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Abstract

An analytical solution for the pressure drop in fluid flow in a rectangular slit and cylindrical tube with porous walls is

presented for the case of constant wall permeability. It is shown that model predictions for the particular case of constant wall

velocity for rectangular slit with permeable walls agrees very well with Berman’s solution [J. Appl. Phys. 24 (1953) 1232].

The derivation presented in this work leads to analytical expressions for pressure drop as a function of wall permeability,

channel dimension, axial position and fluid properties. These analytical expressions for constant wall permeability could be

used to benchmark numerical routines for fluid flow modeling past semi-permeable membranes and for quick engineering

estimates for pressure drop in cross-flow membrane modules. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In his classical paper of 1953, Berman [1] devel-

oped solutions to the Navier–Stokes equations for

fluid flow in a rectangular slit with two equally porous

walls. The solution derived from perturbation methods

was based on the following assumptions: “(1) a steady

state prevails; (2) the fluid is incompressible; (3) no

external forces act on the fluid; (4) the flow is laminar

and (5) the velocity of the fluid leaving the walls of the

channel is independent of position” [1]. A similar per-

turbation approach was used by Yuan and Finkelstein

[2] in 1956 to extend Berman’s work to a cylindrical

geometry with uniform suction/injection along the

length of the porous tube. Kozinski et al. [3] developed

analytical expressions for pressure drop through
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porous slit and tube for the case of an arbitrary ex-

ponential dependence of the wall velocity on the

slit/tube length.

Over the years, several authors have used Berman’s

[1] solution to benchmark their numerical routines

or mathematical models for predicting pressure drop

in the feed channel of a semi-permeable membrane

[4–9]. In membrane transport, however, the local per-

meate velocity is a function of the local fluid pressure.

An analytical expression for the pressure drop without

assumption (5) above is, therefore, desirable.

In this short note, an analytical solution is pre-

sented where assumption (5) above, is relaxed by

assuming the wall velocity to be proportional to the

local trans-membrane pressure difference; the propor-

tionality constant being the membrane permeability.

A comparison with the particular case of a constant

wall velocity shows this solution to agree very well

with Berman’s solution [1]. Expression for pressure

loss through a porous tube with the wall velocity

0376-7388/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
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Nomenclature

A wall (membrane) permeability (m/s Pa)

f fractional recovery (Qp/Qi)

h half slit height (m)

L slit (or tube) length (m)

NRe inlet Reynolds number

NRew Reynolds number based on wall velocity

P pressure (Pa)

�P pressure drop (P i − P ) (Pa)

Q flow rate (m3/s)

R tube radius (m)

ū(0) average inlet velocity (m/s)

vw wall velocity (m/s)

W slit width (m)

z axial coordinate in the direction

of fluid flow (m)

Greek letters

λ constant defined in the text (1/m)

µ viscosity (in this work = 10−3) (Pa s)

ρ density (in this work = 103) (kg/m3)

Subscripts

i inlet

p permeate

being proportional to the trans-membrane pressure

difference is also presented.

2. Model development for slit flow

Consider a rectangular slit with width, W and slit

height of 2h. Let the z-coordinate denote the direction

of fluid flow with z = 0 denoting the inlet to the slit

and z = L denoting the exit from the slit. For slit flow

with impermeable walls, the flow rate through the slit

is related to the slit pressure gradient by [10]

Q =
2

3

h3W

µ

(

−
dP

dz

)

(1)

where Q is the flow rate through the slit, P the pres-

sure and m the fluid viscosity. For a slit with imper-

meable walls, Q is independent of z and therefore the

pressure gradient is also constant leading to a linear

decay of pressure along the slit length. Eq. (1) is

derived from the Navier–Stokes equations of motion

and the equation of continuity by assuming that the

predominant pressure gradient is in the z-direction

and that the only non-zero component of velocity is

also in the z-direction. For a permeable wall, the vol-

umetric flow rate Q would change along the channel

length due to permeation through the walls.

Slattery [11] has presented a development for

pressure drop though a conical section where the

cross-section of the cone varies as a function of the

axial length. The Hagan–Poiseuille equation [10] for

tube flow (constant cross-section) was differentiated

and applied locally to infinitesimal sections of the

cone, assuming that within that small section, the

cross-section was constant. The result was then inte-

grated along the axial length of the cone to estimate

the overall pressure drop. A similar procedure can be

followed for permeable walls as follows.

Differentiating Eq. (1) with z, we get

dQ

dz
=

2

3

h3W

µ

(

−
d2P

dz2

)

= −2vwW (2)

where vw is velocity of the fluid leaving through the

two permeable walls of the slit. Eq. (2) relates the

differential change in pressure drop in an infinitesi-

mal section dz of the slit due to loss of fluid through

the permeable walls. Since it is a differential form of

Eq. (1), it also assumes that in the infinitesimal sec-

tion dz, the predominant pressure gradient is still in

the z-direction and that the fractional flow rate out of

the section dz is negligible with respect to the (local)

axial flow rate, Q.

The boundary conditions for Eq. (2) are

z = 0, P = Pi (3a)

z = 0,

(

−
dP

dz

)

=
3

2

µ

h3W
Qi (3b)

where Qi is the fluid flow rate at the inlet of the slit.

For the case of constant wall velocity, Eq. (2) can

be integrated using Eqs. (3a) and (3b) to give

Pi − P = �P =
3

2

µ

h3W
Qiz

(

1 −
2vwWz

2Qi

)

(4)

where �P is the pressure drop at any z-location along

the slit. Setting z = L, the overall slit pressure drop
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can be calculated as

Pi − Po = �P =
3

2

µ

h3W
QiL

(

1 −
2vwWL

2Qi

)

= (�P )vw=0

(

1 −
f

2

)

(5)

where Po is the exit pressure of the fluid, (�P )vw=0

the pressure drop for a slit with impermeable walls and

f is the fractional permeate recovery (total permeate

flow rate/inlet flow rate) for the slit of length L.

Berman [1] derived the following expression for

the pressure drop for fluid flow through a slit with

permeable walls (constant wall velocity)

�P =

(

1

2
ρū2(0)

) (

24

NRe

−
648

35

NRew

NRe

)

×

(

1 −
2NRew

NRe

z

h

)

( z

h

)

(6)

where r is the fluid density and ū(0) the average

inlet velocity. The quantities NRe and NRew are

the inlet and “wall” Reynolds number, respectively,

given by

NRe =
4hū(0)µ

ρ
(7a)

NRew =
hvwµ

ρ
(7b)

It will be shown later that predictions using Eq. (4)

agree very well with Eq. (6) derived by Berman [1]

using a perturbation solution to the two-dimensional

Navier–Stokes equation.

For the case of wall velocity being proportional to

the trans-membrane pressure difference (constant wall

permeability), Eq. (2) becomes

2

3

h3W

µ

(

−
d2P

dz2

)

=−2vwW=−2A(P − Pp)W (8)

where Pp is the permeate side pressure (usually at-

mospheric) and A the membrane permeability. The

quantity vw is assumed to be proportional to the

trans-membrane pressure difference (P − P p). Defin-

ing P ∗ = (P − P p) and re-arranging Eq. (8), we get

d2P ∗

dz2
=

3µA

h3
P ∗ (9)

Eq. (9) can be solved along with Eqs. (3a) and (3b)

to give the expression for pressure drop in a slit with

constant wall permeability

Pi − P = �P =
1

2
×

3

2

µ

h3W

Qi

λ
(eλz

− e−λz)

+(Pi − Pp)

(

1 −
eλz + e−λz

2

)

(10)

where

λ = +

√

3µA

h3
(11)

The fractional recovery is given by

f =
Qp

Qi
=

2WA
∫ L

0 (P − Pp) dz

Qi

=
WA

Qi

{

(Pi − Pp)(e
λz

− e−λz)

−
3

2

µ

h3W

Qi

λ
(eλz

+ e−λz
− 2)

}

(12)

3. Model development for tube flow

Consider a cylindrical tube with radius R and the

z-coordinate denoting direction of fluid flow as in the

case above. Starting with the Hagan–Poiseuille result

for impermeable tube wall [10], and following the pro-

cedure outlined above, the following expressions for

pressure drop can be derived.

For constant wall velocity:

�P =
8µQiL

πR4

(

1 −
2πRLvw

2Qi

)

= (�P )vw=0

(

1 −
f

2

)

(13)

For constant wall permeability:

�P =
1

2

8µQi

πR4λ
(eλz

− e−λz)

+(Pi − Pp)

(

1 −
eλz + e−λz

2

)

(14)

where

λ = +

√

16µA

R3
(15)
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4. Discussion and conclusions

It should be noted that each of the expressions

for pressure drop in permeable slit/tube simplifies to

known expressions for slit/tube flow with imperme-

able walls by setting vw = 0 for the case of constant

wall velocity and λ = 0 for the case of wall velocity

proportional to the local trans-membrane pressure dif-

ference. It should also be emphasized that the appli-

cability of Eq. (10) for slit flow and Eq. (14) for tube

flow is restricted to the case where transverse (for slit)

and radial (for tube) component of the pressure drop

is negligible in comparison to the axial pressure drop

in an infinitesimal section dz along the channel length.

Further, the fractional recovery in this infinitesimal

section should be sufficiently less than unity. This is

usually the case in membrane cross-flow filtration.

Fig. 1 shows the predictions of the pressure drop as

a function of non-dimensional distance along the slit

(z/h) through a slit of height 2 mm, W = 1 m, NRe =

Fig. 1. Pressure drop in a rectangular channel with impermeable walls, constant wall velocity, constant wall permeability and numerical

CFD simulation for constant wall permeability (model parameters in the text).

500 and water as the fluid. The wall velocity corre-

sponds to a membrane with a flux of 100 lmh at 3 bar

pressure, or in other words, a membrane permeability,

A of 9.17 × 10−11 m/s Pa. As can be seen, the predic-

tions for constant wall velocity (Eq. (4) in this work)

agree very well with Berman’s solution [1]. For con-

stant wall permeability (Eq. (10) in this work), there

is increased pressure drop compared to the constant

wall velocity since the total permeate produced over

a length z reduces because of a drop in the local fluid

pressure as it flows through the slit.

In Fig. 1, z/h ∼ 4500 corresponds to about 100%

recovery for the case of constant wall velocity while

the corresponding recovery for constant wall perme-

ability is around 65%.

In order to benchmark the pressure drop prediction

using Eq. (10), computational fluid dynamics (CFD)

calculations were carried out for the case of constant

wall permeability for the slit geometry corresponding

to Fig. 1. The CFD routine was implemented using
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a commercially available package, PHOENICS. The

accuracy of the numerical routine (sufficient grid den-

sity, etc.) was verified by comparing numerical CFD

predictions for constant wall velocity with Berman’s

[1] published solution. The grid density was increased

till the CFD solution was within 99% of Berman’s

result.

As can be seen from Fig. 1, pressure drop prediction

using Eq. (10) for constant wall permeability is within

2–10% of the numerical CFD solution (shown by filled

squares in Fig. 1). The agreement is very good for

low values of z/h corresponding to low recoveries. At

higher values of z/h (recovery ∼ 60%), Eq. (10) over

predicts the pressure drop by about 10%.

In almost all of the models for fluid flow across

semi-permeable membranes (slit or tube geometry),

constant membrane permeability is used to model the

wall velocity [4–9]. Eqs. (10) and (14) from this work

can be used to benchmark numerical routines with

constant wall permeability for slit and tube geome-

try, respectively, and for quick engineering estimates

of pressure drop through membrane systems. Such

expressions are more appropriate for membrane trans-

port than the constant wall velocity expression derived

by Berman [1]. Berman’s solution would be valid in

the reverse-osmosis range where the permeate velocity

is essentially constant along the channel length. For

ultrafiltration (UF) and microfiltration (MF), however,

the channel pressure drop would be a significant frac-

tion of the inlet pressure and the expressions presented

in this work for constant wall permeability would be

more accurate.
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