| hd |

NRC Publications Archive
Archives des publications du CNRC

Implementation and application of a direct matrix solution multiple-
variable linear regression model
Liu, P.; Quinton, J.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de I'éditeur, utilisez le lien
DOl ci-dessous.

Publisher’s version / Version de I'éditeur:
https://doi.org/10.4224/8895033
Technical Report (National Research Council of Canada. Institute for Ocean

Technology); no. TR-2005-19, 2005

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=5a1c253f-e1f1-4f3f-a713-f77b58f62da4
https://publications-cnrc.canada.ca/fra/voir/objet/?id=5a1c253f-e1f1-4f3f-a713-f77b58f62da4

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’accés a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la
premiére page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

 Ld

National Research Conseil national de
Council Canada recherches Canada Canada

DOCUMENTATION PAGE

REPORT NUMBER NRC REPORT NUMBER DATE
TR-2005-19 December 2005
REPORT SECURITY CLASSIFICATION DISTRIBUTION
Unclassified Unlimited

TITLE

IMPLEMENTATION AND APPLICATION OF A DIRECT MATRIX
SOLUTION MULTIPLE-VARIABLE LINEAR REGRESSION MODEL

AUTHOR(S)

Pengfei Liu and Justin Quinton
CORPORATE AUTHOR(S)/PERFORMING AGENCY(S)

Institute for Ocean Technology, National Research Council, St. John’s, NL

Memorial University of Newfoundland, St. John’s, NL
PUBLICATION

SPONSORING AGENCY(S)
Institute for Ocean Technology, National Research Council, St. John’s, NL
Memorial University of Newfoundland, St. John’s, NL

IOT PROJECT NUMBER NRC FILE NUMBER
42_980_26
KEY WORDS PAGES FIGS. TABLES
Multiple-Variable Linear Regression, Data Interpolation iii, 21, 3
and approximation, and experimental design App.

A-B
SUMMARY

A multiple-variable linear regression model that was formulated by a direct establishment of
a system of linear equations was presented. This direct method was then implemented
using C programming language. The source code of the implementation was given for four
variables. Code for more variables can be extended easily with the source code attached.
This mathematical software, called Data Groups Summarizer and Interpolator (DGSI) was
applied, as an example, for a set of marine nozzle propeller data including both interpolation
to produce curves and creation of linear regression coefficients for interpolation.
Interpolation by the DGSI showed an accuracy of less than one-tenth of a percent for a
group of nozzle propellers. This method and source code given here are a general-purpose
linear regression tool so they can be applied for similar cases in other engineering
applications.

ADDRESS: National Research Council
Institute for Ocean Technology
Arctic Avenue, P. O. Box 12093
St. John's, NL A1B 3T5
Tel.: (709) 772-5185, Fax: (709) 772-2462

M

National Research Council Conseil national de recherches

Canada Canada
Institute for Ocean Institut des technologies
Technology océaniques

IMPLEMENTATION AND APPLICATION OF A DIRECT MATRIX
SOLUTION MULTIPLE-VARIABLE LINEAR REGRESSION MODEL

TR-2005-19

Pengfei Liu and Justin Quinton

December 2005

TABLE OF CONTENTS

F N I A 4 SR 1
1 INTRODUGCTIONcueiiiiiiriesiesiesiesieeee ettt sae st sae bbb ssesse e eneenes 1
2 ABOUT THE ALGORITHM ...ttt s 3
3 IMPLEMENTATIONottt see sttt st b e nes 4
30 N I 1= = SR 4

A 1o LU | B T =S S US 5

321 Summarizer INPUL FIlES........coviiiiiie e 5

3.2.2 Interpolator INPUt FilESccveiieceeceee e 6

3.3 Obtaining Datafrom the Input FIles..........ccoooiriiiiineeeeee 8

34 Program use Of the Data..........cccoeevueeieieeeie e 8

3.5 Building the MatriceSt0 SOIVEcccueiiiiiiiriiie e 8

3.6 Solvingthe System of Linear EQUaLioNS...........cccccevevieeeeveesiesiee e 9

37 OULPUL FITES.....eeieeee et 9

3.7.1 Summarizer OULPUL FilES.........coveeeiiee e 9

3.7.2 Interpolator OULPUL FilES.........cooveieiiiiereeee e 9

4. RESULTS AND DISCUSSIONS.......coiiiirieenierieee et 9
5. CONCLUSIONoiitiiiceeiesiesie e sae e e e e e e e sestesressesreeseennens 11
ACKNOWLEDGMENTS ...ttt ettt na et snennenne s 13
REFERENGCEScoooieiiie ettt sttt e s te st sbeeseese e e e s ensestennestenneenen 13

Appendix A: DGSI Four Variable Function Source Code
Appendix B: Output Files

Implementation and Application of A Direct Matrix
Solution Multiple-Variable Linear Regression Model

Pengfei Liu, National Research Council Canada, Institute for Ocean Technology
and Justin Quinton, Memorial University of Newfoundland

Abstract

A multiple-variable linear regression model that was formulated by a direct establishment of
a system of linear equations was presented. This direct method was then implemented using
C programming language. The source code of the implementation was given for four variables.
Code for more variables can be extended easily with the source code attached. This mathematical
software, called Data Groups Summarizer and Interpolator (DGSI) was applied, as an example, for
a set of marine nozzle propeller data including both interpolation to produce curves and creation
of linear regression coefficients for interpolation. Interpolation by the DGSI showed an accuracy
of less than one-tenth of a percent for a group of nozzle propellers. This method and source code
given here are a general-purpose linear regression tool so they can be applied for similar cases in
other engineering applications.

Keywords: Multiple-Variable Linear Regression, Data Interpolation and approximation, and ex-
perimental design

1. INTRODUCTION

In engineering research and design work, linear regression models and computer
software packages are often used to obtain a set of polynomial coefficients from a
group of experimental or computational data. These coefficients are then used to
interpolate the data to produce curves based on the given values of independent
variables.

In marine propeller research and development work, model tests and numerical
simulation are the two fundamental performance evaluation tools. Experimental
tests to predict the hydrodynamic characteristics of a propeller have been used since
about a century ago. To provide the design charts for naval architects to design a
propeller for a particular ship, a typical marine propeller model series, for example,
a podded propeller model series, are to be tested. Before a test program starts, a
number of propeller models need to be made according to the range of the geometry
parameters and working conditions of the propellers. A typical test program is to
produce a set of curves for a series of propellers to represent their hydrodynamic
performance. For the hydrodynamic performance of a marine propeller, there are
mainly two curves, the thrust coefficient Kr (non-dimensional thrust) curve and
the torque coefficient K¢ (non-dimensional required power) curve. Both curves are
the function of an advance coefficient J (non-dimensional speed). Let’s focus on the
K curve. This curve expresses a relationship between the dependant variable K

Authors’ address: Pengfei Liu, National Research Council Canada, Institute for Ocean Technol-
ogy, Box 12093, 1 Kerwin Place, St. John’s, NF Canada A1B 3T5, email: Pengfei Liu@nrc.ca;
and Justin Quinton, Faculty of Engineering and Applied Science, Memorial University of New-
foundland, St. John’s, NF Canada A1B 3X5, email: Justin.Quinton@nrc.ca

2 . Liu and Quinton

0B Kt vs. J (PD=1.0)
05

0.4
0.3
0z
0.1

I

~—JTFILT

I 0.5 1

Fig. 1. Graph of Kp vs. J with % = 1.0 for three values of EAR.

and the independent variable J. Here we call J an primary independent variable.
Figure 1 shows K versus J curves for the expanded area ratio FAR = 0.5, 0.6 and
0.7 for a marine propeller[Yossifov et al. 1989]. This is a set of two-independent-
variable data group.

To cover a wide range of propellers that could be possibly employed for a typical
marine vehicle category, the number of propeller models to be made needs to be
determined. This number is normally determined by the variation of geometrical
parameters, such as expanded area ratio FAR, number of blades Z, and nominal
pitch ratio p/D. In this case, the number of total independent variables is four: J,
EAR, Z and p/D, with J being the hydrodynamic motion parameter. If we chose
four different expanded area ratios of EAR=0.5, 0.7, 0.9 and 1.1, four different blade
numbers of Z=3, 4, 5, 6 and five pitch values of p/D=0.6, 0.8, 1.0, 1.2 and 1.4,
then we need to build 4 x 4 x 5 = 80 propeller models. Even if all the 80 models are
tested, a linear regression model has to be used for a particular propeller, say, with
an FAR=0.55, Z=>5 and p/D=0.85, for which the K versus J curve is unknown.
To reasonably reduce the model propeller manufacture cost, the variation intervals
are made as large as possible. If each of the above variable’s variation reduces one,
the number of total required propeller models is 3 x 3 x 4 = 36, a 55% saving on the
model cost. This will save about $220K if the cost of each propeller is at 5K (the
lowest estimated price). Similarly, for a more expensive model in other application
cases, the saving could be even bigger.

The key task of a multiple-variable linear regression model in this application is to
provide a set of polynomial coefficients for which a K versus J curve can be found
for a particular propeller that falls in to the series (for example, for a propeller with
an FAR = 0.65, Z = 6, and p/D = 1.15). In the literature, in linear regression
model for propeller applications, the number of total variables has not exceeded
4. This capability has not yet been found in commercial statistical software in the

A Direct Matrix Solution Multiple-Variable Linear Regression Model . 3

current market either. The direct matrix formulation in the current work has also
not seen to be published. For a larger set of data with more independent variables,
a linear regression implementation that can handle more than four variables needs
to be established.

Sufficient data points are required for the linear regression tool to generate poly-
nomial coefficients. For the 36 model propeller case, if the advance coefficient J is
taken at an interval of 0.05 within a range of 0-1.0, the number of total test runs is
then 3 x 3 x 4 x 20 = 720. Therefore, 720 data points are to be used and inputted
for the code to generate the polynomial coefficients.

Once the polynomial coefficients are obtained, the curve of K versus J for a
particular propeller with an arbitrary value of EAR, p/D and Z within the range
of the series definition can be determined by:

im Jm km lm

Kr=>Y YY" AjuZ(EAR) ()k (1)

i=0 j=0 k=0 1=0

Due to memory shortage and computing power limits, the maximum values of
im, Jm, km and L, should be controlled as small as possible to save memory space
of the generated matrix. However, too small a value of i,,, jm, km and [, will
sacrifice the accuracy. Therefore, values of i,,, jm, km and [, need to be justified
for both accuracy and computing efficiency. In the above example, if i, = j,, =
km = 1, = 19, the number of total coefficients to be found is 20 x 20 x 20 x 20x =
160,000. The required memory storage for the matrix with a double precision is
then 160, 000 x 160,000 x 8 = 190G B. To solve this matrix requires large computing
power. Because of this reason, all previous work used the value of power between 2-
10 and gave a small number of the coefficients. With the rapid increase of processor
clock speed, memory and high performance computing capability, it is possible to
extend from 4 variables to 8 or more variables and a large number of generated
coefficients should be read electronically without intensive labour.

2. ABOUT THE ALGORITHM

To use Equation 1 to interpolate the data given in Figure 2 to obtain a Kp versus
J curve, we need a set of coefficients, that are represented by A;;;.
To find the set of polynomial coefficients A;;z;, let

y = f(21, 22,23, 24) (2)

be represented by a polynomial

im Jm km lmn

y= ZZZZAwM%%%% (3)

i=0 j=0 k=0 1=0

For the values of exponents i,, = 1, j,, = 1, k,, = 1, and [,,, = 2, Equation 3
become

0..0..0,.0 0,001 1,1,1.2
Yy = Apo00T]TaT3xy + A00012]T9T3Ty + - - - + A11120] T X525 (4)

4 . Liu and Quinton

Equation 4 may be written in a matrix form, which can be solved for the poly-
nomial coefficients directly:

[X][4] =[], (5)

where [Y] is a vector with 24 elements, [A] is a vector with 24 elements, and [X] is
a square matrix with a dimension of 24 x 24. [Y] is filled with the values determined
by the independent variables (for example, the values of Y at given x1, z2, x3 and
x4), [4] is unknown vector, and [X] is filled with the elements calculated from the
independent variables (for example x1, 2, x3 and z4) raised to their respective
powers.

Expanding Equation 5, it gives

0 ,.0 .0 .1 1 .1 .1 .2

1 $(1),1$2,1$3,1$4,1 T x%,1$2,1$3,1$4,1 Agooo Y1

1 2702593 9%49 -1+ T 2% 9T3 97 o Aooo1 Y2

: : : : : = | (6
0 .0 .0 .1 1 1 1.2

1 27 93%3 9373 930493 *** T 23022373 2375 23 Ann Y23

1 29 0,29 5429 oux AT S Y2 P A
1,24%2,24%3 24T 4 24 1,24%2,24%3 2474 24 1112 Y24

The subscript number following the comma designates the point number. Solving
Equation 4 yields the vector [A], i.e. the polynomial coefficients A;jz.

3. IMPLEMENTATION
3.1 The Need

In marine propeller series development work, a base model propeller is usually de-
signed first. Other models are made with variations in expanded area ratio FAR,
pitch diameter ratio p/D, number of blades Z, etc. We call these geometry vari-
ables here the independent variables. In the model tests, we need to obtained the
propulsion performance of a propeller model. There are mainly two physical quan-
tities to represent propulsion performance, i.e., thrust coefficient K7 and torque
coefficient K¢, versus advance coefficient J. Therefore, K7 and K¢ are the de-
pendant variables and J is the independent variable. For each model test, two
categories of curves, i.e. a K7 and a K¢ curve, are produced. For each curve type,
linear regression is used to find a set of polynomial coefficients. These coeflicients
are then used as input to generate new curves for a variation of one or all the in-
dependent variables. To automate the task, there are two things to be done, i.e.,
the coeflicient generator (the group data summarizer) and the new curve generator
(the interpolator). The integration of these two is named DGSIL

The summarizer takes experimental data appropriately ordered as input in an
ASCII file of type *.xxv (where xx is the number of variables in the equation
and v stands for variable), and generates coefficients for the data, written into an
ASCII file of type *.OUT. The interpolator takes the coefficients and values for the
independent variables as input in an ASCII file of type *.xxi, and generates values
of the dependent variable, written into an ASCII file also of type *.OUT.

Together, the summarizer and interpolator form a powerful tool. Experimental
data on a phenomena is collected and the summarizer is used to generate coeflicients

A Direct Matrix Solution Multiple-Variable Linear Regression Model . 5

for the experiment. The interpolator is then used to obtain values of the dependent
variable at other points without performing other experiments or the need of new
model propellers. The data is then organized into the desired format and displayed
graphically using other programs such as Microsoft’s Excel or Tecplot. DGSI does
not perform extrapolation. Any values of the independent variables used outside
of the boundary range which generated the coeflicients will give results that should
be considered unreliable. In this paper, examples are given for K7 versus J curve
only. Code usage procedure for K¢ versus J curve is the same.

3.2 Input Files

The code requires an ASCII file as input (of appropriate type whether using the
summarizer or interpolator) and gives an ASCII file as output. Input files have
a specific format that must be observed for the program to behave as designed.
Following are sample input files for the summarizer (Section 3.2.1) and the inter-
polator (Section 3.2.2). These samples have types *.04v and *.04i respectively,
because each has four variables.

3.2.1 Summarizer Input Files. A sample summarizer input file is shown as an
example as the following. In this example, very small values of the exponents are
used to simply the length of explanation.

Number of variables

4

Number of polynomial terms for each variable
2 2 2 3

List variables and results, at least 2x2x2x3=24 lines for 4 variables x2, x3, x4, x1 and Kt
2 0.5100.55

2 0.51 0.3 0.505

2 0.510.60.37
20.51.100.6

2 0.51.1 0.3 0.555

2 0.51.1 0.6 0.42

2 0.6100.56

2 0.610.30.5141

2 0.610.6 0.3764
20.61.100.61

2 0.6 1.1 0.3 0.5641
2 0.6 1.1 0.6 0.4264
30.5100.55

3 0.5 1 0.3 0.50275
30.510.6 0.361
30.51.100.6

3 0.51.1 0.3 0.55275
30.51.1 0.6 0.411
30.6100.56
30.610.30.5114

3 0.6 10.6 0.3656
30.6 1.1 00.61
30.61.10.30.5614
3 0.6 1.1 0.6 0.4156

Certain rules are made for creating summarizer input files:

(1) Columns of numbers in the list of variable values must correspond to each
number in the polynomial terms, with the exception of the last column, the
resultant thrust coefficient, K1 values. The number of values of variable x5 is
2 and they are 2 and 3; The number of values of variable z3 is 2 and they are
0.5 and 0.6; The number of values of variable x5 is 2 and they are 1.0 and 1.1;

6 . Liu and Quinton

and The number of values of variable z1, the primary independent variable, is
3 and they are 0.0, 0.3 and 0.6.

(2) The last column of values are to be the resultant Kp values, the values of the
dependant variable for the corresponding set of points, that come from a series
tests or numerical predictions.

(3) Values are to be listed in ascending, repeating order in each column, and the
right-most column, excluding the Kp column, must have the fastest changing
index.

(4) Precise lettering and wording of the text in the file is not important, but some
descriptive text needs to be included at places shown in the sample and be kept
on a single line.

3.2.2 Interpolator Input Files. Sample interpolator input file is as follows:

Number of variables

4

Number of polynomial terms for each variable
2 2 2 3

List coefficient a[1-2][1-2][1-2][1-3]=>a[0][0][0][0], ..., al1][1][1][2]
0

-0.000025

-0.44993

0.5

0.000022

-0.000064

0.1

0.000041

-0.000118

0

-0.000034

0.000106

0

0.000007

-0.000022

0

-0.000006

0.00002

0

-0.000012

-0.049963

0

0.00001

-0.000033

Number of sets of variables to inter-extrapolate
24

this 24 sets of variables

[
ot
o

[eNelNeNeNeNeNe NeNeoNeoNeoNeoNe o]
w

O O OO, W

WWNNNNNNNDNDNDNDNDNDH-
O OO oW

OO0, o oo o oo,
N S Y
OO HHOOOKKKEOOO

WwWwwwwwwwww
OO OO0 O0OO0OOOoOOo

[o2 3o I e N0 I e NN e NN, I I BNV, |

A Direct Matrix Solution Multiple-Variable Linear Regression Model . 7

[S e e e
hFhRhroOORRRO
> ¢ cooo

> w

(el el e e)

.3
.6

Some rules are made for the Interpolator input file:

(1)

Coefficients are to be in the correct order and all zero values of the coefficient
are be entered (no omission). Coeflicient numbering must coincide with poly-
nomial numbering.

Number of polynomial terms for each variable

2223

List coefficient a[l — 2][1 — 2][1 — 2][1 — 3] — «[0][0][0][0] .. . a[1][1][1][2]
value of a[0][0][0][0]

value of a[0][0][0][1]

value of a[1][1][1][2]

Number of coefficients must be equal to the product of the polynomial terms,
i.e., Number of polynomial terms for each variable
2223

Therefore, the number of total coefficients is 2 x 2 x 2 x 3 = 24, i.e., from
a[0][0][0][0] to a[1][1][1][2], because the integer value of the exponent starts
from 0.

Columns of numbers in the list of variable values must correspond to each num-
ber in the polynomial terms, i.e.

Number of polynomial terms for each variable

2223

List of a set of variables for x5 = 2, 23 = 0.5, 4 = 1.0 and z; =0.0, 0.3 and
0.6 is, for example, as follows:

20510

20510.3

205106

Therefore, the variable corresponding to the polynomial term ’3’ must have
three values. In this case, they are 0, 0.3 and 0.6.

8 . Liu and Quinton

Any deviation from these rules, either for the summarizer or the interpolator, may
cause the output data to be incorrect or the entire output file to be nonsensical.
In some cases of bad input file setup, errors may be generated upon running the
program.

3.3 Obtaining Data from the Input Files

Once the files are prepared correctly and the program executed, the first thing the
program must do is read the data from the files so it can be used. Two functions
that are primarily used for accomplishing this are fgets, for getting the text labels,
and fscanf, for getting the numerical data (both functions are from the standard C
library).

Each item, whether a label or data, that is read from the input file is also written
to the output file. Writing the read data to the output file makes it easier to detect
errors in the input file; if the data is read incorrectly from the input file, it will be
written incorrectly to the output file.

The polynomial terms are used to calculate how many sets of data points to
read for the summarizer, or how many coefficients to read for the interpolator. It
calculates how many of these sets (or coefficients) to read by simply taking the
product of the polynomial terms, which will be called P. If the number of sets (or
coefficients) does not equal P, then the program will not behave predictably and it
will certainly not produce the correct output.

3.4 Program use of the Data

When the data is read, it must be stored where the program can access it quickly.
The space required for storing the data is not known until the program reads the
file so memory must be dynamically allocated for the data. Dynamic allocation of
memory in the code is performed by the functions vector and matrix [Press et al.
1999]. Once the space is allocated, the values are simply stored in the vector or
matrix as they are read. At the end of the program, the memory allocated is
released by the program using the functions free_vector and free_matrix. Failing
to free the memory may cause a ‘memory leak’ and the systems resources would
quickly be consumed.

3.5 Building the Matrices to Solve

Gathering the initial data is the first step. Matrices must be built which can be
solved to find the value of the coefficients. The [Y] matrix from Equation 5 is
created when the data is being read and is a column matrix with P rows. It is filled
with the thrust coefficient, K values. The [A] matrix (also a column matrix with
P rows) is what we want to solve for, so the only matrix left to build is the [X]
matrix, which is a square matrix with dimensions P x P.

Once all the data is read, the program begins a nested for-loop, with depth equal
to the number of variables (four in our previous examples) plus one for the set
of points. Each set of points is raised to its appropriate powers and placed in its
corresponding column. When a row is complete, the program moves down to the
next row and the next point. After all points have been processed, the matrix
equation is ready for solving.

This is the main step in the program. After this step is complete, all that is

A Direct Matrix Solution Multiple-Variable Linear Regression Model . 9

left to do is to input the matrix equation into an appropriate solver and write the
output to a file. The source code for the four variable summarizer and interpolator
functions is found in Appendix A.

3.6 Solving the System of Linear Equations

To solve matrix [X], a matrix solver for dense, non-symmetric matrices that can
accommodate large matrix size may be employed. The solution vector [4], i.e.,
the coefficients, are listed in the output in an order of Y'[0] — a[0][0][0][0],Y[1] —
CL[O] [0] [0} [1}7 Tt Y[P] - a[zm][] 1 [Em][lm]-

For cases when the matrix size exceeds 1000 x 1000, it is recommended to find a
more suitable algorithm for computational efficiency. The Bi-Conjugate Gradient
Stability (BICGSTAB) algorithm [Liu and Li 2002] is reliable and time efficient for
large matrices; hence, ideal for this situation.

3.7 Output Files

The output file generated by the program has the same name as the input file, but
is of type *.OUT. The beginning of the output file is essentially a copy of the input
file (with the exception that the interpolator output file writes the input coefficients
horizontally instead of vertically) with the output appended to the end of the file.

3.7.1 Summarizer Output Files. Summarizer output starts appending data by
adding z = ... followed by the corresponding value in the [Y] matrix, and then
the entire [X] matrix. Summarizer output files become very large as the number
of variables and value of the polynomial terms increase. This is understandable
because the complexity of the governing equation is rapidly increasing. For a sample
summarizer output file, see Appendix B.1.

3.7.2 Interpolator Output Files. Interpolator output starts appending data by
writing the resultant output data. There is no preamble written into the file like in
the summarizer. Data is written into the output file by each vector’s number and
its corresponding value followed by the resultant value. For a sample interpolator
output file, see Appendix B.2.

The interpolator has much less work to do than the summarizer. Solving large
matrices is processor intensive and takes a significant amount of time to finish. The
interpolator does not have to solve any matrices. It only has to use the data it is
given in an appropriate fashion. Knowing this, it is easy to see why interpolator
output files are much smaller for equal complexity.

4. RESULTS AND DISCUSSIONS

To test the method and the implementation, a set of propeller propulsive perfor-
mance data was used. Figure 2 shows this set of data with 4 variables. They are
N, the nozzle type variable with N = 1,2, 3 standing for nozzle type of No. 19A,
No. 22 and No. 37; EAR, the expanded area ratio variable with FAR =0.5, 0.6
and 0.7; and nominal pitch p/D at 1.0, 1.1, 1.2 and 1.3, respectively[Yossifov et al.
1989]. As the K versus J curve for different pitch values are plotted on the same
chart, the number of total charts is 3gar X 3nozzic—type = 9.

The code produces accurate results with the range of the independent variables.
To test this accuracy, the data from Figure 2 was entered into the summarizer for

10 Liu and Quinton
M=1. EAR = 0.5
0.9 -
—— HD-=1
- —a— HDO=11
—a— HD=1.2
0.5 —s— HDO=1.3
0.3 1a
i
JJ
0 T :
0 0.4 n.s
N=2_ EAR = 0.5
0.9 5 —— P
—a— F0=11
] —a— PiD=12
0.e —w—PF0=1.3
0.3 1
l:l [k
] 04 0.s
MN=3_. EAR =05
0.9 5 ——
—u— F0=11
—ik— Fi0=1.2
0.e —u— Fi0=1.2
0.3 4
d
0 T -l
0 0.4 0.3
Fig. 2. Graph of Kp vs.

N=1.EAR = 0.6
0.3 5

—— HD-1
; —=— FD=11
—a— AD=12
—— FD=13

0.g

0.3 4

0.8

N=Z, EAR = 0.6

0.9 -
——]
y —=— FD=11
—a— FD=1.2
0.k —w— HD=1.3

0.3 4

n T e
0.

M=3. EAR = 0.6

—+— D=1

—a—FD0=11
—i— Pi0=1.2
—+— Fi0=1.3

0.3 4

T

0.

M=1. EAR = 0.7
0.3 5

—— FiD=1
—=— FiD=11
e FID=12
—u— FID=13

0.E

0.3 4

N=2, EAR = 0.7

—+— Fi0=1

—a— FD=11
—a— F0=1.2
—— Fi0=1.3

al

n.a

N=3. EAR=0_7
—e—F0=1
—a— P0=11
—w— P0=1.2

J for various nozzles, and values of % and FAR.

A Direct Matrix Solution Multiple-Variable Linear Regression Model . 11

which trend coefficients were generated. Then, these new coefficients and the same
points of the original graph were entered into the interpolator and the results were
compared on a percent error, via:

K (J) — Kra(J)
K (J=0)

where Kpp is the value of the thrust coefficient from the original graph and
Ko is the value of the thrust coefficient using the new coefficients. Kp1(J = 0)
was always used as a reference (varying for different curves) for the percent error
because it will never equal zero for any real Kt curve, thus avoiding the problem
of division by zero.

Equation 7 was applied to every point to generate new curves and then these new
curves were graphed (see Figure 3). These new curves were found to have percent
deviations from the original curves of less than one-tenth of one percent (deviations
of approximately the same magnitude were found for K¢ curves). Taking into
consideration experimental error, this tiny deviation is insignificant and has no real
impact upon the results or their usefulness in design.

The summarizer generates coefficients based on the trend in the set of input points
and their corresponding values. These coefficients are specific to the number of
terms used to generate them and the lower and upper boundaries of the independent
variables used. Varying the number of terms or the boundaries of the independent
variables creates the need to generate a new set of coefficients because the existing
set will no longer be valid.

The interpolator uses the given coeflicients to generate values for the supplied
data points. These sets of points do not have to have particular order as each is
treated independently using the trend. Interpolator output values have no corre-
lation amongst themselves. Varying values of N (or Z), EAR, %, and J can be
all mixed together and will not effect the outcome of each result. This is useful
because it allows the user to set up the order of variables exactly as they will be
used so reordering afterward is unnecessary.

%Err = x 100%, (7)

5. CONCLUSION

A data linear regression and interpolation tool was created and a program, DGSI,
was developed. This direct solution model to solve the system of linear equations
directly was formulated and implemented in a C function. With a consideration
of computing efficiency and propeller model cost, the method and implementation
yielded a high degree of accuracy with a maximum error of 0.04%. The example
showed that this tool is efficient and robust for the generation of polynomial coef-
ficients and the interpolation. The source code in C and sample input and output
ASCII files are also provided.

Nomenclature

Kr — total thrust coefficient of a ducted propeller

Ko — torque coefficient

12 . Liu and Quinton

H=1. EAR = 0.5 H=1. EAR = 0.6 N=1. EAR = 0.T
0021 —| +— PID=1
* — - 0.021 5 —
= PO=11 0.021 +— PiD=1 —+— PFiD=1
—i&— PID=12 —=— Pib=11 —=— P/D=14
—— PD=13 —i— P/0O=1.2 —i— Pi0=1.2
ooid —+— PI0=1.35 0014 4 —+— P0=15
[[
0007 4 0.007 4
0 L T .
1] 04 3 0F 0 04 4 0s 0 o4 3 05
H=2 EAR = 0.5 H=2 EAR = 0.6 H=2 EAR =017
0045 | —e—F'0=1 0045 — PO — 003 — +— FP/O=1
—a— P/0O=11 = PID=1.1 —a— P/0O=11
—i— PD=1.2 —d— PiO=12 —i— PD=1.2
—s— P/0=13 - —s— P/0=13
.03 ans{ [PO 0.02 4
£ = 5
bl [T} Ll
o o N
0.015 4 0.5 4 oo -
0 0
0 04 J 05 o 04 4 05 0 04 J 0E
HN=3. EAR =025 H=3.EAR = 0.6 N=3. EAR = 0.7
006 +— P'D=1 .06 P—yTy 0068 — — PID=1
—s— P/D=11 — = PD=11 —s— PiD=141
—i— P/0=1.2 e PD=1.23 —— ::g=1§
- - — G =1
oo4 | L POELS 0.04 - PO 0.04 -
=
bl
[
0.02 -
0
0 04 X 0F

Fig. 3.

Graphs of Percent Error in K7 vs. J

A Direct Matrix Solution Multiple-Variable Linear Regression Model . 13
VA — number of blades

FEAR — blade area ratio of a screw propeller
or expanded area ratio

% — pitch ratio of a screw propeller

J — advance coefficient

N — Netherlands Ship Model Basin (NSMB) nozzle type and %:
N =1 refers to NSMB 19A and % =05
N = 2 refers to NSMB 22 and & = 0.8
N = 3 refers to NSMB 37 and % =0.5

B, — delivered horsepower coefficient

By — thrust horsepower coefficient

1) — speed coeflicient

Mo — open water efficiency

ACKNOWLEDGMENTS

The authors thanks to National Research Council Canada for its support.

REFERENCES

Liu, P. AND L1, K. 2002. Programming the Bi-CGSTAB Matrix Slover for HPC and Benchmarking
IBM SP3 and Alpha ES40. 16th International Parallel € Distributed Processing Symposium,
Ford Lauderdale, Frolida, 269-317.

PrESs, W., TEUKOLSKY, S., VETTERLING, W., AND FLANNERY, B. 1999. Numerical Recipes in C,
The Art of Scientific Computing, 2 ed. The Press Syndicate of the University of Cambridge,
Cambridge, United Kingdom. 994 p.

Yossirov, K., STANEVA, A.; AND BELCHEV, V. 1989. Equations for Hydrodynamic and Optimum
Efficiency Characteristics of the Wageningen K. Ducted Propeller Series. Fourth International
Symposium on Practical Design of Ships and Mobile Units, 1-15.

APPENDIX A

DGSI Four Variable Function Source Code

14 . Liu and Quinton

APPENDIX
A. DGSI FOUR VARIABLE FUNCTION SOURCE CODE

A.1 Summarizer Function

void On4Variables()

{

char dummy [MAXSTR],dummys=’\n’;

int j1,j2,33,j4,jT,k1,k2,k3,k4,kT;

int NVar,I1,I2,13,I4,NVector;

float **ai,**x,*vl,*v2,*v3,*v4,terml,term2,term3,termé;

FILE* Input_file;
FILE* Output_file;

Input_file=fopen("V04_Sum_Real.04v","r");
Output_file=fopen("V04_Sum_Real.OQUT","w");

if (!feof (Input_file))

{

//get setup info from input file
//and write to output file

fgets (dummy,MAXSTR, Input_file);
fprintf (Output_file,"%s",dummy) ;

fscanf (Input_file,"%d ",&NVar);
fprintf (Output_file,"%d\n" ,NVar) ;

fgets (dummy,MAXSTR, Input_file);
fprintf (Output_file,"%s",dummy) ;

fscanf (Input_file,"%d %d %d %d ",&I1,&I2,&I3,&I4);
fprintf (Output_file,"%d %d %d %d\n",I1,12,I3,I4);

fgets (dummy,MAXSTR, Input_file);
fprintf (Output_file,"%s",dummy) ;

//dimension size of array to be created
NVector=I1*xI2*I3%I4;

//ai is NVector x NVector matrix
ai=matrix(1,NVector,1,NVector);
//x is column matrix
x=matrix(1,NVector,1,1);
//vectors for each variables data
vi=vector(l,NVector);
v2=vector(1,NVector);
v3=vector(1,NVector) ;
vd=vector(1,NVector) ;

for (ji=1; ji<=I1; ji++)

for (j2=1; j2<=I2; j2++)

for (j3=1; j3<=I3; j3++)

for (j4=1; j4<=I4; j4++)

{

//index for vectors and matrix

JT=(j1-1)*I2*I3%I4 + (j2-1)*I3*I4 + (j3-1)*I4 + j4;

//gather data for vectors
fscanf (Input_file,"%f ",&vi[jT]);
fprintf (Output_file,"%f ",v1[jT]);

fscanf (Input_file,"%f ",&v2[jT]);
fprintf (Output_file,"%f ",v2[jT]);

fscanf (Input_file,"%f ",&v3[jT]);
fprintf (Output_file,"%f ",v3[jT1);

fscanf (Input_file,"%f ",&v4[jT]);

A Direct Matrix Solution Multiple-Variable Linear Regression

fprintf (Output_file,"%f ",v4[3jT1);

fscanf (Input_file,"%f \n",&x[jTI[1]);
fprintf (Output_file,"%f \n",x[jTI[1]);
}

}

fprintf (Output_file,"\n");
fclose(Input_file);

for (jl=1; ji<=I1; j1++)

for (j2=1; j2<=I2; j2++)

for (j3=1; j3<=I3; j3++)

for (j4=1; j4<=I4; ja++)

{

//index for vectors and matrix

jT=(j1-1)*I2+I3%I4 + (j2-1)*I3*I4 + (j3-1)*I4 + j4;

//output column matrix
fprintf (Output_file,"x=%f \n",x[jTI[11);
}

//£ill ai matrix

for (kT=1; kT<=NVector; kT++)

{

for (jil=1; ji<=I1; ji++)

for (j2=1; j2<=I2; j2++)

for(j3=1; j3<=I3; j3++)

for(j4=1; j4<=I4; j4++)

{

//index for vectors and matrix

jT=(j1-1)*I2+I3%I4 + (j2-1)*I3*I4 + (j3-1)*I4 + j4;

//get values for each term of product

if (j1==1)
terml1=1.0;
else

terml=pow(v1[kT],float(j1-1));

if (j2==1)
term2=1.0;
else

term2=pow (v2[kT],float (j2-1));

if(j3 == 1)
term3 = 1.0;
else

term3 = pow(v3[kT],float(j3-1));

if(j4 == 1)
term4d = 1.0;
else

term4 = pow(v4[kT],float(j4-1));

ailkT] [jT]=terml*term2*term3*term4;
}

//write ai to output file

for (j1=1; ji<=NVector; jl++)

{

for (j2=1; j2<=NVector; j2++)

{

fprintf (Output_file,"%f ",ailj1]1[j2]);
}

Model

15

16 . Liu and Quinton

fprintf (Output_file,"\n");

//solve created matrix equation [ail] [k]=[x]
//using gauss elimination
gaussj(ai,NVector,x,1);

fprintf (Output_file,"\n");
fprintf (Output_file,"Output ail[]l[] after gauss \n");

//output new ai
for (j1=1; ji<=NVector; jl++)

for (j2=1; j2<=NVector; j2++)

{

fprintf (Output_£file,"%f ",ailj1]1[j21);
}

fprintf (Output_file,"\n");
}

fprintf (Qutput_file,"Solution for coefficients \n");

//output answer matrix

for (j1=1; ji<=I1; ji++)

for (j2=1; j2<=I2; j2++)

for(j3=1; j3<=I3; j3++)

for(j4=1; j4<=I4; j4++)

{

//index for vectors and matrix

JT=(j1-1)*I2+I3+I4 + (j2-1)*I3%I4 + (j3-1)*I4 + j4;

k1=j1-1;
k2=32-1;
k3=33-1;
k4=j4-1;

fprintf (Output_file,"k1=%d k2=%d k3=%d k4=%d al%d] [%d] [%d] [%d]=al%d] %f \n",
k1,k2,k3,k4,k1,k2,k3,k4,3T,x[3T1 [11);
}

//clean up:

//free allocated space and close open files
free_matrix(x,1,NVector,1,1);
free_matrix(ai,1,NVector,1,NVector);
free_vector(vl,1,NVector);
free_vector(v2,1,NVector);
free_vector(v3,1,NVector);
free_vector(v4,1,NVector);

fclose(Output_file);
}

A.2 Interpolator Function

void OnInter04()
{

char dummy [MAXSTR],dummys=’\n’;

int j1,j2,33,j4,jT,k1;

int NVar,I1,I2,13,I4,NVector,NInEx;

float *a,*vl,*v2,*v3,*v4d,*xresult,sum,terml,term2,term3,termé;

FILEx In_file;
FILE* Out_file;

In_file=fopen("V0O4_Inter_Real.04i","r");

A Direct Matrix Solution Multiple-Variable Linear Regression Model

Out_file=fopen("V04_Inter_Real.OUT","w");

if (!feof(In_file))

{

//get setup info from input file
//and write to output file

fgets (dummy ,MAXSTR,In_file);
fprintf (Out_file,"%s",dummy) ;

fscanf(In_file,"%d ",&NVar);
fprintf (Out_file,"%d\n",NVar);

fgets (dummy ,MAXSTR,In_file);
fprintf (Out_file,"%s",dummy) ;

fscanf (In_file,"%d %d %d %d ",&I1,&I2,&I3,&I4);
fprintf (Out_file,"%d %d %d %d\n",I1,I2,I3,I4);

fgets (dummy,MAXSTR,In_file);
fprintf(Out_file,"%s\n",dummy) ;

//setup vector size
NVector=I1*xI2*I3%I4;
a=vector01(1,NVector);

for (ji=1; ji<=I1; ji++)
for (j2=1; j2<=I2; j2++)
for (j3=1; j3<=I3; j3++)
for(j4=1; j4<=I4; j4++)

//index for vectors and matrix
jT=(j1-1)*I2+I3%I4 + (j2-1)*I3*I4 + (j3-1)*I4 + j4;

//£ill vector and write
//values to output file
fscanf(In_file,"%f ",&aljT]);
fprintf (Out_file,"%f ",aljT]);
}

fprintf (Out_file,"\n\n");
fgets (dummy,MAXSTR,In_file);
fprintf (Out_file,"%s\n",dummy) ;

//get number of values to interpolate over
fscanf (In_file,"%d ",&NInEx);
fprintf(Out_file,"%d \n",NInEx);

vi=vector01(1,NInEx);
v2=vector01(1,NInEx);
v3=vector01(1,NInEx);
v4=vector01(1,NInEx);
result=vector01(1,NInEx);

fprintf(Out_file,"\n");
fgets (dummy,MAXSTR,In_file);
fprintf (Out_file,"%s\n",dummy) ;

//get values over which to interpolate

for(j1=1;j1<=NInEx;jl++)

{

fscanf(In_file,"%f %f %f %f \n",&vi[j1l,&v2[j1]1,&v3[j1],&v4[j1]);
fprintf (Out_file,"%f %f %f %f \n",v1[j1l,v2[j1]1,v3[j1],v4[j11);

}

}

fprintf (Out_file,"\n");

17

18 . Liu and Quinton

fclose(In_file);

for (k1=1;k1<=NInEx;k1++)
{

sum=0.0;

for (jl=1; ji<=I1; j1++)

for (j2=1; j2<=I12; j2++)

for (j3=1; j3<=I3; j3++)

for(j4=1; j4<=I4; j4++)

{

//index for vectors and matrix

jT=(j1-1)*I2+I3%I4 + (j2-1)*I3*I4 + (j3-1)*I4 + j4;

//get value for each term

if (j1==1)
terml1=1.0;
else

terml=pow(v1[k1],float(j1-1));

if (j2==1)
term2=1.0;
else

term2=pow(v2[k1],float (j2-1));

if (j3==1)
term3=1.0;
else

term3=pow(v3[k1],float(j3-1));

if (j4==1)
term4=1.0;
else

term4=pow(v4[k1],float (j4-1));

sum=a[jT] *termi*term2*term3*termé+sum;

}

//store sum
result [k1]=sum;

}

//output result at specified vector

for (j2=1;j2<=NInEx;j2++)

fprintf (Out_file,"vi=yf v2=f v3=)f v4=)f result=)f \n",
vi[j2],v2[j2],v3[j2],v4[j2],result[j2]1);

fprintf(Out_file,"\n");

//clean up:

//free allocated space and close open files
free_vectorOi(a,1,NInEx);
free_vector01(v1,1,NInEx);
free_vector01(v2,1,NInEx);
free_vector01(v3,1,NInEx);
free_vector01(v4,1,NInEx);
free_vectorO1(result,1,NInEx);

fclose(Out_file);
}

20 . Liu and Quinton

0.270000 3.000000 0.900000 0.270000 1.500000 0.450000 0.135000 1.500000 0.450000 0.135000
1.000000 0.600000 0.360000 1.000000 0.600000 0.360000 0.500000 0.300000 0.180000 0.500000 0.300000 0.180000 3.000000 1.800000
1.080000 3.000000 1.800000 1.080000 1.500000 0.900000 0.540000 1.500000 0.900000 0.540000
1.000000 0.000000 0.000000 1.100000 0.000000 0.000000 0.500000 0.000000 0.000000 0.550000 0.000000 0.000000 3.000000 0.000000
0.000000 3.300000 0.000000 0.000000 1.500000 0.000000 0.000000 1.650000 0.000000 0.000000
1.000000 0.300000 0.090000 1.100000 0.330000 0.099000 0.500000 0.150000 0.045000 0.550000 0.165000 0.049500 3.000000 0.900000
0.270000 3.300000 0.990000 0.297000 1.500000 0.450000 0.135000 1.650000 0.495000 0.148500
1.000000 0.600000 0.360000 1.100000 0.660000 0.396000 0.500000 0.300000 0.180000 0.550000 0.330000 0.198000 3.000000 1.800000
1.080000 3.300000 1.980000 1.188000 1.500000 0.900000 0.540000 1.650000 0.990000 0.594000
1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.600000 0.000000 0.000000 0.600000 0.000000 0.000000 3.000000 0.000000
0.000000 3.000000 0.000000 0.000000 1.800000 0.000000 0.000000 1.800000 0.000000 0.000000
1.000000 0.300000 0.090000 1.000000 0.300000 0.090000 0.600000 0.180000 0.054000 0.600000 0.180000 0.054000 3.000000 0.900000
0.270000 3.000000 0.900000 0.270000 1.800000 0.540000 0.162000 1.800000 0.540000 0.162000
1.000000 0.600000 0.360000 1.000000 0.600000 0.360000 0.600000 0.360000 0.216000 0.600000 0.360000 0.216000 3.000000 1.800000
1.080000 3.000000 1.800000 1.080000 1.800000 1.080000 0.648000 1.800000 1.080000 0.648000
1.000000 0.000000 0.000000 1.100000 0.000000 0.000000 0.600000 0.000000 0.000000 0.660000 0.000000 0.000000 3.000000 0.000000
0.000000 3.300000 0.000000 0.000000 1.800000 0.000000 0.000000 1.980000 0.000000 0.000000
1.000000 0.300000 0.090000 1.100000 0.330000 0.099000 0.600000 0.180000 0.054000 0.660000 0.198000 0.059400 3.000000 0.900000
0.270000 3.300000 0.990000 0.297000 1.800000 0.540000 0.162000 1.980000 0.594000 0.178200
1.000000 0.600000 0.360000 1.100000 0.660000 0.396000 0.600000 0.360000 0.216000 0.660000 0.396000 0.237600 3.000000 1.800000
1.080000 3.300000 1.980000 1.188000 1.800000 1.080000 0.648000 1.980000 1.188000 0.712800

Output ai[][] after gauss

197.995148 0.009359 -0.003111 -179.996429 -0.007230 0.002412 -164.996353 -0.007494 0.002415 149.997452 0.005636 -0.001792 -13
1.995163 -0.008365 0.002657 119.996262 0.006564 -0.002049 109.996078 0.006899 -0.002090 -99.997070 -0.005310 0.001567

-989.864319 1319.802490 -329.929138 899.879089 -1199.826050 299.937103 824.873901 -1099.813110 274.932404 -749.887512 999.834

839 -249.940018 659.890259 -879.843628 219.946976 -599.902832 799.862915 -199.953461 -549.896790 733.184143 -183.282379 499.9

08722 -666.536011 166.622040

1099.743896 -2199.644531 1099.873047 -999.768433 1999.682983 -999.886414 -916.427551 1832.995850 -916.544800 833.117126 -1666
365112 833.224365 -733.130493 1466.392456 -733.241394 666.484436 -1333.090088 666.585205 610.919983 -1221.959961 611.021973

-555.384094 1110.878906 -555.476685

-179.995743 -0.008216 0.002604 179.996979 0.006181 -0.001934 149.996902 0.006463 -0.001948 -149.997940 -0.004687 0.001360 119
1995605 0.007534 -0.002292 -119.996666 -0.005797 0.001718 -99.996483 -0.006144 0.001760 99.997437 0.004611 -0.001260

899.875427 -1199.820190 299.935913 -899.889465 1199.842529 -299.943451 -749.884338 999.829712 -249.938736 749.897278 -999.850

464 249.945999 -599.898743 799.856995 -199.951889 599.910767 -799.875427 199.958084 499.904907 -666.530273 166.620392 -499.91

6321 666.548035 -166.626419

-999.762817 1999.674072 -999.884155 999.786072 -1999.710327 999.896729 833.111938 -1666.356934 833.221863 -833.133606 1666.39

0991 -833.234009 666.478088 -1333.081299 666.582703 -666.497803 1333.110718 -666.592651 -555.378052 1110.870117 -555.473999 5

55.396790 -1110.898682 555.483826

-329.998322 -0.005700 0.001301 300.000336 0.002303 -0.000159 329.999847 0.003525 -0.000535 -300.001556 -0.000545 -0.000469 21

9.997177 0.005635 -0.001123 -199.998901 -0.002799 0.000166 -219.998291 -0.003940 0.000509 199.999832 0.001424 0.000326
1649.779785 -2199.682861 549.885315 -1499.805420 1999.723877 -499.899475 -1649.796631 2199.701172 -549.891418 1499.820313 -19

99.739258 499.905060 -1099.823730 1466.419678 -366.583099 999.845398 -1333.119751 333.261230 1099.835571 -1466.432617 366.587
158 -999.856201 1333.131592 -333.264984

-1832.890137 3666.059082 -1833.114746 1666.267212 -3332.794678 1666.472412 1832.922485 -3666.094727 1833.125732 -1666.296753

3332.825684 -1666.482544 1221.874268 -2443.982666 1222.067017 -1110.799683 2221.815430 -1110.974976 -1221.897583 2444.007568

-1222.073975 1110.821289 -2221.838867 1110.981445

299.999054 0.004161 -0.000615 -300.001007 -0.000937 -0.000445 -300.000488 -0.002175 -0.000071 300.002106 -0.000658 0.001013 -
199.997726 -0.004525 0.000643 199.999374 0.001809 0.000269 199.998764 0.002954 -0.000081 -200.000259 -0.000543 -0.000711

-1499.800293 1999.715332 -499.897766 1499.824463 -1999.754028 499.911072 1499.815918 -1999.731934 499.903076 -1499.838257 199

9.767822 -499.915924 999.839355 -1333.110840 333.258759 -999.859924 1333.142578 -333.269592 -999.850464 1333.122803 -333.2623

60 999.870056 -1333.153442 333.272949

1666.259521 -3332.782227 1666.469360 -1666.300659 3332.846924 -1666.492188 -1666.289551 3332.814209 -1666.478882 1666.328003

-3332.874756 1666.500977 -1110.790161 2221.802490 -1110.971313 1110.824829 -2221.854492 1110.989258 1110.812134 -2221.825439
1110.977295 -1110.845093 2221.875977 -1110.994873

-65.998535 -0.002598 0.000772 59.999077 0.001740 -0.000491 54.998966 0.001962 -0.000537 -49.999416 -0.001214 0.000293 65.9983
22 0.002671 -0.000777 -59.998795 -0.001916 0.000527 -54.998653 -0.002147 0.000573 49.999077 0.001482 -0.000356

329.946716 -439.920990 109.970612 -299.952759 399.930542 -99.973877 -274.949921 366.591095 -91.638290 249.955521 -333.266693
83.308090 -329.954468 439.933960 -109.976814 299.959808 -399.942230 99.979622 274.956787 -366.603241 91.644226 -249.961914 33
3.277893 -83.313637

-366.568176 733.194946 -366.615784 333.244446 -666.543274 333.287689 305.462769 -610.978455 305.506042 -277.694031 555.437012
-277.733307 366.584442 -733.221008 366.627960 -333.259674 666.567200 -333.299011 -305.477570 611.003052 -305.517700 277.7079
77 -555.459961 277.744232

59.998707 0.002297 -0.000632 -59.999226 -0.001464 0.000368 -49.999107 -0.001700 0.000416 49.999546 0.000975 -0.000180 -59.998
463 -0.002430 0.000672 59.998920 0.001693 -0.000429 49.998779 0.001933 -0.000480 -49.999191 -0.001284 0.000271

-299.951263 399.928284 -99.973434 299.957031 -399.937408 99.976532 249.954239 -333.264740 83.307632 -249.959595 333.273285 -8
3.310623 299.958099 -399.939758 99.978958 -299.963257 399.947693 -99.981644 -249.960297 333.275513 -83.312950 249.965225 -333
.283173 83.315590

333.242340 -666.540161 333.286957 -333.251495 666.554443 -333.291931 -277.692078 555.434204 -277.732513 277.700684 -555.44763
2 277.737366 -333.256989 666.563599 -333.297974 333.265198 -666.575928 333.302185 277.705475 -555.456421 277.743164 -277.7133
18 555.468384 -277.747314

110.000015 0.000444 0.000248 -100.000862 0.000940 -0.000715 -110.000519 0.000256 -0.000481 100.001236 -0.001475 0.000889 -109
1999290 -0.001036 -0.000078 100.000031 -0.000159 0.000484 109.999680 0.000453 0.000287 -100.000343 0.000608 -0.000639
-549.913025 733.205261 -183.285019 499.923553 -666.555481 166.624252 549.918884 -733.211609 183.287125 -499.928650 666.560730
-166.626114 549.926270 -733.227783 183.296097 -499.935608 666.575623 -166.634445 -549.930664 733.232849 -183.297684 499.9395
45 -666.580139 166.635925

610.940308 -1221.985229 611.023010 -555.402039 1110.901245 -555.477112 -610.951699 1221.997192 -611.026428 555.412292 -1110.9
11743 555.480286 -610.969604 1222.032349 -611.045288 555.429382 -1110.944336 555.497803 610.978394 -1222.041748 611.047729 -5
55.437439 1110.953125 -555.500061

-100.000320 0.000132 -0.000492 100.001129 -0.001456 0.000933 100.000793 -0.000767 0.000703 -100.001480 0.001930 -0.001087 99.
999535 0.000611 0.000257 -100.000252 0.000541 -0.000641 -99.999901 -0.000073 -0.000447 100.000542 -0.000949 0.000774
499.921478 -666.552124 166.623596 -499.931427 666.568115 -166.629166 -499.926849 666.557861 -166.625381 499.936127 -666.57281
5 166.630768 -499.932861 666.571655 -166.633347 499.941772 -666.585510 166.638123 499.937012 -666.576294 166.634750 -499.9455
26 666.589661 -166.639420

-555.398987 1110.896729 -555.476074 555.415283 -1110.922241 555.485168 555.409485 -1110.907471 555.478943 -555.424866 1110.93
1641 -555.487854 555.425171 -1110.938721 555.496216 -555.439697 1110.960571 -555.503784 -555.433472 1110.947388 -555.498291 5
55.447388 -1110.968750 555.505798

Solution for coefficients

k1=0 k2=0 k3=0 k4=0 a[0][0] [0][0]=a[1] 0.000000

k1=0 k2=0 k3=0 k4=1 a[0] [0][0] [1]=a[2] -0.000025

a[0]1[0][0][2]=a[3] -0.449930

k4=0 a[0][0][1][0]=a[4] 0.500000

APPENDIX B

Output Files

A Direct Matrix Solution Multiple-Variable Linear Regression Model . 19

B. OUTPUT FILES

The following samples have been wrapped to fit the page and in the process some
numbers and words may have been spilt, having beginnings on one line and endings
on another. The ASCII output files are not word wrapped.

B.1 Sample Summarizer Output File

Number of variables

4

Number of polynomial terms for each variable

2223

List variables and results, at least 2x2x2x3=24 lines for 4 variables Z, EAR, P/D and J vs. Kt

2.000000 0.500000 1.000000 0.000000 0.550000
2.000000 0.500000 1.000000 0.300000 0.505000
2.000000 0.500000 1.000000 0.600000 0.370000
2.000000 0.500000 1.100000 0.000000 0.600000
2.000000 0.500000 1.100000 0.300000 0.555000
2.000000 0.500000 1.100000 0.600000 0.420000
2.000000 0.600000 1.000000 0.000000 0.560000
2.000000 0.600000 1.000000 0.300000 0.514100
2.000000 0.600000 1.000000 0.600000 0.376400
2.000000 0.600000 1.100000 0.000000 0.610000
2.000000 0.600000 1.100000 0.300000 0.564100
2.000000 0.600000 1.100000 0.600000 0.426400
3.000000 0.500000 1.000000 0.000000 0.550000
3.000000 0.500000 1.000000 0.300000 0.502750
3.000000 0.500000 1.000000 0.600000 0.361000
3.000000 0.500000 1.100000 0.000000 0.600000
3.000000 0.500000 1.100000 0.300000 0.552750
3.000000 0.500000 1.100000 0.600000 0.411000
3.000000 0.600000 1.000000 0.000000 0.560000
3.000000 0.600000 1.000000 0.300000 0.511400
3.000000 0.600000 1.000000 0.600000 0.365600
3.000000 0.600000 1.100000 0.000000 0.610000
3.000000 0.600000 1.100000 0.300000 0.561400
3.000000 0.600000 1.100000 0.600000 0.415600

.610000

.564100

=0.426400

.550000

.502750

.361000

.600000

.552750

.411000

.560000

.511400

365600

=0.610000

.561400

.415600

1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.500000 0.000000 0.000000 0.500000 0.000000 0.000000 2.000000 0.000000
0.000000 2.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000

1.000000 0.300000 0.090000 1.000000 0.300000 0.090000 0.500000 0.150000 0.045000 0.500000 0.150000 0.045000 2.000000 0.600000
0.180000 2.000000 0.600000 0.180000 1.000000 0.300000 0.090000 1.000000 0.300000 0.090000

1.000000 0.600000 0.360000 1.000000 0.600000 0.360000 0.500000 0.300000 0.180000 0.500000 0.300000 0.180000 2.000000 1.200000
0.720000 2.000000 1.200000 0.720000 1.000000 0.600000 0.360000 1.000000 0.600000 0.360000

1.000000 0.000000 0.000000 1.100000 0.000000 0.000000 0.500000 0.000000 0.000000 0.550000 0.000000 0.000000 2.000000 0.000000
0.000000 2.200000 0.000000 0.000000 1.000000 0.000000 0.000000 1.100000 0.000000 0.000000

1.000000 0.300000 0.090000 1.100000 0.330000 0.099000 0.500000 0.150000 0.045000 0.550000 0.165000 0.049500 2.000000 0.600000
0.180000 2.200000 0.660000 0.198000 1.000000 0.300000 0.090000 1.100000 0.330000 0.099000

1.000000 0.600000 0.360000 1.100000 0.660000 0.396000 0.500000 0.300000 0.180000 0.550000 0.330000 0.198000 2.000000 1.200000
0.720000 2.200000 1.320000 0.792000 1.000000 0.600000 0.360000 1.100000 0.660000 0.396000

1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.600000 0.000000 0.000000 0.600000 0.000000 0.000000 2.000000 0.000000
0.000000 2.000000 0.000000 0.000000 1.200000 0.000000 0.000000 1.200000 0.000000 0.000000

1.000000 0.300000 0.090000 1.000000 0.300000 0.090000 0.600000 0.180000 0.054000 0.600000 0.180000 0.054000 2.000000 0.600000
0.180000 2.000000 0.600000 0.180000 1.200000 0.360000 0.108000 1.200000 0.360000 0.108000

1.000000 0.600000 0.360000 1.000000 0.600000 0.360000 0.600000 0.360000 0.216000 0.600000 0.360000 0.216000 2.000000 1.200000
0.720000 2.000000 1.200000 0.720000 1.200000 0.720000 0.432000 1.200000 0.720000 0.432000

1.000000 0.000000 0.000000 1.100000 0.000000 0.000000 0.600000 0.000000 0.000000 0.660000 0.000000 0.000000 2.000000 0.000000
0.000000 2.200000 0.000000 0.000000 1.200000 0.000000 0.000000 1.320000 0.000000 0.000000

1.000000 0.300000 0.090000 1.100000 0.330000 0.099000 0.600000 0.180000 0.054000 0.660000 0.198000 0.059400 2.000000 0.600000
0.180000 2.200000 0.660000 0.198000 1.200000 0.360000 0.108000 1.320000 0.396000 0.118800

1.000000 0.600000 0.360000 1.100000 0.660000 0.396000 0.600000 0.360000 0.216000 0.660000 0.396000 0.237600 2.000000 1.200000
0.720000 2.200000 1.320000 0.792000 1.200000 0.720000 0.432000 1.320000 0.792000 0.475200

1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.500000 0.000000 0.000000 0.500000 0.000000 0.000000 3.000000 0.000000
0.000000 3.000000 0.000000 0.000000 1.500000 0.000000 0.000000 1.500000 0.000000 0.000000

1.000000 0.300000 0.090000 1.000000 0.300000 0.090000 0.500000 0.150000 0.045000 0.500000 0.150000 0.045000 3.000000 0.900000

A Direct Matrix Solution Multiple-Variable Linear Regression Model

1 k4=1

kd4=1
k4=2
k4=0
k4=1
k4=2

a[0] [0][1] [1]=a[5]

a[0] [0] [1] [2]=a[6]

a[0] [1][0] [0]=a[7]

a[0] [1][0] [1]=a[8]

a[0][1][0] [2]=a[9]

a[0][1][1] [0]=a[10]
a[0] [1] [1] [1]=a[11]
a[0][11[1] [2]1=a[12]
a[1] [0] [0] [0]=a[13]
a[1][0] [0] [1]=a[14]
a[1][0] [0] [2]=a[15]
a[1]1[0] [1] [0]=a[16]
al11[0] [1][1]=a[17]
a[1]1[0] [1] [2]=a[18]
a[1]1[1] [0] [0]=a[19]
a[1] [1] [0] [1]=a[20]
a[1] [1] [0] [2]=a[21]
a[1] [1] [1] [0]=a[22]

1 a1][1][1][1]=a[23]

al1][1]1[1] [2]=a[24]

0.000022
-0.000064
0.100000
0.000041
-0.000118
0.000000
-0.000034
0.000106
0.000000
0.000007
-0.000022
-0.000000
-0.000006
0.000020
-0.000000
-0.000012
-0.049963
0.000000
0.000010
-0.000033

B.2 Sample Interpolator Output File

Number of variables
4

Number of polynomial terms for each variable

2223

List coefficient a[1-2][1-2][1-2][1-3]=>a[0][0] [0] [0], -, al1l[1]011[2]

0.000000 -0.000025 -0.449930 0.500000 0.000022 -0.000064 0.100000 0.000041 -0.000118 0.000000 -0.000034 0.000106 0.000000
0.000007 -0.000022 0.000000 -0.000006 0.000020 0.000000 -0.000012 -0.049963 0.000000 0.000010 -0.000033

Number of sets of variables to inter-extrapolate

24

List of this 24 sets of variables

000000
000000
000000
000000
000000

.600000
.600000
.600000
.600000
.600000

.000000
.000000
.100000
.100000
.100000

.300000
.600000
.000000
.300000
.600000

2.000000 0.500000 1.000000 0.000000
2.000000 0.500000 1.000000 0.300000
2.000000 0.500000 1.000000 0.600000
2.000000 0.500000 1.100000 0.000000
2.000000 0.500000 1.100000 0.300000
2.000000 0.500000 1.100000 0.600000
2.000000 0.600000 1.000000 0.000000
2.000000 0.600000 1.000000 0.300000
2.000000 0.600000 1.000000 0.600000
2.000000 0.600000 1.100000 0.000000
2.000000 0.600000 1.100000 0.300000
2.000000 0.600000 1.100000 0.600000
3.000000 0.500000 1.000000 0.000000
3.000000 0.500000 1.000000 0.300000
3.000000 0.500000 1.000000 0.600000
3.000000 0.500000 1.100000 0.000000
3.000000 0.500000 1.100000 0.300000
3.000000 0.500000 1.100000 0.600000
3.000000 0.600000 1.000000 0.000000
3. 0 1 [

3. [1 0

3. 0 1 0

3. [1 [

3. 0 1 0

v1=2.000000 .500000 v3=1.000000 000000 result=0.550000
v1=2.000000 .500000 v3=1.000000 .300000 .505000
v1=2.000000 .500000 v3=1.000000 .600000 370000
v1=2.000000 .500000 v3=1.100000 =0.000000 .600000
v1=2.000000 .500000 v3=1.100000 300000 =0.555000
v1=2.000000 .500000 v3=1.100000 .600000 420000
v1=2.000000 =0.600000 v3=1.000000 .000000 .560000
v1=2.000000 .600000 v3=1.000000 .300000 .514100
v1=2.000000 .600000 v3=1.000000 .600000 .376400
v1=2.000000 .600000 v3=1.100000 .000000 .610000
v1=2.000000 .600000 v3=1.100000 .300000 .564100
v1=2.000000 .600000 v3=1.100000 .600000 426400
v1=3.000000 .500000 v3=1.000000 .000000 .550000
v1=3.000000 .500000 v3=1.000000 .300000 .502750
v1=3.000000 .500000 v3=1.000000 .600000 .361000
v1=3.000000 .500000 v3=1.100000 .000000 .600000
v1=3.000000 .500000 v3=1.100000 300000 .552750
v1=3.000000 .500000 v3=1.100000 .600000 .411000
v1=3.000000 .600000 v3=1.000000 .000000 =0.560000
v1=3.000000 .600000 v3=1.000000 .300000 .511400
v1=3.000000 .600000 v3=1.000000 .600000 .365600
v1=3.000000 .600000 v3=1.100000 .000000 =0.610000
v1=3.000000 .600000 v3=1.100000 .300000 .561400
v1=3.000000 .600000 v3=1.100000 .600000 result=0.415600

