the initial conditions of the problem as well as the conditions 

existing at the boundaries of the domain need to be defined. Boundary conditions are enforced by 

specifying either the value of φ at the boundary or the flux across it. When fluxes across the 

boundary are specified, the boundary condition takes the following form: 

 bD L M
n

φ φ∂− = −
∂

 (7.2) 
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where nφ∂ ∂  is the normal flux across the boundary surface, φb represents the value of φ at the 

boundary (unknown quantity), and L and M are two constants. Table 7-2 shows the 

correspondence between L and M and the different field problems implemented in UMAR. 

Equation 7.2 assumes the boundary flux going into the body. 

Table 7-2: Correspondence between Eq. 7.2 and the imposed boundary conditions. 

Physical problem φb L M 

Heat transfer T BT T enB T⋅  

Moisture diffusion h Bh h enB h⋅  

Chloride diffusion C Bc c enB C⋅  

In the above table, BT, Bh, and Bc denote the convection heat transfer coefficient, the surface 

moisture transfer coefficient, and the surface chloride transfer coefficient, respectively, and Ten, 

hen, and Cen are respectively the temperature, humidity and chloride concentration of the 

surrounding environment. 

7.3 Finite element formulation 

Equation 7.1 is solved numerically in space as a boundary-value problem using the finite element 

technique and in time as an initial-value problem using a finite-difference scheme. The Galerkin 

weighted residual method is implemented in UMAR to solve Eq. 7.1, which in expanded form 

takes the form of: 

 x y zD D D
t x x y y z z

φ φ φ φκ  ∂ ∂ ∂ ∂ ∂ ∂ ∂   = + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 (7.3) 

Applying the consistent formulation, where both φ and φ&  use the same spatial approximation, the 

following expression results at the element level: 

 [ ]{ } [ ]{ } { })()()()()( eeeee fkc =Φ+Φ&  (7.4) 
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)( κ  capacitance matrix (7.5) 
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and 

 ∫=
s

Te dsNMf ][}{ )(
 load vector (7.8) 

The integrals in Eqs. 7.5, 7.6, and 7.8 are evaluated numerically using Gauss quadrature. 

When all the element contributions are added, a system of linear first-order differential 

equations in the time domain results. By applying a finite-difference approximation, the following 

expression is obtained: 

 [ ] [ ]( ){ } [ ] ( ) [ ]( ){ } ( ){ } { }( )tttttt
FFtKtCKtC

∆+∆+ +−∆+Φ∆−−=Φ∆+ θθθθ 11  (7.9) 

where θ is a weighting factor that ranges from 0 to 1 and ∆t is the time step. Equation 7.9 

evaluates physical quantities at time t t+ ∆ , i.e., { } t t+∆Φ , as a function of quantities at the 

previous time step, i.e., { } tΦ . 

The gradient vector is obtained from: 
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Since the shape functions are written in terms of natural co-ordinates ξ, η, ζ, matrix [B] must also 

be written in terms of ξ, η, ζ,. Thus, 
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where [J] is the Jacobian matrix given by: 
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The implementation of transient analysis UMAR can be found in the module 

<transient_analysis_library> (file transient_analysis.f90). 
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7.4 Transient elements 

Since the integrals expressed in Eqs. 7.5, 7.6, and 7.8 only require first-spatial derivatives of the 

element shape functions, the formulation used in the finite elements can be simplified to that of a 

linear distribution of the field variable φ with respect to x, y, and z. The two elements 

implemented in UMAR for these types of problems are the bilinear rectangular element and the 

8-node brick element. Elements of higher order can be used; however, they add to computational 

expense and do not provide higher accuracy for problems described by Eq. 7.1 [23]. 

Transient elements are implemented in the module <formulate_transient_elements_library>, 

which can be found in the file formulate_transient_elements.f90.  

7.5 Numerical solution 

Solutions to Eq. 7.9 obtained for 0.5θ ≥  are known to be unconditionally stable for any time step 

∆t [4]. In these cases, the choice of time step is based on accuracy and computing efficiency 

considerations only. The Crank-Nicolson method in which 0.5θ =  is usually preferred in 

numerical applications since its asymptotic rate of convergence is 2t∆ . However, its 

implementation is frequently characterised by oscillations around the correct solution. The user 

should carry a preliminary parametric analysis to determine what values of θ and ∆t best suit the 

particular application at hand [24]. 
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8 Types of solvers 

Equation Section (Next)In solving the system of linear algebraic equations that results during the 

incremental solution of the non-linear problem (Eqs. 5.11 and 7.9), program UMAR can employ 

several solvers. The type of solver used to solve Eqs. 5.11 and 7.9 is a major factor influencing 

the computational efficiency of the finite element program. Several options are open to the user of 

program UMAR ranging from iterative methods such as the Gauss-Seidel technique to the direct 

Gaussian elimination algorithms. The code implementation of all the solvers that can be used 

with UMAR can be found in the module <system_of_equations_library> in the file solvers.f90. 

8.1 LU decomposition method 

The LU decomposition method is a direct solution algorithm based on Gaussian elimination in 

which the coefficient matrix [A] is decomposed into an upper triangular matrix [U] and a lower 

triangular matrix [L], i.e., 

 [ ] [ ] [ ]A L U= ⋅  (8.1) 

By using the decomposition of Eq. 8.1, a system of N linear equations such as 

 [ ]{ } [ ] [ ]( ){ } [ ] [ ]{ }( ) { }A X L U X L U X B= ⋅ = ⋅ =  (8.2) 

can be solved by first solving for the vector {Y} such that 

 [ ] { } { }L Y B=  (8.3) 

and then solving 

 [ ] { } { }U X Y=  (8.4) 

The advantage of using the LU method is that the solution of a triangular set of equations is 

straight forward. Equation 8.3 can be solved by forward substitution as follows: 

 
1

1

1
2,3,...,

i

i i ij j

jii

y b l y i N
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while Eq. 8.4 can then be solved by back substitution as: 
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i i ij j

j iii

x y u x i N N
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 
= − = − − 
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More details on how to perform LU decomposition can be found in [31].  

8.2 Frontal solver 

The frontal equation solution technique, originated by Irons [17], is a direct solution algorithm. It 

can be considered a particular technique for first assembling finite element characteristic matrices 
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and nodal forces into a global characteristic matrix and load vector, and then solving for the 

unknowns by means of Gaussian elimination and back substitution process. It is designed to 

minimise core storage requirements and the number of arithmetic operations. Among all the 

direct algorithms, the frontal solution technique results in the most efficient from a computational 

point of view for large problems. 

The main idea of the frontal solver solution is to assemble the equations and eliminate the 

variables at the same time. As soon as the coefficients of an equation are completely assembled 

from the contributions of all relevant elements, the corresponding variable is eliminated. 

Therefore, the complete characteristic matrix is never formed as such, since after elimination the 

reduced equation is immediately transferred to back-up disc storage.  

The core contains, at any given instant, the upper triangular part of a square symmetric matrix 

containing the equations which are being formed at that particular time. These equations, their 

corresponding nodes and degrees of freedom are termed the front. The number of unknowns in 

the front is the frontwidth; this length generally changes continually during the 

assembly/reduction process. There is not an upper limit for the frontwidth in UMAR, and the 

program automatically calculates the maximum possible frontwidth for the problem at hand. The 

equations, nodes, and degrees of freedom belonging to the front are termed active; those which 

are yet to be considered are inactive; and those which have passed through the front and have 

been eliminated are said to be deactivated. 

During the assembly/elimination process the elements are considered each in turn according 

to a prescribed order. Thus, the element numbering adopted is critical for the efficiency of the 

frontal solution technique. Whenever a new element is called in, its characteristic coefficients are 

read from a file and summed either into existing equations, if the degrees of freedom are already 

active, or into new equations which have to be included in the front if the degrees of freedom are 

being activated for the first time. If some degrees of freedom are appearing for the last time, the 

corresponding equations can be eliminated, stored away in a file, and deactivated. In doing so, 

they free space in the front, which can then be employed during assembly of the next element. 

Further details of this method can be found in [14]. 

8.3 Gauss-Seidel method 

The Gauss-Seidel method is an iterative solution algorithm. Iterative methods start with an 

assumed solution and iterate to the desired solution of the system of equations within a specified 

convergence criterion. These methods are best suited for the solution of large systems of 

equations, and they are more computationally efficient than direct methods for these large 

systems. 
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Given a set of N linear equations such as [A]{X}={B}, the Gauss-Seidel method computes the 

(l+1)th iteration for xi as: 
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( ) ( )
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1
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for 1, 2,...,

i N
l l

i ij j ij j

l j j i

i

ii

b a x a x

x i N
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= =
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 (8.7) 

According to Eq. 8.7, each iterative computation of the unknown employs the most recent values 

of the other unknowns, replacing the values from the previous iteration by new ones and thus 

requiring only one computer storage space for each unknown. The iterative computation of the 

unknowns is terminated when a specified convergence criterion is satisfied. In UMAR, 

convergence is assumed to have been achieved if the change in the value of each unknown from 

one iteration to the next is less than 10-12, i.e., 

 
( ) ( )1 1210 for 1,2,...,
l l

i ix x i N
+ −− ≤ =  (8.8) 

or if 500 iterations or more have taken place. The Gauss-Seidel method has good convergence 

characteristics for diagonally dominant systems, that is, for systems in which each diagonal 

element aii is larger in absolute value than the sum of the magnitudes of the other elements in the 

row (i.e., 
1,

N

ii ij

j j i

a a
= ≠

> ∑ .) 

8.4 Domain decomposition method 

The domain decomposition method consists of partitioning the initial problem domain into sub-

domains, which can be partially assembled and solved before the entire system. Thus, the domain 

decomposition method involves solving the initial problem on each sub-domain, solving the 

problem at the interfaces of the sub-domains, and back-substituting the solution on the sub-

domains. For each sub-domain, the unknown variables are divided into internal degrees of 

freedom (d.o.f.), designated by the subscript i, and interface d.o.f., designated by the subscript b, 

as illustrated in Figure 8-1. The division of the initial domain into sub-domains can be used to 

reduce the global system of equations to a much smaller system of equations involving only the 

interface d.o.f. 



  Types of solvers 

   86

Domain
decomposition

=Internal node, =Interface node

 

Figure 8-1: Finite element mesh partitioned into sub-domains. 

The algorithm for the domain decomposition method is as follows: 

Divide the initial finite element mesh into sub-domains 

1. Evaluate [k] and {f} for each sub-domain, where [k] and {f} refer to all d.o.f. of the sub-

domain, and the vector of d.o.f. {d} is partitioned into { } [ ]T

b id d d= , {db} being the 

interface d.o.f. of the sub-domain and {di} being the internal d.o.f. 

 [ ] { } { } bb bi b b

ib ii i i

k k d f
k d f

k k d f

     
= ⇒ =    

     
 (8.9) 

2. Eliminate internal d.o.f. by condensation, by solving the lower partition of Eq. 8.9: 

 { } [ ] [ ]{ } { }( )1

i ii ib b id k k d f
−= − −  (8.10) 

and by substituting Eq. 8.10 into the upper partition of Eq. 8.9: 

 [ ] [ ] [ ] [ ]( ){ } { } [ ] [ ] { }
{ }

1 1

condensed condensed 

bb bi ii ib b b bi ii i

fk

k k k k d f k k f
− −

 
  

− = −
14442444314444244443

 (8.11) 

 The condensed [k] and {f} pertain only to the interface d.o.f. {db}. 

3. Assemble the sub-domains by connecting the interface nodes, i.e., those nodes shared by the 

sub-domains. The resulting system of equations is [ ]{ } { }K d F= , in which {d} contains all 

the interface d.o.f. of all the sub-domains. 

4. Solve for {d}. 

5. For each sub-domain, extract from {d} the interface d.o.f. {db} of that sub-domain. Use Eq. 

8.10 to compute the internal d.o.f. {di}. 
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8.5 Biconjugate gradient method 

Given a set of N linear equations such as [A]{X}={B}, the biconjugate gradient approach, an 

iterative method, computes the (l+1)th iteration for xi as: 

 
( ) ( ) ( ) ( )1l l l l

i i ix x pα+ = +  (8.12) 

The biconjugate gradient method constructs four sequences of vectors: { } ( )l
r , { } ( )l

r , { } ( )l
p , and 

{ } ( )l
p , where ri denotes the residual i ij jb a x−  and l is the iteration number. Vectors These 

vectors satisfy respectively the biorthogonality and biconjugacy conditions, i.e., 
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i j i j
r r r r j i⋅ = ⋅ = <  (8.13) 

 { } ( ) [ ] { } ( ) { } ( ) [ ] { } ( )
0,

i j i T j
p A p p A p j i⋅ ⋅ = ⋅ ⋅ = <  (8.14) 

and they are also mutually orthogonal: 
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By specifying the initial residual vector { } ( )1
r  and setting { } ( ) { } ( )1 1

r r= , { } ( ) { } ( )1 1
p r= , 

{ } ( ) { } ( )1 1
p r= , the following recurrence is carried out [31]: 
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 (8.16) 

As long as the recurrence in Eq. 8.16 does not break down because one of the denominators is 

zero, it terminates after m N≤ iterations, with { } ( ) { } ( )1 1
0

m m
r r

+ += = . To use the algorithm of Eq. 

8.16, an initial guess for { } ( )1
x  needs to be made to calculate the residual { } ( )1

r . Since 

{ } ( )1
0

m
r

+ = , { } ( )1m
x

+
 is the solution to the system of equations [A]{X}={B}. 
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The rate of convergence of this algorithm can be increased by preconditioning the system of 

equations [A]{X}={B}, i.e.,  

 [ ] { } { }1 1

A A X A B
− −

   =   
% %  (8.17) 

where A 
 
%  is the preconditioner and is selected so that [ ]1

1A A
−

  ⋅ ≈ 
% . This scheme is known as 

the preconditioned biconjugate gradient method or PBCG, and it requires an additional set of 

vectors { } ( )l
z  and { } ( )l

z  defined as: 
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The recurrence in Eq. 8.16 is therefore modified by [31]: 
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8.5.1 Convergence criteria 

The algorithm outlined by Eqs. 8.16 and 8.19 is iterative in nature, and it is stopped when some 

appropriate error criterion is met. UMAR provides four options to test for convergence of the 

biconjugate gradient algorithm. These convergence criteria are application dependent, and the 

user should test all of them to find out which one suits best the problem at hand. The convergence 

criteria implemented are: 

1. Test 1 

 
[ ] { } { }

{ }
A X B

B
ε

⋅ −
<  (8.20) 

where ε is the specified tolerance. 

2. Test 2 
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3. Test 3 uses the L2 norm. 

4. Test 4 uses the L∞ norm. 
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Appendix A: Using the program 

A.1 Entering required input 

The program reads the required input data from an existing input file. This file is in ASCII format 

and can be readily modified by any text editor. The program prompts for the name of the file and 

automatically appends the extension �.inp�. As long as consistency is maintained, units employed 

can be in either the S.I. or the Imperial systems, i.e., N/mm and lb/in, respectively. For 

convenience, the data contained in the input file is divided into different records. A record can 

contain one single line or may have several lines. The following is a description of the different 

records found in the input file. 
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Heading information, as required in Table A-1, is enclosed by commands:  

*HEADINGS … *END HEADINGS 

Table A-1: Heading information. 

Record No. Input data 

*HEADINGS 

1 Title of the problem (up to a maximum of 128 characters can be entered) 
*END HEADINGS 

 

Control data, as required in Table A-2, is enclosed by commands:  

*CONTROL DATA … *END CONTROL DATA 

Table A-2: Control data (refer to Table A-3.) 

Record No. Input data 

*CONTROL DATA 

2 Units system 

3 Type of solver to be used 

4 Gravity direction (=1 for x-direction, 2 for y-direction, and 3 for z-direction) 

5 

Type of structural construction, type of structural analysis indicator, large deformation 
analysis indicator, creep analysis indicator, shrinkage analysis indicator, hygroscopic 
analysis indicator, thermal analysis indicator, chloride analysis indicator 

*END CONTROL DATA 
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Table A-3: Input indicators for control data. 

Indicators 0 1 2 3 4 5 6 

System of 
units 

--- S.I. system 
Imperial 
system 

--- --- --- --- 

Type of 
solver 

--- 
LU for 
banded 
matrices 

LU for full 
matrices 

Frontal 
Iterative 
Gauss-
Seidel 

Sky Line 
decompo-

sition 

Domain 
decompo-

sition 
with LU 
for full 

matrices 

Construction 
analysis 

New 
construc-

tion 

Segmental 
construc-

tion 

Removal 
only 

Addition 
only 

Removal & 
addition 

--- --- 

Structural 
analysis 

Not 
required 

Static 
analysis 

Dynamic 
analysis 

--- --- --- --- 

Large 
deformation 
analysis 

Not 
required 

Required --- --- --- --- --- 

Creep 
analysis 

Not 
required 

Required --- --- --- --- --- 

Shrinkage 
analysis 

Not 
required 

Required --- --- --- --- --- 

Hygroscopic 
analysis 

Not 
required 

Stress 
analysis for 
user defined 
hygroscopic 

load 

Hygroscopic 
analysis 

only 

Uncoupled 
hygroscopic

-stress 
analysis 

Coupled 
hygroscopic

-stress 
analysis 

--- --- 

Thermal 
analysis 

Not 
required 

Stress 
analysis for 
user defined 
thermal load 

Thermal 
analysis 

only 

Uncoupled 
thermal-

stress 
analysis 

Coupled 
thermal-

stress 
analysis 

--- --- 

Chloride 
analysis 

Not 
required 

Required� --- --- --- --- --- 

� For chloride analysis, it is required to run both hygroscopic and thermal analysis. 

 

Data specifying the output options, as required in Table A-4, is enclosed by commands:  

*OUTPUT OPTIONS … *END OUTPUT OPTIONS 

Table A-4: User output options. 

Record No. Input data 

*OUTPUT OPTIONS 

6 
Time step interval, load repetition interval, load scenario interval, and load step interval 
at which output is required 

7 Scaling factor to output deflections 
*END OUTPUT OPTIONS 
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Nodal data, as required in Table A-5, is enclosed by commands:  

*NODES … *END NODES 

Table A-5: Nodal point data. 

Record No. Input data 

*NODES 

8 Number of total nodes, problem dimension 

9 
Node number, indicator of whether node generation is required or not�, x-, y-, and z-co-
ordinate of the node (depending on the problem dimension) 

*END NODES 
� For node generation, enter either 0 if not required, or number if required, �number� being indicative of the 
increment in node number when generating nodes. 

 

Material data, as required in Table A-6, is enclosed by commands:  

*MATERIALS … END MATERIALS 

Table A-6: Material data. 

Record No. Input data 

*MATERIALS 

For each material type: 

10 Material name (up to a maximum of 40 characters can be entered) 

11 Number of constituents of the composite material (1 for one-phase materials) 

Physical properties 

For one-phase materials or the matrix of multi-phase materials: 

12 

Material type (=1 for asphalt-based material, 2 for cementitious-based material, 3 for metallic-
based material, 4 for wood-based material, 5 for ceramic-based material, 6 for rubber-based 
material, 7 for rock-based material, 8 for clay and silt material, 9 for granular material), degree 
of homogeneity (=0 for homogeneous, 1 for heterogeneous), degree of anisotropy 

13 Density ρ, coefficient of friction µ, cohesion c, angle of internal friction φ (in degrees) 

14 
Volume fraction vf (=1 for one-phase materials), crystals shape (=1 for cubic crystals, 2 for 
hexagonal crystals, 3 for rod or needle-shaped crystals), aspect ratio of crystals 

15 If thermal analysis needed, coefficient of thermal expansion 

16 If hygroscopic analysis needed, coefficient of thermal expansion 

If hygroscopic analysis needed and cementitious-based material: 

17 Input parameters option (=1 for user defined values, 2 for default values) 

18 
If user defined values, curing, age at loading, slump, cement content, water cement ratio, fine 
aggregate ratio, air ratio, volume surface ratio, maximum aggregate size, shrinkage strain 

19 If soil-based material, moisture content (%) 

For multi-phase materials: 

20 Number of embedded inclusions 

21 For each inclusion, input records 12 to 19 

Thermal properties (if thermal analysis required) 

For each degree of isotropy: 

22 Thermal conductivity, heat capacity 

23 Convection transfer coefficient 

Hygroscopic properties (if hygroscopic analysis required) 

For each degree of isotropy: 

24 Diffusivity 

25 Surface transfer coefficient 
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Mechanical properties (if stress analysis required) 

26 

Mechanical properties input option (=0 read in user defined values, 1 employ program 
database empirical equations), mechanical model (=1 for theory of elasticity, 2 for theory of 
plasticity, 3 for theory of continuum damage mechanics, 4 for theory of coupled elastic 
damage-based plasticity, 5 for theory of fracture mechanics, 6 for theory of coupled Mr-based 
plasticity) 

27 Constitutive model to be used (refer to numbers in bold in Table A-7) 

28 
For plastic materials, yield criterion, hardening function to be used, and flow rule (refer to 
numbers in bold in Table A-8) 

29 
For micro-mechanics-based models, fracture mechanics model to be used (according to Table 
A-7) 

For one-phase materials or the matrix of multi-phase materials: 

30 
Tensile and compressive properties data indicator (=1 for similar tensile and compressive 
properties, 2 for distinct tensile and compressive properties) 

31 

Young�s modulus E, Poisson�s ratio ν, shear modulus G (this latter value is only entered if the 
degree of anisotropy > 1). If the tensile and compressive properties data indicator is 2, then the 

two values of E, ν, and G corresponding to tension and compression, respectively, have to be 
entered. For 2-D problems, only plane-stress conditions are implemented in the program. For 
linear elastic materials, plane-stress can be related to plane-strain through the elastic 
parameters. By denoting the elastic constants corresponding to plane stress and plane strain as 

ν ,E  and ν ,E , respectively, plane strain values can be obtained from: 

( )21,
1

 ν
ν

νν −⋅=
+

= EE . To simulate plane-strain conditions, the user needs then to 

modify Young�s modulus and Poisson�s ratio according to the above expression. 

For the resilient modulus constitutive model: 

32 Model to be used (refer to Eqs. 4.42 to 4.45) 

33 Resilient modulus coefficients 

For plastic materials: 

34 
Yield stress σy. For the Mohr-Coulomb and Drucker-Prager yield criteria, the equivalent yield 
stress is given by Table A-9 

For isotropic hardening: strain hardening modulus E* 
35 For mixed hardening: isotropic hardening parameters (aI, bI) and kinematic hardening 

parameters (aK, bK) 

For visco-plastic materials: 

36 Viscosity 

37 Flow type indicator 

38 Flow type coefficient (if any) 

39 Effective strain factor 

40 Initial time step 

41 Time step factor 

42  Weighting factor 

For micro-mechanics based or fracture mechanics models: 

43 Fracture toughness mode I KI, fracture toughness mode II KII, fracture toughness mode III KIII 

44 
If the material is heterogeneous, enter: interface fracture toughness mode I Kif

I, interface 
fracture toughness mode II Kif

II, interface fracture toughness mode III Kif
III 

45 

Stress-strain curve option (=0 use program database linear model, 1 use program database non-
linear models , 2 use actual values obtained from experiments, 3 user defined equations to 
describe ascending and descending branches) 

46 For the stress-strain curve options 2 and 3, enter: number of points on the stress-strain curve 

47 Stresses σ  on stress-strain curve 

48 Strains ε on stress-strain curve 
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Repeat records 47 and 48 if the tensile properties differ from the compressive ones. 
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For multi-phase materials, input records 26 to 48 for each of the inclusions. 

For micro-mechanics based models: 

49 
Minimum crack diameter 2ao, maximum crack diameter Dmax, crack probability function (=1 
for homogeneous distribution, 2 for triangular distribution) 

50 Initial damage ωo, final damage ωf 

*END MATERIALS 

 

Table A-7: Constitutive models implemented in program UMAR. 

Constitutive 

models 
1 2 3 4 5 

Elasticity 
Linear 
elasticity 

Non-linear 
hyper-elasticity 

Non-linear 
hypo-elasticity 

Compression 
field theory 

Resilient 
modulus (soils) 

Plasticity Plasticity Visco-plasticity --- --- --- 

Continuum 
damage 
mechanics 

Phenomeno-
logical 
models 

Micro-
mechanics-
based models 

--- --- --- 

Fracture 
mechanics 

Linear 
fracture 
mechanics 

Non-linear 
fracture 
mechanics 

--- --- --- 

 

Table A-8: Yield criteria and hardening functions implemented in program UMAR. 

 Yield criteria Hardening functions Flow rule 

1 Isotropic Tresca Isotropic hardening Associated 

2 Isotropic Von-Mises 
Linear kinematic 

hardening 
Non-associated 

3 Isotropic Mohr-Coulomb Mixed hardening --- 

4 Isotropic Drucker-Prager 
Non-linear kinematic 

hardening 
--- 

5-9 
Anisotropic 

1=⋅⋅
jiij

ssF  --- --- 

10-14 
Anisotropic  

1=⋅⋅+⋅
jiijii

ssFsF  --- --- 

15 
Anisotropic  

1=⋅⋅+⋅
jiijii

ssFsF  --- --- 

 

Table A-9: Equivalent yield stress. 

Yield criteria σy 

Mohr-Coulomb φcosc  

Drucker-Prager ( )φ
φ

sin33

cos6

−
c

 

c and φ are the cohesion and the angle of internal friction of the material, respectively. It is assumed in the 
above that the Drucker-Prager yield surface coincides with the outer apices of the Mohr-Coulomb yield 
surface.  
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Layering systems data (Table A-10), if required, is enclosed by commands:  

*LAYERS … *END LAYERS 

Table A-10: Layering systems data. 

Record No. Input data 

*LAYERS 

For each layer system: 

51 Number of layers 

52 z-co-ordinates  

53 Material number  

54 Orientation  
*END LAYERS 

 

Cross-section data (Table A-11), if required, is enclosed by commands:  

*SECTIONS … *END SECTIONS 

Table A-11: Cross-section data (refer to Table A-12.) 

Record No. Input data 

*SECTIONS 

For each cross-section system: 

55 
Cross section shape, material number, number of reinforced materials, section orientation 
with respect to the x-axis 

For shapes 1-6: b, d 
56 

For shapes 7-8: D 
For shape 2: Bf, tf 

For shapes 3-5: tf, tw 

For shape 6: bi, dI 
57 

For shape 8: DI 

58 
If there are reinforcing materials, for each of them enter: material number, cross-sectional 
area As, distance to the top fibers ds 

*END SECTIONS 
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Table A-12: Input indicators for cross sections data. 

Indicators Shape 

1 Rectangular 

2 T-section 

3 I-section 

4 L-section 

5 Channel 

6 Hollow rectangular 

7 Circular 

8 Hollow circular 

1: RECTANGULAR

b

dds

3: I-SECTION

b

d
t w

t f

t f

4: L-SECTION

t f

t w

d

b

5: CHANNEL

b

d
t w

t f

t f

6: HOLLOW
RECTANGULAR

b

d

di

bi

7: CIRCULAR

D

2: T-SECTION

b

d

t f

Bf

8: HOLLOW
CIRCULAR

D

Di

 

 

Element data, as required by records number 56- in Table A-13, is enclosed by commands:  

*ELEMENTS … *END ELEMENTS 

Table A-13: Element data. 

Record No. Input data 

*ELEMENTS 

59 *SPRnixyz, *TRUnixyz, … (refer to Table A-14)  

60 

Number of first element, number of last element�, element number increment, element 
nodes increment, element material layer or cross-section system number, number of 
embedded bars, element loading (0 do not specify loads, 1 specify loads), element nodes 

61 

If there are embedded bars, for each bar enter: identification number of the bar, cross-
sectional area, material number, bar loading (0 do not specify loads, 1 specify loads), 

ends natural co-ordinates (ξ1,  ξ2,, η1, η2, ζ1, ζ2)  

62 
If there are embedded bars with initial loading, for each bar enter: initial strain εo, initial 

stress σo 
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63 If need to specify element loads: element normal load, element global loads 

*END SPRnixyz, *END TRUnixyz, … 

*END ELEMENTS 

�
The number of the last element needs to be greater or equal than the first element in the series. 
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Table A-14: Line commands for different element types. 

Line command Element type 

*SPRnixyz Spring element 
*TRUnixyz 2-D or 3-D truss element 
*BEAnixyz, *FRAnixyz 2-D or 3-D frame or beam element 
*FACnixyz Facet shell element 
*SHEnixyz General shell element 
*BRInixyz, *SOLnixyz Solid 3-D element 

�n� refers to the number of nodes in the element, �i� refers to the formulation used to calculate the elements 
(0 for isoparametric �QBE- and 1 for special formulation �IDKQ-; for the brick element, 0 refers to no 
layering and 1, 2, or 3 refer to the local layering direction if layered element is to be used), and �xyz� refers 
to the order of numerical integration to be used in the element direction (depending on the element 
simulation type). Thus, *FAC4133 refers to the facet shell element with special formulation and 3x3 order 
of numerical integration, and *BRI82333 refers to the solid element with layering in the local y-direction 
and 3x3x3 order of numerical integration. 

 

 Table A-15: Deformation boundary conditions data (if stress analysis required.)  

Record No. Input data 

*DEFORMATIONS, *DISPLACEMENTS 

64 Number of degrees of freedom per node 

65 

Node number, indicator of whether node generation is required or not (=0 for node 
generation not required, =number for node generation required, �number� being 
indicative of the increment in node number when generating nodes), nodal boundary 
conditions for each degree of freedom x, y, z, xx, yy, zz (=F for unrestrained, x for 
restrained, number, �number� being the specified value) 

*END DEFORMATIONS, *END DISPLACEMENTS 

 

Data required for the analysis of field problems, as listed in Table A-16, is enclosed by the 

following commands depending on the type of problem being solved:  

 *THERMAL … *END THERMAL for thermal analysis  

 *HYGROSCOPIC … *END HYGROSCOPIC for hygroscopic analysis  

 *CHLORIDE … *END CHLORIDE for chloride analysis  

Table A-16: Analysis data for field problems (if thermal or/and hygroscopic or/and chloride analysis 

required.) 

Record No. Input data 

*THERMAL, *HYGROSCOPIC, *CHLORIDE 

Initial conditions data 

66 Initial condition 

Boundary conditions data 
67 Number of prescribed nodes 

68 For each prescribed node, enter: node number, prescribed value 

69 Number of element faces on which prescribed flux boundary conditions are imposed 

70 For each prescribed flux, enter: element number, side number, environmental value 
*END THERMAL, *END HYGROSCOPIC, *END CHLORIDE 
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Numerical data, as required in Table A-17, is enclosed by commands:  

*NUMERICAL DATA … *END NUMERICAL DATA 

Table A-17: Numerical data. 

Record No. Input data 
*NUMERICAL DATA 

71 Time step, weighting factor 
*END NUMERICAL DATA 

 

The remaining of the data is enclosed by the following commands: 
*STEP … *END STEP 

Table A-18: Load data for each time step if stress, removal or restoration analysis required. 

Record No. Input data 

Mechanical load data 
*DYNAMIC 

72 Number of load repetitions, number of load scenarios applications 

73 
Number of load steps, maximum number of iterations permitted, tolerance to check 
convergence, convergence criterion (refer to Table A-19) 

74 
Load types applied: uniform load, concentrated load, excavation or removal load, 
hygrothermal load (0 == ignore load type, 1 == include load type ) 

75 If concentrated load type = 1, total number of loaded nodes 

76 
If concentrated load type = 1, node #, Px, Py, Pz, Mx, My, Mz (depending on degrees of 
freedom) 

F
o
r 

ea
ch

 l
o
ad

 

sc
en

ar
io

: 

77 For each of the load steps, load fraction  

Removal data (if removal analysis required for this time step) 
*REMOVE 

78 Elements to be removed 
*END REMOVE 

79 Repeat 72-77 as required 

Restoration data (if restoration analysis required for this time step) 
*ADD 

80 Elements to be added 
*END ADD 

81 Repeat 72-77 as required 

 

Table A-19: Input indicators for load data. 

Indicators 1 2 3 

Convergence criterion Displacement norm Force norm Energy norm 
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Table A-20: Consistent nodal loads. 

Element type Nodal forces 

Four-node quadrilateral 
2

1
21

== FF  

 
 
 
 
 
 
 

Eight-node quadrilateral 

3

2

6

1

2

31

=

==

F

FF

 

 
 
 
 
 
 
 

Nine-node quadrilateral 

3

2

6

1

2

31

=

==

F

FF

 

 
 
 
 
 
 
 

Eight-node cube 
4

1
4321 ==== FFFF

 
 
 
 
 
 
 
 

Twenty-node cube 

3

1

12

1

8642

7531

====

−====

FFFF

FFFF

 
 
 
 
 
 
 
 

It is assumed in the above that the applied stress is one unit, the element width is one unit for 2-D 
elements, and the loaded area is one unit for 3-D elements. 

F1

F3F2

F4

F1

F5F3

F7

F2

F4
F6

F8

F1 F2

F1 F3F2

F1 F3F2
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A.2 Reading program output 

Upon completion of execution, UMAR creates the following output files depending on the type 

of application run: 

1. filename.dat echoes the input data, 

2. filename_mesh.dat contains the finite element mesh (and changes in geometry for structural 

problems) in a format to be read by program Techplot 8.0, 

3. filename_cpu.txt displays the cpu times required for the different sequences in the computer 

run, 

4. filename.out contains the nodal results for structural problems, 

5. filename_field.plt contains the nodal results for field problems in a format to be read by 

program Techplot 8.0, and 

6. filename.plt contains the element results for structural problems in a format to be read by 

program Techplot 8.0. 



  Using the program 

   106

A.3 Problem reporting 

To report any problem with UMAR, contact Mostafa Nofal at Mostafa.Nofal@nrc.ca or (613) 

993-9672. 

 


