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The Division of Applied Physics is concerned with any physical
research which, when brought to a successful conclusion, can be expected
to benefit the development of Canadian industry and natural resources.
Some researches are initiated by the Division and some arise from requests
of industry and other government departments. Such outside proposals are
always welcomed, particularly if they have a broad significance. As a
groundwork for these researches, and to meet a general need, the Division
maintains fundamental physical standards of length, mass, electricity,
temperature, photometry, and X-rays and nuclear radiation. Arrangements
can be made for first-order calibrations of appropriate equipment in terms
of these standards.

To give a general idea of the resources available, the names of the lab-
oratories are listed below and should be interpreted in their broadest sense.

Acoustics

Electricity

Heat and Solid State Physics
Instrumental Optics
Interferometry

Mechanics

Photogrammetry

Radiation Optics

X-Rays and Nuclear Radiations.

This report may not be published in whole or
in part without the written consent of
The National Research Council
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Introduction

In photogrammetric mapping, an extensive use is made of procedures
which serve to increase the number of ground-control points established by
field surveying.

For a long time, the most accurate of the available procedures consisted
in aerial triangulation of strips of photographs in first-order plottinginstruments
followed by transformation of the obtained strip coordinates to the required
geodetic or map-coordinate system.

Analytical aerial triangulation is an alternative to the triangulation in an
instrument. It consists in computing the map coordinates of terrain points
directly from measurements of the coordinates of their images in the planes of
aerial photographs. The orientation of each photograph of a strip at its moment
of exposure with respect to the others is computed in a rectangular three-
dimensional coordinate system. With this orientation, rays from corresponding
images of terrain points in each two successive photographs intersect, and the
coordinates of all these points of intersection are computed. Unless the compu-
tation is performed in the ground-control system and the conditions for the
available ground-control points have been taken into account, the analytical tri-
angulation is also followed by transformation to the ground-control system.

Analytical triangulation has been considered a potential method since the
beginning of photogrammetric mapping. However, before the advent of the
electronic computer, the required computations were too time-consuming. The
electronic computer has made analytical triangulation a practical possibility.

Analytical aerial triangulation has a number of advantages over triangu-
lation on first-order plotting instruments.

A greater accuracy can be achieved because the measured coordinates
can be corrected for all determinable errors in the position of the photographic
image. Film distortion can be taken into account when a grid plate is used in
front of the negative or, to a lesser degree, when the camera is provided with a
sufficient number of fiducial marks. Lens distortion can be compensated,
limited only by the accuracy with which the camera has been calibrated and its
stability. In instrumental triangulation this is not the case, or at least not to
this extent: for example, no corrections can be given for irregular film distor-
tion and for asymmetric lens distortion. Corrections can be applied also for
distortion caused by atmospheric refraction. If desired, corrections can be
given to eliminate curvature of a strip due to curvature of the earth.

A greater accuracy will be achieved also because analytical triangulation
is not restricted by some of the limitations of instrumental triangulation.
Triangulation instruments, however accurate, always have their imperfections.
The bundle of rays, defined by the image points in a photograph, is not repro-
duced with mathematical precision. The model of the terrain obtained from a
strip of photographs will therefore always be more or less distorted.
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In analyticaltriangulation the bundles of rays are defined by mathematical
formulas. The accuracy of the computations is limited only by the number of
decimal places used. The only instrumental errors that occur are those in the
reading of coordinates on the stereocomparator. Since aprecise stereocompara-
tor is a much simpler machine than a first-order plotting instrument, the sources
of instrumental errors are fewer in number and their effect can be kept much
smaller.

Another limitationof the first-order plotting instruments is in the accuracy
with which relative orientation can be established. An approximate orientation
is established first. It is then adjusted, either empirically or by a numerical
procedure. With the empirical procedure, the result depends more or less on
the preference of the operator as to the extent to which he should go in reducing
the parallaxes and as to which orientation elements to use. With the numerical
procedure, the corrections to the orientation elements are computed unambigu-
ously from observed parallaxes. Application of these corrections to the instru-
ment readings, however, does not generally bring about the expected change in
the parallaxes. This is caused by the fact that corrections to the orientation
elements cannot be made with mathematical precision. As a result, small but
perceptible systematic parallaxes are often left. In analytical triangulation this
is not the case: the relative orientation as defined by observed coordinates can
be established with any required degree of accuracy.

Furthermore, in instrumental triangulation, only a limited accuracy is
reached in the centering of the photograph in the plate holder. This results in a
distortion of the bundle of rays. In analytical triangulation, the centering is
computed from the readings of the fiducial marks and does not depend upon the
positioning of the photograph in the plate holder.

Analytical triangulation also promises economical advantages. A higher
accuracy will make it possible to reduce the number of ground-control points,
and thus the cost of field surveys, without reducing the accuracy of the produced
maps. The cost of the photogrammetric equipment can also be lower. A precise
monocomparator is a much simpler instrument than a first-order plotter and is
much less expensive. At the present time, the price of a precise stereocompara-
tor is very high but eventually it will have to come down to a level whichreflects
the relative simplicity of this instrument.

The above advantages make analytical triangulation an attractive proposi-
tion. Accordingly, as early as 1953, a method of analytical triangulation was
developed at the Photogrammetric Research Section of the Division of Applied
Physics of the National Research Council of Canada.

This method was programmed for the Ferut electronic computer at the
University of Toronto, one of the very few electronic computers in Canada at
that time [1]. Subsequently, the method was programmed for the IBM 650 and
the program was adapted for use on the IBM 1620 [2]. Card decks of this pro-
gram have been supplied to the research organizations and mapping agencies
who requested this.
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With small modifications, the method has recently been programmed in
FORTRAN. Versions of the FORTRAN program are now used on the IBM 1620
(40000 digits and floating-point hardware required) and on the IBM S/360.

The first chapter of this publication gives a short analysis of different
analytical triangulation procedures with special emphasis on the procedure used
in the FORTRAN program. More elaborate analyses can be found in references
[3] and [4]. The following four chapters treat the mathematical formulation
while the last chapter contains a description of the FORTRAN IV program, a
listing of the statements, and operating instructions.



I. Discussion of procedures

The process of analytical triangulation starts with the reading of the
coordinates of corresponding image points on a comparator.

These readings are first converted to photograph coordinates with origin
in the principal point. The photograph coordinates are corrected for the effects
of film distortion, lens distortion, and refraction. Corrections, for earth curva-
ture may be given if the strip coordinates are to be directly transformed to or
produced in the map coordinate system, without some geodetic system as an
intermediate link.

2. Orientation procedure

From the corrected photograph coordinates, the map coordinates of the
required points must be computed. This computation is most conveniently
performed using a spatial rectangular coordinate system. In this system, the
absolute orientation of each photograph is determined. Subsequently, the spatial
coordinates of all measured points are determined by intersecting corresponding
rays: If the spatial coordinate system is not identical with the map coordinate
system, this computation is followed by transformation of the obtained coordi-
nates to that system.

The absolute orientation of a photograph is expressed by six elements,
as for instance the three rectangular coordinates of its projection centre and
three parameters that define the position of the photograph axes with respect
to the axes of the coordinate system.

These six elements must be determined from the conditions which the
projecting rays through corresponding image points must fulfill.

There are three types of conditions:

i The projecting rays from corresponding image points in two consecutive
photographs must intersect.

ii The rays from corresponding image points in three consecutive photographs
must intersect at one point. This condition can be expressed by specifying
that two pairs of corresponding rays must intersect at the same distance
below the common photograph.

iii The given coordinates of a ground-control point must satisfy the equations
of the rays from its image points.

The conditions of the first two types express relations which must exist
between the orientation elements of adjoining photographs. They determine
primarily the relative orientation of these photographs.

As a result, the absolute orientation of each photograph cannot be deter-
mined independently of that of the others. It can be determined only by one of
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the two following procedures: either successively for one photograph after the
other or for all photographs simultaneously.

The first of these procedures resembles the triangulation in a plotting
instrument. Independently for each strip that is triangulated, it produces
coordinates in a three-dimensional coordinate system which is not related to the
ground-control system. This strip triangulation procedure is the subject of this
publication.

This procedure breaks the computation up into small steps. An arbitrary
orientation of the first photograph is assumed. The orientation of each following
photograph is then computed in succession. Here, the procedure used in instru-
mental triangulation is followed: the orientation consists in the relative orienta-
tion of each photograph with respect to the preceding one followed by scaling of
the resulting model. The relative orientation can be established by making five
pairs of corresponding rays intersect. The resulting model can then be scaled
to the preceding one by making one height or one distance in the two models
equal. Generally, more points will be measured in each model than the minimum
that is necessary to establish the relative orientation and the scale. This will be
done partly as a check on errors and partly to increase the accuracy. The rela-
tive orientation and the scale are then adjusted separately.

As an alternative in this procedure, the six orientation elements of a
photograph could be computed simultaneously. For this computation, six in-
dependent condition equations are necessary [5, 6]. One possibility would be
the measurement of five pairs of corresponding points, specifying that four of the
pairs of corresponding rays need merely intersect while the fifth must intersect
in the point established in the preceding model. A second possibility would be
the measurement of four pairs of corresponding points, specifying that two pairs
of corresponding rays need merely intersect while the other two must intersect
in points established in the preceding model. If more measurements are avail-
able, an adjustment could be carried out for all six elements simultaneously
using all available pairs of corresponding points and all available points from
the preceding model.

This alternative has a disadvantage. Errors in the orientation of a photo-
graph result in model deformation, especially in height. If this occurs, and two
or more well separated points in such a model are used in the adjustment of
the next model, that model will be deformed accordingly, causing errors in all
orientation elements of its second photograph. As a result, deformation of one
model causes deformation of all following models in succession. Consequently,
each model is affected by deformation of all preceding models, but not by defor-
mation of any following model. Therefore, the result of the triangulation depends
on the choice of the model used to start the triangulation, that is, in practice,
upon the direction of the triangulation. The disadvantage is sufficient to reject
this alternative.

The second of the above procedures consists in the computation of the
elements of absolute orientation of all photographs simultaneously, using all
available condition equations for intersecting corresponding rays and, if one
wishes, all those for ground-control points [7,87. This involves the simultaneous
solution of as many equations as there are elements of absolute orientation,i.e.,
six times the number of photographs.
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A redundant number of measurements should be available and a rigorous
method of adjustment such as the method of least squares should be applied. In
the method of least squares, the condition equations serve for the computation of
normal equations. Since the condition equations express only relations between
the orientation elements of adjoining photographs, the non-zero elements in the
matrix of the normal equations are contained in a band along the diagonal. The
required storage space and computation time are roughly proportional to the
number of models. The computation and solution of the equations poses no
serious problem.

If this triangulation procedure is used, the condition that three corre-
sponding rays must intersect in one point does not give rise to the objectionable
one-directional error propagation. However, the computations require a multiple
of the data storage and computation time required by the strip triangulation
procedure.

The first three computers used by the Photogrammetric Research Section
made it necessary to use the strip triangulation procedure. Ferut, the first
computer, had sufficient storage space for the simultaneous computation, but
could not operate for the required length of time without breakdowns. Evenusing
the step-by-step procedure, breakdowns occurred and parts of the triangulations
had to be repeated to cross gaps. The IBM 650, which was the second computer,
had at first only 2000 words. This computer, with a 4000-word drum, and the
IBM 1620 with 40000 decimal digits, which was subsequently used, had sufficient
storage space for the normal equations of the simultaneous solution, but not for
all data. The required iterative solution and the subsequent intersecting of rays
would have necessitated reading in the data several times. This would have been
a somewhat cumbersome procedure and the computation time would have been
rather long.

The FORTRAN IV program described in this publication is also based
upon the strip triangulation procedure. Initially, a FORTRAN II version was
prepared for the IBM 1620 with 40000 digits and floating-point hardware. Sub-
sequently, the FORTRAN IV version has beenprepared for the IBM 5/360 which
in July 1965 has replaced the IBM 1620 at the N. R. C. laboratories.

3. Iterative solution of the condition equations

Analytical formulation of the conditions of intersection produces condition
equations that are non-linear in the orientation elements. To solve these equa-
tions, they must be differentiated and the rcsulting linear equations mustbe used
for the determination of the orientation elements in an iterative procedure. Two
procedures are possible:

i. The assumed approximations of the orientation elements which are substi-
tuted into the differential equations are the same for each iteration. Since in the
case of strip triangulation the orientation elements can be chosen in such a way
that they are small quantities, the value zero may be chosen as the approxima-
tion for each.
When this procedure is used, the points for relative orientation are often

chosen in fixed positions in a regular pattern 19,10]. The coefficients and the
solutionof the equations can then be computed in advance using desk computers.
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This gives the corrections to the approximate values of the orientation elements
as linear functions of the want of intersection in the measured points. These
functions are used for all models of a strip. The advantage of this method is the
small amount of computation required per iteration. Its disadvantages are the
large number of iterations that is required if the assumed approximations of the
orientation elements differ much from the correct values and the restriction
that is imposed upon the position of the orientation points.

It is possible to use this procedure without imposing this restriction [ 22].
In that case, the electronic computer must compute and pre-solve the linear
equations once for each model. Especially in the case of incomplete models and
of relief, where the points cannot be chosen in a regular pattern, this will im-
prove the convergence of the iterative procedure.

ii. Alternatively, the coefficients can be computed for each iteration using the
latest approximate values of the unknowns and the actual positions of the points
in the photographs. In this case, the electronic computer must compute and
solve the linear equations for each iteration. Because the coefficients are valid
not only for the actual positions of the points but also for the latest approximate
values of the unknowns, this procedure requires the smallest number of itera-
tions and it converges even if the assumed approximations differ very much
from the correct values. If speed or storage space are a problem, an approxi-
mate orientation on five points can be performed first, followed by anadjustment
using all points.

Because of these advantages, the second procedure has been used in the
FORTRAN program. With differences in tilts of the photographs of less than
two degrees, two iterations have proved to be sufficient. Even with a converg-
ence of the photograph axes of 90°, the FORTRAN program requires only three
iterations. In both these cases, the approximation used in the first iteration
consists in the assumption of parallel axes.

4. Adjustment of the relative orientation

In the FORTRAN program, the relative orientation is based directly upon
the condition of intersection of corresponding rays. This is only a matter of
convenience: it involves less computation than basing it on the condition that the
Y-parallax or the shortest distance between corresponding points must be equal
to zero [3].

The adjustment of the relative orientation is performed with the method
of least squares. It is based upon the requirement that the sum of the squares
of the corrections to the photograph coordinates which make the rays intersect
must be a minimum.

The formulas have been developed for the case of unequal accuracy and
correlation between the photograph coordinates. In practice, equal accuracy and
freedom from correlation will often be assumed either for the sake of simplicity
or because no reliable values are available. The FORTRAN program contains
the option of either assuming equal accuracy and freedom from correlation or
using an experimental formula derived for a wide angle camera with a 6" focal
length.



3.sInt€rstction of rays

After the orientation of each photograph, the projecting rays from two
corresponding points will intersect only if the corrections to the photograph
coordinates which follow from the adjustment of the relative orientation are
actually applied.

In the N, R. C. programs, these corrections are not computed. Instead,
in the earlier programs, the procedure in instrumental triangulation has been
followed: the strip is triangulated roughly in the X-direction. The X- and Z-
coordinates of a point are defined as being equal to those of the points on the
corresponding rays at the height where their X-parallax is equal to zero. The
Y-coordinate is computed as the mean of the Y-coordinates of those points, the
Y-parallax as the difference. For vertical photographs and on the assumption of
equal accuracy of the coordinate readings and freedom from correlation, this
procedure gives the same point as is obtained after correction of the photograph
coordinates.

In the FORTRAN program, the point of intersection is defined as the
point midway between the rays on their line of shortest distance. The want of
correspondence is defined as their shortest distance.

It can be a matter of opinion which point is the best: the least-squares
point, the Y-parallax point or the line-of-shortest-distance point. If the want of
correspondence is smaller than 10y at photograph scale, the difference is
negligible, except perhaps for points in the corners of super-wide-angle photo-
graphs. If the want of correspondence is considerably larger, either the point
or the whole triangulation is not of a good quality and the question of best choice
can only be of academic interest. The first and the third definition have the
advantage that the obtained point is independent of the orientation of the strip.

6. Transformation and adjustment

1f, as with the FORTRAN program, the strip coordinates are computed
with respect to a preliminary coordinate system, these coordinates must subse-
quently be transformed to map coordinates and terrain heights. This can be done
either via coordinate systems on the earth or directly. The direct way is the
simpler one. A rectangular three-dimensional coordinate system is then assumed,
having as coordinates the two coordinates of the map projection system and the
terrain heights.

A separate program has been written for this transformation and adjust-
ment of triangulated strips. Itis described in reference [11].
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II. Photograph coordinates and corrections

1. Conversion from comparator measurements to photograph coordinates
Various stereocomparators and monocomparators are now available for
performing the measurements needed in analytical triangulation.

In most of these instruments, the position of an image point in the plane
of a photograph canbe measured with respect to arectangular coordinate system
which has a sufficient range to cover the whole photograph. Usually, the origin
of this coordinate system is outside the photograph.

The analytical triangulation requires coordinates with the origin in the
principal point. These photograph coordinates are obtained by subtracting the
instrument coordinates of the principal point from those of the image points.

Usually, the principal point is not marked on the photograph and, conse-
quently, is not measured. It is then necessary to measure the fiducial marks
and to compute each coordinate of the fiducial centre as the mean of the corre-
sponding coordinates of the fiducial marks. The coordinates of the principal
point are then derived from those of the fiducial centre with the help of the
calibration data of the camera. For practical purposes, these two points can
usually be considered to be identical.

With some stereocomparators, for the right photograph parallaxes are
read instead of coordinates. Such stereocomparators can beused for the meas-
urement of vertical aerial photographs. The parallaxes areread on short screws
which can be made more accurate than a screw which covers the whole range of
a photograph. The parallaxes must be converted to instrument coordinates by
adding them to or subtracting them from the coordinates read simultaneously
for the left photograph.

Some comparators are equipped with a large number of measuring marks
in the pattern of a rectangular grid. Each image point is then measured with the
nearest measuring mark. At the N.R.C. laboratories, for instance, a mono-
comparator has beendeveloped which is equipped with 12 *12 measuring marks
placed at 20 mm intervals. Such comparators have measuring screws which
are not much longer than the distance between adjacent marks. Instrument co-
ordinates are here obtained by adding the measurements made with the screws
to the calibrated coordinates of the used measuring mark.

At N.R.C., the computation of the instrument coordinates of the principal
points from the measurements of the fiducial marks is performed with a desk
calculator. The conversion from instrument coordinates to photograph coordi-
nates is included in the triangulation program.

The measurements made with the Zeiss Jena stereocomparator at N.R.C.
require the conversion from parallaxes to instrument coordinates. The N.R.C.
monocomparator measurements must be corrected for deviations in the position
of the measuring marks from an ideal 20mm grid. These two computations are
also performed by the computer. They require small additions to the regular
program which have not been included in the listing of the FORTRAN statements.



- 10 -

2. Corrections for film distortion

A few photogrammetric cameras are equipped with a register glass with
a grid in the focal plane. This grid is therefore reproduced on the negative. For
each image point, a pointing can now be made at the point itself and at one or
more of the nearest grid intersections. Subtraction of the coordinate readings
for image point and intersection gives the coordinates of the image point, with
a grid intersection as origin. These coordinates are added to the calibrated co-
ordinates of the grid intersection and the resulting coordinates are treated as
instrument coordinates. In this way, the effect of film distortion on these
coordinates is largely eliminated.

In the absence of a register glass with grid, measurement of the fiducial
marks can give an indication of the distortion. Unfortunately, most cameras
have only four fiducial marks and these marks are not clearly defined. Theyare
not sufficient for a reliable determination of film distortion over the whole area
of the photograph. Still, the measurements can be used to eliminate at least
part of the systematic distortion.

At N.R.C., measurement of the distances of fiducial marks is used to
determine average values of the change of scale of the photographs of a strip in
the direction of the photograph coordinates. These average values are used to
determine correction factors which the FORTRAN program can apply to the
photograph coordinates.

3. Lens distortion

The distortion of a bundle of rays by a lens causes displacement of the
images of the measured points with respect to their ideal positions. The latter
follow from an assumed position of an undistorted bundle in the image space.
The displacement of the images is called the lens distortion. It can have radial
and tangential components.

The calibration of a camera is the procedure of determining the lens
distortion, the position of the principal point, and the focal length. Knowledge of
these quantities makes it possible to construct an undistorted bundle in the
image space.

The principal point can be defined in various ways. At N.R.C., the prin-
cipal point of autocollimation is used. This is the point where a ray which in the
object space is perpendicular to the plane of the photograph intersects that plane.

The centre of the perspective bundle of rays in the image space isplaced
on the perpendicular in the assumed principal point, and at a distance equal to
the calibrated focal length f from the plane of the photograph.

Let o be the angle which a ray in the object space makes with the per-
pendicular and let r be the distance from the principal point to the point where
the ray in the image space intersects the photograph. The radial distortion Ar
is the radial distance between the actual and the ideal point of intersection, and
therefore:

Ar=r - f tana ... (3.1)
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This equation shows clearly that the radial distortion is a function of the
assumed value of the focal length. At N.R. C., that value of the focal length is
determined which makes the maximum difference between the values of the
radial distortion and standard reference values for the lens as small as possible.
For cameras for which reference values are not available, that value of the
focal length is determined which makes the maximum value of the distortion as
small as possible. That value of the focal length is called the calibrated focal
length.

Finally, the orientation of the bundle in the image space can be further
fixed by specifying that in the principal point the lens distortion is equal to zero.
Using the principal point of autocollimation this means that the ray which is in
the object space perpendicular to the plane of the photograph is in the image
space also perpendicular to this plane and intersects it in the principal point.
Equation (3. 1) can now be used to compute the radial distortion for rays of
known angles o from measurements of the radial distances r.

With the recently installed camera calibrator at the N. R. C. laboratories,
the radial distortion along the four half-diagonals to the corners of the photo-
graph can be determined at angular distances of 2 13/16° and multiples of this
till 59 1/16° from the principal point. Occasionally, the radial distortion will be
determined also along the four half-diagonals to the middle of the sides. The
tangential distortion is considerably smaller than the radial distortion and is
usually not determined.

The distortion caused by a manufactured lens is in practice not the same
as the theoretical distortion inherent in the lens design. This is a result of a
small decentering of the lens components and of other manufacturing defects.
The difference is roughly equal to the effect of adding a small prism to the lens.
As a result, the principal point of autocollimation does not coincide with the
point where its defining ray in the object space intersects the plane of the photo-
graph. Also, the distortion is asymmetric with respect to the principal point of
autocollimation, and tangential distortion occurs.

The distortion can be referred to a different principal point. Thisimplies
that the centre of the perspective bundle in the image space is shifted to the
perpendicular in the new principal point and that the bundle is rotated by the
amount which makes rays to points in the area of the principal points continue
to intersect the plane of the photograph in the same points. As a result of the
shift and the rotation of the bundle, the pattern of the distortion in the plane of
the photograph will change.

Let the shift and the rotation be made in such a way that the asymmetries
in the radial distortion become as small as possible. The new principal point is
then called the principal point of best symmetry.

If a shift of the perspective centre parallel to a diagonal is called a, the
associated rotation - a/f, and a shift perpendicular to the plane of the photo-
graph b, as shown in Figure 1, the resulting radial shift of the point of inter-
section of a ray and the diagonal is
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et i}

Figure . The effect of changes in the cholce of
principal point and calibrated focal
length upon the radial distortion.

dx=a—7—a+;—‘b ... (3.2)
Each of the three parameters contributes one term to this equation.

The radial shift dx, the distance x, and the parameters a and b each
have a positive direction. The positive directions have been chosen in such a
way that the values in Figure 1 are all positive. On the other hand, the radial

distance r is always positive and the radial distortion is positive when it is
directed away from the principal point.

One can specify that for two points on opposite sides of the principal
point and at equal distances from it the shifts dx must cancel the radial distor-
tions valid for the principal point of autocollimation. If the radial distortions at
x, = +r and at x, = -r are called Ar, and Ar,, respectively, the required radial
sll1ifts are dx; = -Ar| and dx, = +Ar,. Substituted into equation (3.2), this pro-

duces two equations from which the required shifts a and b can be computed.
The solution is:

rZ
Z-f—za--Arl—Ar2
r
2—b =A + A ... (3.3
2% 17 (3.3)
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The shifts a and b can thus be computed for each pair of radial distor-
tions. Usually they will be different for eachpair and, therefore, adjusted values
should be computed from the equations (3.3) by the method of least squares.
This gives

2
L(2X_ -
(2% Gr, -ar))

a=

z
r®\2
z(zfz) ... (3.4)

If a calibrated focal length has already been computed, the shift b is not needed.

The computation of the shift a can be performed for the two main diag-
onals. This gives the position of the principal point of best symmetry with
respect to the previously used principal point. Table 1 gives an example of this
computation applied to a 6'"" Hilger and Watts F. 105 camera with a Wild Aviogon
lens and register glass.

Table 1 An example of the effect of the choice of principal point upon the
radial lens distortion

Radial distortion along four half-diagonals
Angle

with p.p. of autocollimation with p. p. of best symmetry
NwW ©Sw SE NE mean| NW SW SE NE mean

10° + 20 + 4u + 4p + 3p  + 3p + 20 4+ 4y + 4p + 3p 4+ 3

20° -1 +4 +5 +4 +3 +1 +5 +3 +3
30° -14 -6 -5 -4 -7 -5 -4 -14 -6 -7
40° -12 0 +12 +15 + 4 -2 +4 +2 +11  + 4

45° +18 +17 +42 424 +25 +32 +23 +28 +18 +25

Distance from fiduclal centre to p.p. of autocollimation: less than 10u.
Shift to p. p- of best symmetry: NW-SE 14y, NE-SW 6u.

It should be noted that this computation is based upon the assumption of
an error-free measurement of an image produced at the principal point. If one
does not wish to assume this, the rotation of the perspective bundle should not
be rigidly connected with the shift a. This leads to an equation for each of the
measured points in which the shift and the rotation occur as independent
unknowns.

The FORTRAN program contains provision for correction of the photo-
graph coordinates for symmetrical radial lens distortion. At N.R.C., this dis-
tortion is taken to be the mean of the radial distortions along the half-diagonals
to the four corners. Usually, the fiducial centre is accepted as the principal
point.

For a good camera, this procedure leaves residual radial distortions
that are not larger than a few microns. This is caused by the fact that when the
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principal point of best symmetry is used, the actual distortion along each half-
diagonal tends to differ only little from the above mean. However, where the
highest possible accuracy is needed, it will be advisable to apply corrections
for asymmetrical radial distortion and for tangential distortion.

Values of the radialdistortion at distances from the principal point where
the camera calibration does not provide them can be found by plotting the avail-
able values against the radial distance and drawing a smooth curve through the
plotted points. The standard distortion curve should beused as a guide, especially
at the ends of the diagonals where sufficient calibrationdata are often not avail-
able.

It is often difficult to estimate the best position of some parts of the
curve with an accuracy of one or two microns. This causes a small amount of
arbitrariness which can be avoided as follows.

Regard either the deviations of the distortion from the standardvalues for
the lens or the distortions themselves at equal intervals along a half-diagonal as
unknowns which shall be computed. Take the intervals so small that within each
interval the distortion can be treated as a linear function of the position. Formu-
late the condition equations which specify that at the points where the camera
calibration has provided values for the distortion, the distortion should have
these values. Formulate also condition equations which specify that the comput-
ed distortion or its deviation from the standard values should vary in a smooth
manner. This can be done, for instance, by specifying that the values of each
three successive unknowns, plotted against the radial distance to the principal
point, should lle on a straight line. This procedure leads to more condition
equations than there are unknowns. They can be solved by the method of least
squares.

4, Photogrammet_x_'ic _{graction

4.1 Standard atmosphere and flat earth

On their paths from the terrain to the camera, the light rays pass through
air of decreasingdensity. As aresult, they are refracted away from the vertical.

As shown in Figure 2, left, this refraction causes a small angle at the
camera between the ray from a terrain point and the straight line from this
point. The straight line makes a smaller angle with the vertical through the per-
spective centre of the camera than the ray makes at this centre. Consequently,
the refraction causes a displacement of the photographic image away from the
nadir point in the photograph.

This angle at the camera is called the photogrammetric refraction. It is
a function of the refractive index of the air in all the points along the ray. The
refractive index is a function of temperature, pressure, humidity and CO,-
content or, in short, of the density of the air.

Since these quantities cannot be measured along a whole ray, it is con-
venient to assume that the photogrammetric refraction in the actual atmosphere
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Figure 2. Refraction in the atmosphere and at a boundary
between layers of different density.

ls the same as that in one of the present standard atmospheres. These are:

i. The ICAO Standard Atmosphere, 1952 of the International Civil Aviation
Organization [12].

ii. The ARDC Model Atmosphere, 1959 of the Air Research and Development
Command of the U.S. Air Force [13].

iii. The U.S. Standard Atmosphere, 1962 of the U.S. Committee on Extension
to the Standard Atmosphere [ 14].

Up to 20 km, these three atmospheres are practically the same. The
latter two extend beyond 20 km, and up to 32 km the difference in their densities
increases with increasing height to 3.5%.

Bertram [ 15] gives a simple method for computing the photogrammetric
refraction in a standard atmosphere, using a table for the density. This method
will here be followed in principle. However, the necessary formulas will be de-
rived from Snell's well-known law of refraction instead of from the velocity of
wavefronts, as Bertram does. Further, the table for the refraction will be com-
puted in a simpler way and will glve values of the refraction at all multiples of
the lowest flying height instead of at odd multiples only. Finally, Bertram's
formula for computing the refraction when the ground level is above sea level
will be replaced because it leads to gross errors.
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For the computation of the refraction, the atmosphere may be assumed
to consist of a series of thin concentric shells, each of constant density. These
densities decrease with increasing height of the shells. In this model of the
atmosphere, refraction is caused by the changes in density at the boundaries of
the shells,

According to Snell's law of refraction, for a light ray which pierces a
boundary, the product n sin g is the same on both sides of the boundary:

n sin & = constant ... (4.1)

Here, n is the index of refraction and 6 is the angle between the light ray and
the perpendicular to the boundary at the point where it is pierced by the ray.

The angle of refraction, that is the difference d6 between the values of 8
on the two sides of the boundary, can be expressed as a function of the difference
dn between the indices of refraction by differentiating equation (4.1). Disregard-
ing a minus sign obtained during the differentiation, this gives the following
relation between the absolute values of d6 and dn:

d0=dTntan6, oe. (4.2)

where d6 is expressed in radians.

It follows from Figure 2, right, that each refraction d@ contributes to
the photogrammetric refraction the amount
Zz -7

da = — B de .ol (4.3)

where Z, Z , and ZC are the height of the boundary, of the ground, and of the
camera, resgpectively. The photogrammetric refraction is the sum of the angles
do over all boundaries between the ground height and the height of the camera.

Since the tables for the standard atmospheres give the density but not the
refractive index as a function of the altitude, it is preferable to write d0 as a
function of the change in density rather than as a function of the change in
refractive index.

According to textbooks on meteorological optics, the relation between
density and refractive index has been determined by experiment and has been
expressed in various formulas. One of the simpliest is

n=1+2co oo (4.4)

where p is the density in, for instance, kg/m3.

The constant ¢ in this equation, and therefore the index of refraction, is
a function of the wavelength of the light. According to Edlén [16], the formula
which over the whole range of the visible spectrum agrees best with the results
of experiments is for standard air:

(n - 1)107 = 643.28 +

294981.0 + 2554.0 , ... (4.5)

2 2
146 - 1/x 41 - 1/x
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where the wavelength A is measured in microns. This standard air is at 15°C,
at normal pressure (760 mm Hg at 0°C), has 0.03% CO, (by volume at 0°C), and
is dry. It has practically the same composition as the air in the standard
atmospheres and the same density of 1.2250 kg/m3 at sea level as the standard
atmospheres.

If the values of the index of refraction, derived from equation (4. 5) for
different wavelengths, and the above value of the density are substituted into
equation (4. 4), the following values of the constant ¢ are obtained.

For A=0.42u, ¢ = 0.00023004
For A=0.56yu, c=0.00022667
For A=0.66yu, c=0.00022550

The first and the last of these values of A are near the ends of the effective
range of panchromatic film; the second one is a suitable average.

Differentiation of equation (4.4) gives
dn _ c
_..-n_zdp ... (4.6)

and, since from ground level to empty space n varies from about 1.00022 to 1,
over-this range and for A = 0.56 microns

.‘!ﬁ'l = 0.0002266 dp vl (4.7)

Kaye and Laby [17] use the simplified formulan -1 = cp. From their
values of n - | and p, reduced to the temperature of 15°C and the wavelength of
0.56 microns, one finds c = 0.0002261. Leyonhufvud [ 18] employs a coefficient
of 0.22607 for the D-line. Reduced to the same values, this gives ¢ = 0. 0002265.

Considering the uncertainty in the fourth significant digit of ¢ and the
limited number of digits that is needed, that digit may be left out.

Combining now equations (4. 3), (4. 2), and (4.7), and forming the sum
over all boundaries between ground level and camera height, one obtains for the
photogrammetric refraction the expression

tan @
a = 0.0002262'c—_z-g—2((z -Zg)dp) ... (4.8)

In this equation, the factors which are the same for all da have been placed out-
side the summation. The equation is identical with the one derived by Bertram.

Equation (4. 8) makes the computation of the photogrammetric refraction
in one of the standard atmospheres very simple. For these atmospheres, the
density is listed at discrete values of the geometric height above sea level. In
the above model of the atmosphere, the boundary between two shells of constant
density is now chosen midway between two heights for which the density is listed
and the densities of the two shells are taken to be those listed densities. In this
way, each boundary produces a contribution (Z - Z )dp to the sum in equation
(4. 8), Z being the height of the boundary and dp being the difference between the
densities at the two table heights. For each flying height for which the
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photogrammetric refraction is required, the contributions from all boundaries
between it and ground level are added and subsequently the sum is multiplied by
the factors which have been placed outside the summation.

Table 2 gives the result of this computation for a ray that makes an angle
of 45° with the vertical, assuming flying heights above sea level of up to 32km
and four different ground heights. To obtain the best possible computational
accuracy, densities at intervals of less than 500 meters must be used especially
for the lower shells. Actually, the densities at all multiples of 100 meters from
sea level to 20000m and at all multiples of 200 meters from 20000 m to 32000 m
have been used. This places the boundaries between the shells at 50 m, 150m,
250 m, etc. The table values are accurate to within one digit of the least signifi-
cant digit.

Table 2 Photogrammetric refraction in microradians for a ray at 45° with the
vertical in the U.S. Standard Atmosphere, 1962

Flying height| Photogrammetric refraction| Flying heightf Photogrammetric refraction|
above for ground heights of above for ground heights of
sea level sea level
0.0km 1.0km 2.0km 4.0 km 0.0km 1.0km 2.0km 4.0km
0.5 km 6.5 13.5km {91.3 82.0 73.2 57.0
1.0 12. 6 0.0 14.0 92.2 83.0 74.2 58.2
1.5 18.5 6.0 14.5 92.8 83.7 175.1 59.2
2.0 24.1 11.7 0.0 15.0 93.3 84.2 75.7 60.1
2.5 29.3 17.1 5.6 15.5 93.5 84.6 76.2 60.7
3.0 34.3 22.3 10.9 16.0 93.6 84.8 76.5 61.2
3.5 39.0 27.1 15.9 16.5 93.6 84.9 76.6 61.5
4.0 43.5 31.7 20.6 0.0 17.0 93.4 84.8 76.6 61.7
4.5 47.7 36.1 25.1 4.7 17.5 93.2 84.6 76.6 61.8
5.0 51.6 40.2 29.3 9.2 18.0 92.8 84.3 76.4 61.8
5.5 55.3 44.0 33.3 13.5 18.5 92.3 84.0 76.1 61.7
6.0 58.8 47.6 37.0 17.5 19.0 91.8 83.5 75.7 61.5
6.5 62.1 51.0 40.6 21.3 19.5 91.2 83.0 75.3 61.3
7.0 65.1 54.2 43.9 24.8 20.0 90.5 82.4 74.8 61.0
7.5 67.9 57.2 47.0 28.2 21.0 89.1 8l1.2 73.8 60.3
8.0 70.6 59.9 49.8 31.3 22.0 87.5 79.8 72.6 59.4
8.5 73.0 62.5 52.5 34.2 23.0 85.8 78.3 71.2 58.4
9.0 75.2 64.9 55.0 37.0 24.0 84.0 76.7 69.8 57.2
9.5 77.3 67.1 57.4 39.5 25.0 82.2 75.0 68.2 56.0
10.0 79.2 69.1 59.5 41.9 26.0 80.3 73.4 66.7 54.8
10.5 80.9 70.9 61.5 44.1 27.0 78.4 71.6 65.1 53.5
11.0 82.5 72.6 63.3 46.1 28.0 76.6 69.8 63.6 52.2
11.5 85.0 75.2 66.0 49.0 29.0 74.7 68.2 62.0 50.9
12.0 87.1 77.4 68.3 51.5 30.0 72.9 66.5 60.5 49.6
12.5 88.8 79.3 70.2 53.7 31.0 71.1 64.8 59.0 48.4
13.0 90.2 80.8 71.8 55.5 32.0 69.4 63.2 57.5 47.1
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Table 2, cont'd. Photogrammetric refraction in the tentative reglon of the
U.S. Standard Atmosphere, 1962

Flying height | Photogrammetric Flying height Photogrammetric
above sea level refraction for above sea level refraction for

ground heights of ground heights of

0.0 km 2.0 km 0.0 km 2.0 km
32 km 69.4 57.5 62 km 37.7 30.6
34 66.1 54.7 64 36.5 29.6
36 63.1 52.1 66 35.4 28.7
38 60.1 49.6 68 34.4 27.8
40 57.4 47.3 70 33.4 27.0
42 54.9 45.1 72 32.5 26.2
44 52.6 43.1 74 31.6 25.5
46 50.4 41.3 76 30.8 24.8
48 48.4 39.6 78 30.0 24.2
50 46.5 38.0 80 29.3 23.6
52 44.8 36.5 82 28.5 23.0
54 43.2 35.2 84 27.9 22.4
56 41.7 33.9 86 27.2 21.9
58 40.3 32.7 88 26.6 21.4
60 38.9 31.6 90 26.0 20.9

2340.5 1837.4
Z > 90 7 7 -2

Values of the refraction for unlisted flylng heights can be computed with
sufficient accuracy by linear interpolation in the column of the required ground
height. Values for unlisted ground heights can be computed by interpolation
between values for listed ground heights. For accurate values, second differ-
ences must be used in the interpolation and around the flylng height of 11000 m,
where a discontinuity occurs, the interpolation must be made between values of
the same flying height above sea level, not between values of the same flying
height above ground.

It follows from equation (4. 8) that for angles 8 other than 45° the values
of the refraction can be obtained by multiplying the table values by tan 6.

The table gives the values for the U. S. Standard Atmosphere, 1962. The
values for the ARDC Model Atmosphere, 1959 are the same, except for flying
heights from 21 to 25 km where they are 0.1 prad smaller and for flying heights
from 27 to 32km where they are 0.1 yrad larger.

In the preceding, the table values for ground heights above sea level have
been computed in the same way as those for the ground height at sea level. How-
ever, it is possible to compute them directly from the latter. For this purpose,
the sum in equation (4.8) is written

c g c
LZdp - Zdp -ZgZ dp.
s s g
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These three summations are performed over the boundaries between sea level
and flying height, between sea level and ground level, and between ground level
and flying height, respectively.

Substituted in equation (4. 8), this gives

V4 V4
a = < o. - Lag—.000226tan9 —E8__ ap ... (4.9)
- Zg - Zg Z, -2,

where o, and o, are the photogrammetric refraction at the actual flying height
and at the actual ground height, both with respect to a ground height at sea level,
and Ap is the difference between the densities at the actual flying height and
ground height.

4.ii Contribution of earth curvature

A complication which has not been considered yet is the fact that, due to
the earth curvature, the verticals in any two points of a tilted light ray are not
parallel.

Since the angle 6 is defined as the angle which the ray makes with the
vertical, it follows that along a ray this angle varies not only because of the
small atmospheric refraction but also because of the much larger change in the
direction of the vertical.

As a result, tan 8 in equation (4. 8) is not a constant, but is different for
each term in the summation. If 8_ is the angle 6 at the camera and B is the
angle between the verticals at the camera and at an arbitrary point on the ray,

6 = GC -do + B
In first approximation, and neglecting de,

tan 6 = tan Oc + secze B

or, again approximately,
2 c
tan @ = tan o, (1 + sec“s, ———), ... (4.10)

where R is the radius of the earth.

This formula can be derived also by differentiating the formula for the
refraction in the atmosphere

n R sin ® = constant.

It follows from equation (4. 10) that tan 8 in equation (4. 8) should be re-

placed by the expression in equation (4. 10), and the second factor in this expres-

sion should be brought under the summation. The same result is obtained by
replacing tan 6 by tan 6_ and adding

2 ZC = Z
L (sec“0, R (z - Zg)dp)

to the sum of products.
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The computation of the sum for all flying heights and for all ground
heights can be simplified by writing it as
Z_ -2 Z -7
2 c 2
sec ec—Rgz((z -Zg)dp) - £ (sec ec—R'&(Z —Zg)dp),

inwhich only the simple first term is a function of the flying height.

The resulting corrections to the photogrammetric refraction for an angle
8 = 45° are listed in Table 3 as a function of flying height and ground height.
The corrections for other angles can be obtained from the table values by multi-
plication by é-secze .

Table 3 Contribution of earth curvature to refraction for a ray at 45° with
the vertical, in microradians

Flying height Contribution to the refraction for
above sea level ground heights of
0.0 km 1.0km 2.0km 4.0 km
5.0 km 0.03 0.02 0.01 0.00
10.0 0.10 0.07 0.06 0.03
15.0 0.18 0.15 0.12 0.08
20.0 0.26 0.23 0.19 0.14
25.0 0.33 0.29 0.25 0.18
30.0 0.39 0.34 0.30 0.22

The photogrammetric refraction, including the effect of earth curvature,
is therefore derived from the table value c; found in Table 1 and the table value
c2 found in Table 2 by means of the equation

o =tan® (c1+—;-secze cy) ... (4.11)

The value c, is so small that its contribution can practically always be neglected.

4.iii Refraction in the actual atmosphere

The last problem that has to be dealt with is the difference between the
actual atmosphere and the standard atmospheres,

The temperature, pressure, and composition of the actual atmosphere
are never known completely. Even if they were, the computation of the photo-
grammetric refraction would be too complicated. Therefore, usually the differ-
ence between actual atmosphere and standard atmosphere is neglected.

An estimate of the photogrammetric refraction based on measurements
of temperature, pressure, and relative humidity at ground level can be computed
as follows.

The standard atmospheres have a temperature of 15°C (59°F) and a
pressure of 760 mm Hg at sea level and they are dry. According to the law of
Boyle for a perfect gas, an increase in the absolute temperature of 1 3/4%
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throughout the atmosphere, that is 5°C (9°F) at sea level, causes a uniform
decrease of about 1 3/4% in the density. Therefore, it causes the same de-
crease in the density differences in equation (4. 8) and in the photogrammetric
refraction. An increase of 1 1/3% in the pressure, that is 10 mm Hg at sea
level, causes an increase of 1 1/3% in the density and in the photogrammetric
refraction.

The density of damp air can be found by multiplying the density of dry

air by the factor (P - 0.378p)/P, where P is the pressure of the dry air and

p ls the pressure of the water vapour. With this formula, and a table of the
~ saturation pressure of water vapour as a function of the temperature, the de-
crease in density can be computed as a function of the relative humidity. If
the lower layers of the actual atmosphere have 100% relative humidity, while
the pressure and temperature are the same as in the standard atmospheres, the
decrease in density is 2/3% at sea level and 1/3% at 2000 m. Due to this
variation in the decrease, the density differences and the photogrammetric
refraction below 2000 m decrease by about 2%. If also the absolute tempera-
tures are 3.5% higher than in the standard atmospheres, it is then 25°C (77°F)
at sea level and the decrease in density is 4. 5% at sea level and 4.0% at 2000 m.
As a result, the density differences and the photogrammetric refraction
decrease by about 7%.

5. Earth curvature

When the strip coordinates obtained by analytical strip triangulation
are directly transformed to a three-dimensional rectangular coordinate system
constructed from map coordinates (as easting and northing) and heights, one
obstacle is met. This consists in the fact that the model of the earth presented
by this coordinate system is deformed: on the earth the height of a point is the
shortest distance from the point to the curved equipotential surface at sea level
and in this coordinate system it is the shortest distance to the plane which con-
tains the horizontal axes.

The deviation of the equipotential surface from a plane is considerable,
even in the area of one strip. A 230 by 230 mm photograph taken with a
152.4 mm (6") lens at a height of 6 km covers an area of 9 by 9 km. Points on
this surface in the middle of the sides of this area are already 1.6 m below the
plane which is tangent to the surface in the centre. Points in the corners are
3.2 m below this plane. If the photograph is the first one of a strip that is
100 km long, points at the end of the strip are 800 m below the plane.

It follows that even for a single photograph this deviation cannot be
neglected. The direct transformation produces correct map coordinates and
heights only if it is preceded by or accompanied by a deformation of the tri-
angulated strip that is identical with the deformation in that system.

In the area of a strip the equipotential surface may be approximated by
the sphere which has as its radius the mean radius of the spheroid in this area.
This sphere must be transformed into a plane. A satisfactory transformation
is obtained by changing the great circle along the axis of the strip into a straight
line of true length and by changing great circles at right angles to the first into
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straight lines of true length at right angles to the first. This can be done in two
steps: first the sphere is changed into the cylinder which is tangent to the
sphere in the great circle along the axis of the strip and then the cylinder is
rolled out onto a plane which is tangent to the sphere in a point of that great
circle.

This deformation can be obtained directly by giving appropriate correc-
tions to the photograph coordinates. To derive these corrections for each
photograph, the above plane is chosen tanget to the surface in the nadir point of
the photograph.

Figure 3. Elimination of the effect of earth curvature by
projection of a sphere upon a tangent plane.

Figure 3 shows this situation. AB is the great circle along the axls of
the strip and A is the nadir point of the photograph. A rectangular coordinate
system is assumed with the origin in the centre of the sphere, the Z-axis through
A, and the X-axis in the plane of the great circle.

If the great circle is the equator in a system of geographic coordinates
¢ and A as shown in Figure 3 and the radius is called R, the geocentric
coordinates of a point P on the sphere are:

X= R cos ¢ sin A
Y= Rsin ¢
Z = R cos ¢ cos A veo (5.1)

After the transformation of the sphere the point P is situated in the plane.
Its coordinates are here
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Xp = RA
Y = R¢
Z =R, ... (5.2)
in which ¢ and A are expressed in radians.

The corrections to the geocentric coordinates which transform the sphere
into the plane are thus

A
dX = - = P, S
xP X X:(Costtu sin A l)
_ v o ¢
Y=Y - Y= Y (gpy - 1)
dz =Z, -Z = R (1 -cos¢ cos)) ... (5.3)

For the above-mentioned photograph, the maximum value of ¢ and of X is
about 150'". This makes the maximum values of dX and dY less than one milli-
meter. These corrections are negligible. This means that for each photograph
the sphere may be projected orthogonally on the plane which is tangent to it in
the nadir point of the photograph.

Therefore, in the geocentric system only the Z-coordinate needs a cor-
rection. With a negligible approximation,
x2 + y?

= ... (5.4)

dz = z R (62 + %) =
This correction has been derived for points on the sphere. However,
because before the triangulation the heights are not known, points with a dif-
ferent elevation will be given the same correction. As a result, a line which is
perpendicular to the sphere will be shifted only. Consequently, it will not be-
come orthogonal to the plane, as should be the case.

In the corners of the area covered by the above-mentioned photograph,
the resulting errors are smaller than 0.1 m for every 100 m of difference in
terrain height. They cause no y-parallaxes in a pair of photographs and, there-
fore, no errors in the relative orientation. They do cause x-parallaxes and, as
a result, a small exaggeration of the vertical scale.

The errors could be corrected by taking heights, computed after the last-
but-one iteration of the relative orientation, into account. This will be worth-
while if the corrections for asymmetric lens distortion are also taken into
consideration.

6. Corrections for lens distortion, refraction, and earth curvature

Corrections to the photograph coordinates for symmetrical radial lens

distortion are computed with the formulas
dx=x%£anddy=y-(‘:_—r ... (6.1)

where dr is the radial correction.
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Corrections for refraction and earth curvature are computed with the
same formulas after conversion of the photogrammetric refraction a and the
earth curvature correction dZ to radial corrections.

The radial correction for refraction is
f

dr = S———a «o. (6.2
cos“8 ( )
Since g = <, tan 0, it follows that
d 2
;l:.=~(l+-1;'z)cl c--(6-3)

Here, c| is the photogrammetric refraction in radians at § = 45°, taken from
Table 2, and f is the focal length,

The radial correction for earth curvature can be computed with the help
of Figure 4 which shows a vertical cross section through the sphere. It follows
from similar triangles that

(% dr)/dZ = r/1. e (6.4)
Replacing dZ by the expression in the last part of equation {5.4), this glves
dr _ H r2
T 3R 12 ... (6.5)

Figure 4. The radial correction for earth curvature.

The FORTRAN program derives the radial corrections for lens distor-
tion from a table in which the value of dr is listed at a number of values of r.
For each point, it computes dr by linear interpolation between the two nearest
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table values. The radial corrections for refraction are computed only if the
value of cj is punched in the first card for a strip triangulation, and the radial
corrections for earth curvature are computed only if the flying height is punched
in that card. Finally, the equations (6. 1) are used to compute the corrections dx
and dy from the sum of the dr/r.

The above corrections for refraction and earth curvature are valid for
exactly vertical photographs. If the photographs are tilted, the corrections can
be derived in the following way.

The angular correction a; for photogrammetric refraction is, according
to equation (4.11), a} = c| tan 6; the angular correction a, for earth curvature
can be computed with the help of Figure 4 and equation (5.4) and is

3
- 2, w2 . y2 . HDsin8
= dZ sin 0 VH® + X® + Y = 5p =" .. (6.6)

“2
If the tilt of a photograph is 1, a ray in the direction of this tilt makes an
angle 8 - 1 with the camera axis. Therefore, its radial corrections for refrac-
tion and earth curvature can be computed with equation (6. 2) if a is replaced by
o and by - x respectively, and g is replaced by 8 - 1.

As an example, the radial corrections in the direction of greatest tilt
have been computed for the above-mentioned wide-angle photograph and for a
super-wide angle photograph, assuming tilts of 0° and 2°. The resulting values
are listed in Table 4. The change in the radial corrections is approximately
proportional to the tilt.

Table 4 Effectof tilt on radial corrections for refraction and for earth curvature

Radial corrections for Radial corrections for
Angular distance refraction earth curvature
from camera axis tilt 0° tilt 2° tilt 0° tilt 2°

f=152.4 mm, H= 6000 m

9° - 1.5 - 1.8y 0.3y 0.5y
18° - 3.2 - 3.6 2.5 3.4
27° - 5.7 - 6.2 9.5 11.7
36° - 9.9 -10.7 27.5 32.5
45° -17.9 -19.2 71.7 82.3
f=88.2mm, H= 6000 m

45° -10.4 -11.1 41.5 47.6
59° -32.5 -35.2 191. 216.

The tilt of a "vertical" photograph is seldom more than 2°. If the cor-
rections are based upon the assumption of exactly vertical photographs, the
error in the correction for refraction is thus not greater than one micron in the
corners of the wide-angle photograph and less everywhere else. Considering the
uncertainty in the refraction itself, this error may be neglected.
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If the tilt is 2°, the corresponding errors in the correction for earth
curvature in the corners of the wide-angle photograph are up to 10 microns.
However, if two consecutive photographs have the same tilt the effect on the
model is small. This may be seen by rotating photographs and model until the
camera axes are vertical. Errors in the model are now caused only by the
difference between the height H used in formula (6.5) and the heights of the
projection centres above terrain points in the rotated model.

This shows that the absolute tilt of the photographs is of relatively little
importance. The difference in tilt of successive photographs however must be
small: less than half a degree to make the error in the correction for earth
curvature less than 2 microns. Only then can formula (6.5) be applied safely to
tilted photographs.

Consequently, if the accuracy requirements make it necessary to apply
corrections for asymmetric lens distortion, the earth curvature corrections
should take into account not only the height differences, as stated before, but
also the tilt of the photographs in the strip coordinate system.

In the case of the above super-wide-angle photograph, the maximum
errors in the correction for earth curvature are 25 microns. Therefore, here
it seems to be better not to apply a symmetrical radial correction for earth
curvature to the photograph coordinates. Either an asymmetrical correction
should be used or the strip coordinates should be corrected instead.
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III. The orientation of a photograph

1. The orthogonal transformation matrix

For each photograph of a strip, a three-dimensional rectangular coordi-
nate system x, y, z will be assumed with the origin in the projection centre of
the photograph. The x- and y-axes will be parallel to the plane of the photograph
and, therefore, the x- and y-coordinates of an image point will be identical with
the photograph coordinates. The z-coordinate of an image point will be equal to
+f (the calibrated focal length) if the photograph is in negative position (above
the projection centre) and equal to -f if the photograph is in positive position.

The strip triangulation will be performed with respect to a three-dimen-
sional rectangular coordinate system. In this system, the orientation of each
photograph can be defined by means of the three coordinates of the projection
centre and of parameters which determine its attitude.

Further, for each photograph a coordinate system X, Y, Z is neededwith
the origin in the projection centre of the photograph and with axes parallel to
the axes of the strip coordinate system.

The relation between the coordinates X, Y, Z and the coordinates x, y, z
of any point in a photograph is given by the matrix equation

X 11 *12 %13 *
Y = a a a y
21 22 23
Z a z
31 32 33
or, simply,
X=AXx o (1 1)

This is immediately evident when in Figure 5 the components of the position
vector of a point with respect to the x, y, z coordinate system are projected
upon the X-axis, the Y-axis, and the Z-axis. The elements of the first, second
and third column of the matrix A are then seen to be the direction cosines of
the x-, y-, and z-axes with respect to the X, Y, Z coordinate system.

Equation (1. 1) will be used to define the attitude of a photograph. There-
fore, either the nine direction cosines can be selected as the parameters which
define its attitude or the direction cosines must be defined as functions of other

suitable parameters.

The matrix A has the property that
ATA=1 o (1.2)

The superscript T indicates the transpose of the matrix to which it is attached,
and the matrix | is the unit matrix.
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\ 4

Figure 5. Coordinate systems used for the orientation
of a photograph, and the position vector of
an image point with its components.

This can be proved as follows. The position vectors X and X are iden-
tical, the only difference being the coordinate system in which their components
are defined. Therefore, they have the same length, and consequently the sum of
the products of their components is the same. In matrix notation:

XTx = xTx,
or

T . T T

x ATAx = x x,
and

T T
x (AA-I)x =0,

for any vector x. The first part of this equation is a polynomial of the second
degree in the components of X. Itis equal to zero for any vector X if and only
if all coefficients in this polynomial are equal to zero, that is, if ATA - | = 0!

Equation (1.2) states that the sum of the squares of the elements of each
column of A is equal to | and that the sum of the products of corresponding
elements in different columns is equal to zero. A matrix which satisfies these
conditions is called orthogonal. Thus, the equation contains six independent
relations between the nine elements of A. Therefore, the elements contain only
three independent parameters.
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It follows from equation (1.2) that

-1 T
A= A cen (1.3)

and therefore also that A AT = | . The latter equation expresses similar
relations which exist between the elements of the rows of A.

These relations can be expressed by the following theorems:

I The sum of the squares of the elements in each column and in each row is
equal to I:

2 2 2
TR TR T
2 2 2

31t 3, ;=

{
—

!
—

i=1,2,3)

II. The sum of the products of the elements in corresponding positions in each
two columns and in each two rows is equal to zero:

+ =0

21215 F 2 t 232

ailajl + aiZajZ + ai3aj3 0 (1=1,2,3;j=1,2,3;1i#})

From these two theorems, two other theorems can be derived:

III Each element is equal to its cofactor:

17 %im kn

-a,a
jn km

Here, the row indices i, j, and k represent three sequential numbers of the
sequence 1, 2, 3, 1, 2 and the column indices 1, m, and n independently repre-
sent three sequential numbers of this sequence.

IV The determinant of the matrix is equal to +1.

The last two theorems are valid only if the two coordinate systems are
either both right-handed, as in the present case, or both left-handed. The matrix
is then called proper orthogonal. If one of the coordinate systems is right-
handed and the other is left-handed, each element is equal in magnitude to its
cofactor but of opposite sign and the determinant is equal to -1.

The transformation (1.1) has here been introduced as representing the
change in the components of a position vector under a change in the choice of
coordinate system. However, by drawing a position vector which has components
x, v, and z with respect to the X, Y, Z system, it becomes evident that the trans-
formation also represents the rotation of the position vector from this position
to the one in Figure 5. Therefore, it can represent the rotation of the photograph
about the projection centre. The coordinate system X, Y, Z is then the only one
and does not change its position.

Let now two such rotations be applied in succession: Xl = Al)( and
XZ = AZ Xl. It follows from these equations that the final position vector of
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any image point can be found directly from X = A Al X Since the two rota-
tions do not change the length of any vector, the matrix A = AZ Al which
represents the one-step rotation from X to X, is also orthogonal. Conse-
quently, the product of two orthogonal matrices is again an orthogonal matrix.

While thus to any attitude of the photograph corresponds one proper
orthogonal matrix A, it is also true that to every proper orthogonal matrix of
the third order corresponds one attitude of the camera. For, since the sum of
the squares of the elements in each column is equal to 1, these elements are
the direction cosines of axes x, y, and z. Since the sum of products of corre-
sponding elements in each two different columns is equal to zero, these axes
are mutually orthogonal. Since the determinant of the matrix is equal to +1,
this x, y, z system and the X, Y, Z system are either both right-handed or both
left-handed. Therefore, this x, y, z system and the x, y, z system in equation
(1.1) are identical.

Consequently, there is a one-to-one correspondence between the possible
attitudes of a photograph and the proper orthogonal matrices of the third order.
Any proper orthogonal matrix of the third order constructed in any way from
three independent parameters can serve as the matrix for equation (1.1).

The constructions which are most important in analytical triangulation
are described in the following. A much more complete account can be found in
reference [19].

2. Rotations about three mutually orthogonal axes

The matrices

1 0 0 cos¢ 0O sin ¢ cos k -sink O
Rw =10 cos w -sin R¢ = 0 1 0 , and RK =] sin ¢« cosx O
0 sin w cos W -sin ¢ 0 cos ¢ 0 0 1

(2.1)
satisfy theorems I and II and their determinants are equal to +1. Therefore,
they are proper orthogonal.

Used as the matrix of equation (1. 1), each leaves one coordinate un-
changed and therefore can move any point only in a plane which is orthogonal to
the axis of the unchanged coordinate. Also, it leaves the distance from the point
to this axis unchanged.

Consequently, Rm R ., and R represent rotations about the X-, Y-, and
Z-axis, respectively. The signs of the elements are such that a positive rotation
of three-dimensional space with respect to the coordinate system means aclock-
wise rotation when viewing in the positive direction of its axis.

Any matrix which is the product of three matrices Rw' R,, and R'< is,
according to the preceding, also orthogonal and it contains the required number
of three evidently independent parameters.
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If first a rotation x, then a rotation ¢, and finally a rotation w 1s applied,
the resulting attitude of the photograph is represented by the matrix

A=R,R,R, e (2.2)
Matrix multiplication gives

cos ¢ cos K -cos ¢ sin k  sin ¢

A = a5 a,y, -sin w cos ¢
3y, B,y cos u cos ¢ .. (2.3)
with
a = sin w sin¢ cos«k + cos w sin «
a,, = -gin w sin ¢ sin ¥k + cos w cos k
aj; = -cosw sin % cosx + sin @ sin «
8y, = cos w sin ¢ sin ¥ + gln w cos «

The cameras of photogrammetric plotting instruments have mutually
orthogonal axes. If the x-axis is the tertiary axis, the k-rotation is applied
about a vertical Z-axis only if at that time the rotations w and ¢ are equal to
zero. If the ¢-axis is the secondary axis and the w-axis is the primary axis, a
¢-rotation is applied about a horizontal axis only if at that time the w -rotation is
equal to zero. Therefore, the matrix in equation (2.2) represents the orientation
matrix for an instrument with a tertiary x-axis, a secondary ¢-axis and a
primary w-axis. This matrix has been recommended for use in analytical photo-
grammetry in a resolution of the International Society for Photogrammetry,
adopted at the 1960 Congress.

Each of the six possible arrangements of successive transformations
Rm, R,, and R_corresponds to one of the six possible choices of primary,
secondary, and tertiary axes. Each leads to an orientation matrix in which one
of the off-diagonal elements is equal to the sine of the secondary rotation.

Obv‘lous-ly, orthogonal matrices are obtained also if in any one of the
matrices (2.1) the minus sign is attached to the other sine. This changes the
positive direction of a rotation.

By changing the arrangement of the matrices and the position of the
minus signs, 48 different proper orthogonal matrices can be constructed from
three rotations. Each corresponds to a certain choice of primary, secondary
and tertiary axis and of positive directions of the rotations.

Because of the one-to-one correspondence between the possible attitudes
of a photograph and the proper orthogonal matrices of order three, for a given
attitude of the photograph, these 48 matrices are numerically the same. The
difference consists in the formulation of the elements as functions of three
parameters and in the values of these parameters.



- 33 -

In the case of analytical aerial triangulation, where the camera axis at
the moment of exposure is usually nearly vertical and the x-axis of each photo-
graph can be chosen roughly parallel to the X-axis of the strip coordinate
system, the three rotations in each of these matrices are only small. This
makes these matrices suitable for use in the iterative procedure of relative
orientation. From the mathematical point of view, they are all equally useful.

If in each of these matrices a minus sign is attached to the cosine of an
angle, if sine and cosine of an angle are interchanged, or if more than one of
these changes are introduced simultaneously, proper orthogonal matrices are
obtained also. Geometrically, each of these changes means replacing a small
angle by an angle which is closer to 90°, 180°, or 270°. Consequently, these
matrices are less useful for analytical aerial triangulation.

Orthogonal matrices are obtained also if the algebraic construction
starts with an on-diagonal element which is equated to the cosine or the sine of
an angle. Geometrically, this corresponds to applying the first and third rota-
tions about the same axis, and applylng the second rotation about one of the
other two axes. If the first and third rotations are applied about the Z-axis,
these rotations are known as swing of the photograph and azimuth of the principal
plane, respectively. These matrices are not useful here because, if the second
rotation is equal to zero, the first and third rotations are not defined. Also,
when the second rotation is not equal to zero, the first and third rotations may
have any value from 0° to 360°.

3. Rotation about a directed line

Starting from the position where the x, y, z axes coincide with the X, Y, Z
axes, the correct attitude of a photograph can be established by means of a single
rotation about a suitable axis through the origin of the two coordinate systems.

This statement is obviously true if the orientation leaves at least one
point, besides the origin, in its initial position. The axis of rotation is then the
line through this point and the origin.

In other words, the statement is true if always a set of values of x, y, and
z can be found, not all three equal to zero, for which A X = X . According to a
theorem of linear algebra, this is the case if and only if | A - | | = 0. It can be
proved that this determinant is indeed equal to zero by writing it as a polynomial
in the nine elements of A and simplifying this expression by means of first
theorem III, then theorem I.

Let the matrix A have the direction cosines A, u, and v of the axls of
rotation and the angle of rotation « as parameters. Since

2 2 2

A+ +v =1,
the matrix will again contain three independent parameters. In terms of these
parameters, the matrix can be derived by means of a theorem from matrix
algebra which states that the rotation about a directed line can be represented
by the matrix
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A=TRT' e (3.1)

in which T is any proper orthogonal matrix with the direction cosines of the
axls of rotation as the elements of the first column. Multiplication of the three
matrices gives

Az(l -cosa)+ cosa Al -cos a) - vsin a Av(1 - cos a) + usin @
A= | Xl - cos o) + vsin a ¥2(1 - cos @) + cosa uVY(l -cos @) - Asin a
Av(l - cosa) - usin a  yy1 - cos a) + Asin o vz(l - cos a) + cosa
... (3.2)
where Az + u2 +vl= 1.

This matrix can be found in a number of mathematical textbooks.

This form of the orientation matrix can be derived also by means of
vector theory.

Let, as shown in Figure 6, OQ be the position vector X of a point before
a rotation o about the axis OP and let OR be its position vector X after the rota-
tion. The vector X can be regarded as the sum of a vector OT along the vector
X, a vector TS parallel to the axis of rotation, and a vector SR perpendicular
to X and to the axis of rotation.

w

]
}
]
1
1 L

LA TSN

Figure 6. Rotation of a vector about a directed line.

Since the line element PS = PR cos a = PQ cos a, it follows that the line
element OT = OQ cos o, and so
OT = X cosa. ... (3.3)
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The dot product & . X of two vectors @ and X is a scalar and is equal to the
product of the lengths of the two vectors by the cosines of the angle between
them. Therefore, if @ is a unit vector along the axis OP, the length of the
vector OPis @ - X andso OP=(a .- X )a and

TS=OP(l -cosa)=(a.x)a(l -cos a) ... (3. 4)

The cross product @ x X of the two vectors @ and X is a vector parallel to
and with the same positive direction as the vector SR. Its length is the product
of the lengths of the two vectors and the sine of the angle between them. Since
the line element SR = PR sina = PQ sina = OQ sin ¢ sin o,

SR= ax X sina ... (3.5)
Summation of equations (3. 3), (3.4) and (3.5) gives
X = Xcosa+a(a - X)) -cosa)+ @ x X sina ... (3.6)

In this equation, the components of the vector X are the coordinates
x, ¥y, and z. The components of the unit vector @ are the direction cosines A, u,
and v of the axis of rotation. Further, the dot product & . X is the sum of the
products of the corresponding components:

a-X =Ax+uy+vz .. (3.7)

The cross product @ x X is a vector whose components are the cofactors of
the elements of the first row of a matrix which has the components of @ and of
X as the elements of its second and third row, respectively:

Wz - vy
axX = |yx -2z

Ay - ux ... (3.8)

By substituting these expressions for the two vector products in equation
(3. 6), that equation can be written in terms of vector components. This shows
that the equation is equivalent to equation (1.1), if A in that equation is the
matrix of equation (3. 2).

4. A purely algebraic derivation

The preceding derivations of orthogonal matrices were based upon the
concept of the orientation of a photograph by means of one or more rotations.
Although in the case of a matrix constructed from three rotations a construction
was developed in which this concept was not directly employed, the interpreta-
tion of the parameters as being three rotations was always possible,

In analytical photogrammetry, however, there is no need for such an
interpretation. It has the disadvantages of necessitating the computation of
trigonometric functions. The following method allows the construction of the
elements of the orthogonal matrix as rational functions of three independent
parameters.

The skew-symmetric matrix with real elements
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contains three independent parameters, as does the proper orthogonal matrix
A of order three. Therefore, to each S corresponds one proper orthogonal
matrix A with the same parameters.

A matrix A can be formulated in several ways as an analytical function
of S. Choosing a fourth parameter d, one can write

= (@l +S)dl -s)™! e (4.2)

The matrix (d 1 - S)'l can be found by computing the matrix of cofactors of
dl - S, transposing this matrix, and dividing its elements by the determinant
ofdl - S. Alternatively, the elements of the inverse can be computed from
the 3 x 3 equations containedin (d | -S)(d 1l - S)"1 = I. Following this,
multiplication of the two matrices in the right-hand side of equation (4. 2) gives:

d2+az—bz-c2 2ab-2cd 2ac+2bd
A = | 2ab+2cd d2-a24p2-c2 2bc-2ad R S
2 2.2 2
d +a +b +c
2ac-2bd 2bc+2ad d%-a%-p24c? .. (4.3)

This matrix satisfies the previously mentioned theorems I, II, III, and IV
and is, therefore, proper orthogonal.

A different formulation of A as a function of S can be obtained by writ-
ing A = (AT)-1, Substituting the expression (4. 2) into the second part of this
equation gives:

=@l - S)l@l +8) co. (4.4)

Since this equation is equivalent to (4. 2), it also leads to the equation (4.3).

Multiplication of all four parameters by the same factor does not alter
the value of the elements of A. Therefore, A contains only three independent
parameters.

Accordinglg it is possible to multiply the parameters by a factor which
makes d%+a®+b%+c? = 1 and makes d positive if it is negative. This reduces the
matrix to the simpler but not less general form

d2+a2—b2-c2 2ab-2cd 2ac+2bd
A = | 2ab+2cd d?-a24+b2-c2 2bc-2ad
2ac-2bd 2bc+2ad d2-a2 p24c? ... (4.5)

in which d2+a%+b%+c2 =1 and d > 0.

It is also possible to divide all four parameters by d. This simplifies
the matrix to
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14a2-b2-c2 2ab-2¢ 2ac+2b
A = 2ab+2c 1-a2+b2-c2 2bc-2a —-—Zl—-z—--z-
2 .2, 2 l1+a”+b " +c
2ac-2b 2bc+2a 1-a®-b%tc ... (4.6)

This form of the orthogonal matrix can be obtained directly from
A=(1 +S)1-8s)L

This formulation can be found in textbooks on linear algebra, usually with the
signs interchanged.

This form appears to be the simpliest one for electronic computation
and is the one which is used in the FORTRAN program.
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1V. Relative Orientation

1. The c¢lements of relative orlentation

Let the strip trlangulation be performed with respect to a three-
dimensional rectangular coordinate system X, Y, Z as shown in Figure 7. For

Figure 7. Vectors and vector components
used in relative orientation.

each photograph, auxiliary coordinate systems Xj» Y4, Z; and x, y;, z; which
have their origin in the projection centre will be required. These are the two
systems used in the preceding chapter, with a subscript added to indicate the
number of the photograph. Therefore, the X;- ¥;-, and Z}—axes are parallel to
the X-, Y-, and Z-axes and the x; - and y, -axes are parallel to the plane of the
photograph.

The projection centre of the first photograph will be given arbitrary co-
ordinates in the X, Y, Z system and the coordinate axes x,, y,, and z, of this
photograph will be made to coincide with the Xy-, the Y-, and the Z-axis,
respectively. This completes the orientation of the first photograph.

The strip triangulation will be performed by computing in succession the
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relative orientation of each following photograph with respect to the preceding
one. Each relative orientation will be followed by scaling of the resulting model
and by computation of the strip coordinates X, Y, and Z of the measured points.

To determine the relative orientation of each photograph with respect to
the preceding one, an arbitrary value is assumed for the base component b
while the x-, y-, and z-axes of the photograph are first placed parallel to the X-,
Y-, and Z-axes. The elements of relative orientation are then the base compo-
nents b, and b,, and three independent parameters which determine the orien-
tation matrix o% the photograph.

2. The condition equation for relative orientation

The relative orientation of a photograph (i+1) with respect to the preced-
ing one (i) consists in positioning the photograph in such a way that rays from
corresponding images in the two photographs intersect.

Analytically, this means that a condition equation which states that cor-
responding rays intersect must be satisfied. The condition equation can state
this requirement in different ways. For instance, it can state that the two rays
must be co-planar, that the minimum distance between the rays must be equal to
zero, or, assuming that the strip axis is approximately parallel to the x-axis,
that the Y-parallaxes must be equal to zero.

The requirement of co-planarity can be formulated as the condition that
two corresponding image points and the two projection centres must lie in one
plane. According to an equation from analytical geometry, in this case a fourth-
order determinant which has the strip coordinates of these points as the
elements of the first three columns is equal to zero:

xP vFP zP 1
xQ Y zQ 1 o
xp+xi YP+Y1 zP+zi 1
Q zQ 1 ... (2.1
xQ + X, Y2+y +Z,,, (2.1)

In this equation, the strip coardinates of the projection centres of photographs i
and i+1 are indicated by superscripts P and Q.

From this equation it follows by subtraction of rows that

b b b
X Y z
Xi Y, Z, = 0
z ..o (2.2
Xi-l-l Yi+l i+1 ( )

This is the condition equation for relative orientation. The base components
by, bY' and b_ in the first row of the determinant are the differences between
the strip coorﬁinates of the two projection centres. The subscripted coordinates
in the second and third rows are the components of the vectors Xi and X i+l
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from projection centre to image point in photographs i and i+l. They are func-
tions of the orientation matrices of the two photographs:

Xi = Aixi

X,,,= A .. (2.3)

i+1 i+1 Xi41

Alternatively, the condition of co-planarity can state that the vectors
X and X and the vector .B from projection centre P to projection centre Q
must lie in one plane. According to an equation from vector analysis, this
requires that their scalar triple product must be equal to zero:

B X, xX,; =0 .. (2.4)

This is the condition equation for relative orientation in vector notation.

If i, j,and K are unit vectors along X-, Y-, and Z-axls respectively,
each of the three vectors in (2.4) can be written as the sum of vectors along
these axes:

B =b_ i +b_j +bzk.

X Y

= i i
: xi +Yil +zik ,

= i+ i +2 ) ... (2.5
1S X vy 0 vz k (2.5)

With the help of equation (3. 8) of the preceding chapter, the cross product
Xi x X {41 C€an now be written as a vector:

D= (v,2,,, - 2Y,, )0 + (2%, -XZ, )i +(XY, -YX, )k (2.6
With the help of equation (3. 7) of that chapter, the dot product B:- D canbe
written as a scalar. According to equation (2. 4), this scalar is equal to zero:

b (Y2  -ZY )+b (ZX

1+1 ) +b, (X, -Y, X, )=0 ...(2.7)

X %% Yia 5%

Since this equation is obtained also if in (2. 2) the determinant is expanded
in terms of the elements of the first row, the equations (2.2) and (2.4) are
equivalent. In the following sections, equation (2.4) will be used rather than
equation (2. 2) because it allows a more compact presentation of the formulas.

3. Differentiation of the condition equation

For each pair of corresponding image points, a condition equation (2.4)
can be formulated. To compute the elements of relative orientation, at least five
such equations obtained from five or more pairs of points must be available.

The equations are not linear with respect to the five elements. This
makes it impossible to solve them directly on digital electronic computers.
Most of these computers can perform no other mathematical operations than
addition, subtraction, multiplication, and division.
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Since linear equations can be solved by means of those operations, the
condition equations must be replaced by linear approximations. Those can be
derived by differentiating the condition equations with respect to the five orien-
tation elements. The differentiation produces equations which are linear with
respect to corrections to assumed approximations of the orientation elements.

Since the linear equations are only approximations of the condition equa-
tions, their solution gives only approximate values of the required corrections.
Adding these corrections to the assumed approximations of the orientation
elements gives improved approximations. Those must then be substituted into
the linear equations and new corrections must be computed. The procedure
must be repeated until the corrections become negligible. Thus, the orientation
elements are computed in an iterative procedure.

Before equation (2.4) is differentiated, a modification can be introduced
which results in simpler coefficients in the linear equation. This modification
consists in premultiplying the matrix A 1+1 by an orthogonal matrix R. This
changes the equation to

B- X, *x(RA  x )=0 e (3.1)

i+l

The matrix R will be constructed from three parameters in the same way as
the matrix Ai+l is constructed from its parameters. The matrix A-i-l—l will be
the matrix of the assumed approximate orientation and the matrix R will serve
to correct it. Thus, the parameters of R will be used as unknowns in the linear
equations instead of corrections to the parameters of Ai+1‘

This equation must now be differentiated with respect to the components
bY and b, of B and the three parameters of R. The differentiation requires
the use oiZapproximate values for these five variables. Those for the two base
components are equal to the assumed approximations and those for the three
parameters are equal to zero.

Differentiation of R gives

o -a; a,
R~ 1 + a; o -a;
-a, a; o ... (3.2)

Here, ajy, a;, and a3 are functions of the parameters of the orthogonal matrix.
For eachof the suitable forms of the orthogonal matrix described in the preced-
ing chapter, these functions are listed in Table 5.

1f now dB is the vector whose components are the required corrections
0, db,,, and db., to the base components and R, is the skew-symmetric matrix
in equation (3.2), the differentiation of equation b. 1) has as its result equation
(3. ).

This equation can be obtained without using the rules for differentiation
of a scalar triple product by linearization of equation (3.1). First, the
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Table 5 Functions of the matrix parameters, to be solved from the condition
equation (3. 1)

Matrix in the preceding chapter Parameters
21 22 23
(2.3), derived from three rotations w [ K
(3.2), derived from one rotation Aa yo vo
(4.5) and (4. 6), derived from a skew- 2a 2b 2c
symmetric matrix

introduction of the correction vector dB and the linear approximation (3. 2) of
R gives:

+ : + ... (3.3
(B+ dB) - X, x (X, +R X, )= (3.3)
This equation still contains products of the corrections to the base components
and the parameters of R. Itis linearized by writing the scalar triple product
as a sum of such products and omitting the term which contains both dB and
Rl' This gives

B-X xX + dB.X xX,  +B.X (R X

a1 ) = co. (3.4)

i+l

The product R X in this equation is a vector whose components can
be obtained by performlng the matrix multiplication. Its components are the
same as those of the vector r x X i+1+ where r is the vector with components
apn az, and ag, and therefore these two vectors are identical:

32141 "~ 23Y54
RoXi = JasXy - 2% | = T+ Xy

a Y, .1 - 2,%,, ... (3.5)

Applied to equation (3.4), this gives

. . X . X % =0 e .6
B )(ixXHlJr dB Xi x1+1+B Xi (r xi+1) (3.6)

The value of a scalar triple product does not change if the dot and the
cross are interchanged or if the factors of the dot product are interchanged. If
the factors of the cross product are interchanged, the sign changes. This is
immediately evident when the corresponding operations are performed upon the
rows of the determinant with which the scalar triple product is identical.

By means of such changes and a rearrangement of the terms, the equa-
tion can be brought in its final form:

xH_lx(Bxxi)-l' +xixxi+1- dB +Xixxm-B =0 ...(3.7)

This equation is obviously linear with respect to the five unknowns: the
components of ¥ and of dB . Their coefficients are the components of the two
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vectors XHlx(BxXi) and xix XiH. These can be computed as such, and
therefore the equation is in a suitable form for use in electronic computation.
It isused in this form in the FORTRAN program. The third term is the constant
part; it is equal to zero if the vectors from the projection centres to the image
points intersect.

The equation can be written with a separate term for each of the five un-
knowns. For this purpose, the term with the vector ¥ is written

B x X, - (ali ta,j +a3k)"XH_1

According to the formula for a cross product

aph Xy = (G k-2,0) 8

2l X1 = 1 - %, K) 8,

a3kxxi+l=(Xi+lj —Yi+ll)a3 ... (3.8)
Further,

dB - j ... (3.
dby j +db, k (3.9)
If these expressions are introduced in the condition equation, it becomes:
BoX (Y k-2 i) ey +BxXpo(zy 0%, k) ey +Bx X (3, 0 Y, 1) 8,
+ (Xixxm.] ) dby + (Xixxiﬂ.k) db,, + XixXiH. B=o0 ... (3.10)

If now the scalar triple products are replaced by determinants and the
corrections to the base components are added to the base componentsthemselves,
the condition equation is obtained in the form in which it appears in earlier pub-
lications of N.R.C.:

by by by, by by by by by by
X, Y, z ay X Yy, oz Jay+|x Y, oz |ags
0 -z Y z 0 - Y. X 0
Ziv1 Yin i+1 Xit1 Yia %
zi X XY Yoz
+ (bY+de) + (bz+dbz) + by =0
Zin1 Xin X1 Yin Yirl Zip1
.. (3.11)

4. Differentiation with respect to the photograph coordinates

If five points have been measured for relative orientation, the unknowns
can be solved from the resulting five linear equations (3. 7).

In practice, both as a2 check on errors and to improve the accuracy of the
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relative orientation, more than five points will be measured. This makes an ad-
justment necessary. For this, the method of least squares provides a convenient
algorithm. In order not to complicate the computer program, this algorithm
can be used even if only five equations are available.

The method of least squares requires that each equation (3. 7) be given
the proper weight. Determination of the weight requires differentiation of the
condition equation (2. 4) not only with respect to the five unknowns but also with
respect to the measured quantities, which are here the photograph coordinates.

The differentiation can be performed by first adding corrections dx;,
dyj, dxj;1, and dy;) to the photograph coordinates. Thus, vectors

dx, = dx i +dy,j
and
dx,; = dxj b+ dyjgd ... (4.1)

are added to the vectors X; and X,,;, respectively, in equations (2.3).
Subsequently, the obtained expressions for Xi and Xi+1 are substituted into
equation (3. 3) and this equation is linearized in the same way as before.

This differentiation results in two additional terms in the correction
equation (3. 7):

B'(Aidxi)x xi and B. X, x(A,, ,dx,, )
+1 i i+l i+1

When now in these terms dxi and dx“l are replaced by the expressions in
the equations (4.1), the two terms can be changed into four terms, each of which
contains one of the four corrections to the photograph coordinates. When simul-
taneously the terms are brought to the second part of the correction equation,
this equation becomes:

X <(BxX) v # X, xX,, - dB +X;xX +B =
(B-X,, <(A, i) dx +(B. X, <(A ) dy, +

+ (B (A, 0)xX,) dx, +(B.(A,, J)*X,)dy,, ... (4.2)

The coefficients of the four corrections are scalar triple products of
three vectors. Matrix multiplication shows that the vector A, i in the first co-
efficient is the vector whose components are the elements of the first column of
A . and that the vector Alj in the second coefficient is the vector whose compo-
nents are the elements of the second column of Ai' Analogous rules apply to
Ai+1i andto A ., j -

The weight of each equation (4.2) is a function of the four scalar triple
products and of accuracy and correlation of the four coordinates.

If no correlation exists between the photograph coordinates and if all
have the same accuracy, the weight of an equation is proportional to the sum of
the squares of the four scalar triple products. In the case of a strip of aerial
photographs taken with an approximately vertical camera axis and of strip
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triangulation in the direction of the X-axis, the base components by and by will
be small compared with by. Further, the x- and y-axes will be approximately
parallel to the X- and Y-axes and, therefore, the diagonal elements of Ai and
Ai+1 will be approximately equal to unity and the off-diagonal elements will be
small compared with unity. From this it follows that in each equation the coef-
ficients of dx; and dx;, | will be approximately equal to zero and the coefficients
of dy; and dy;,) will be approximately equal to byf. Consequently, in this case
the weights are all approximately the same and may be made equal to unity.

In practice, the accuracy of the photograph coordinates depends upon the
position of the points. An investigation of Hallert [20 ] gave the result that for
a Wild RC8 camera approximately

m, = mg = k(1 + 7r?), ... (4.3)

where m_ and m_ are the standard deviations of the x- and y-coordinates, k is a
constant, and r {s the distance from the point to the principal point, expressed
in the focal length as unit of length. If this result is accepted, each equation
should be given the weight

w = V((1+ 71'12)Z +(1 + 7r 2) oo (4.4)

2
i+1)
In this way, points near the principal points receive a weight that is about six
times greater than the welght of points in the corners of a model.

5. Formatlon and solution of normal equations

Each point that is to be used to establish the relative orientation has now
provided one linear equation (3.7). In the method of least squares, these equa-
tlons are referred to as the correction equations. In matrix notation, they can
together be represented by the equation

Ax+b = o ... (5.1)

Here, A is the matrix which has as the elements of each row the coefficlients of
one of the equations (3.7), X is the column vector whose components are the
five unknowns, and b is the column vector whose components are the constant
terms. Obviously, these notations have no connection with the earlier used
symbols.

1f more than five correction equations are available, they are in general
inconsistent and no vector X exists that can satisfy the matrix equation (5. 1).
According to the method of least squares, the most probable value of X is then
the value for which the quadratic term

(Ax+b)TW(Ax+b)

attains its minimum. Under the present assumptions of uncorrelated observa-
tions, W 1is a matrix whose diagonal elements are the weights attached to the
correctlon equations and whose off-diagonal elements are equal to zero.

It can be proved that the quadratic form attains its minimum for that
value of X which satisfles the matrix equation
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ATWAx = -ATWb . (5.2)

This matrix equation comprises a set of five linear equations known as the
normal equations.

The coefficients and the second parts of the normal equations could be
computed by storing the complete matrix A and the vector b and by then
performing the matrix multiplications ATWA and - AT Wbh.

However, since here Wisa diagonal matrix, the contribution of each
correction equation to these matrix products can be computed separately. Let
a correction equation be represented by the equation

ax+b=0, ... (5.3)

where ar is the row vector whose elements are the coefficients in the equation,
X is again the column vector whose components are the five unknowns and b is
the constant term. Let further @ _ be the column vector which is the transpose
of a_. For each correction equation, a matrix w @ a and a column vector
-wb @ _ can be computed. Here, w is the weight assigned to the equation. It
can easily be shown that the matrix of coefficients and the vector of second parts
in equation (5.2) are simply the sum of the matrices wa_ a, and the sum of
the vectors -wb @ _, respectively. In this way, the normal equations are com-
puted as:

[wacar]x=[-wbaC] ... (5.4)
The normal equations can be solved by Gaussian elimination and back

substitution. In the elimination procedure, successive elements on the main
diagonal of the matrix of coefficients can be used as pivotal elements.

6. Remarks on the derivations
i. Equation (3.5) proves that the vectors
RIXHI and r x XH-I

are equivalent. The proof is somewhat inelegant because one of these two
formulations could not be directly converted to the other. Instead, it has been
shown that the two vectors have the same components.

If the components of ¥ are identified with rotations about the X, .,
Y and Z 4] axes, 2 direct conversion is possible. The change in the
orientation, ée}ined by the matrix R, can be produced by three such rotations.
If the three rotations are infinitesimal and are called a,, a,, and ags respec-
tively, according to a theorem from vector analysis they change the vector
X by vectors

alixx

i+l
papr 2z ¢ Xypprand agkx Xy 0
respectively. Therefore, since

= i i ... (6.1
I’-—a|+aZ] +a3k, ( )

1
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x“l is changed to XHI +rxX i+1- Thisexpression can immediately replace
the expression between the brackets in equation (3. 1).

Although the three parameters have been defined as rotations, it is not
necessary to interpret them as such when the orthogonal matrix R is computed.
Instead, Table 5 can be used to change to a different set of parameters. How-
ever, a change in interpretation during the course of the derivations is not very
elegant either.

ii. A second inelegant feature of thederivations is the use of matrix products
as well as vector products.

In the individual equations, this mixed mode of formulation can be
avoided by writing the condition of intersection as a matrix equation. Following
Thompson [21, 227, the condition equation (2. 4) is first replaced by the equiva-
lent expression

X,-BxX;,, =0 .. (6.2)

According to equation (3.5), the cross product in this equation represents the
same vector as the matrix product BX i+1? if in the latter B 1is the skew-
symmetric matrix whose parameters are the components of the base vector.
Also, the scalar product of Xi and B Xi+l can be written as the matrix product
of the row vector X; and the column vector B X, ;. This gives the matrix
equation
T =
Xi BXHl_o ... (6.3)
Introduction of the corrections to the base components and of the ortho-

gonal matrix R, and linearization of R leads to the equation

XT(B+ dB) 1+ R)X;,; =0 e (6.9)

which is equivalent to equation (3.3). Linearization of this equation similar to
that of equation (3. 3) gives

T T
X, (BR +dB)X,  +X BX, =0 ... (6.5)

This equation is linear with respect to the five orientation elements.
However, since each of these occurs in two elements of a matrix, the equation
is unsuitable for use in electronic computation.

A return to vector algebra gives first

X -Bx (r=X )+X -dBx X, + X -BxX =0 ... (6.6)

i
in which B and dB are again vectors. From this equation, equation (3.7)
follows immediately.

Alternatively, equation (6.5) can be converted into equation (3.11) by
performing the matrix multiplications, collecting the terms with the same
unknowns, and changing the signs of all terms.
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Consequently, this derivation requires two changes of mathematical
discipline, as well as the proof in equation (3.5). This is not an improvement.

It should be noted that for this derivation it is not necessary to replace
equation (6. 1) by equation (6. 2). Instead of the base vector, the vector X, can
be replaced by a skew-symmetric matrix.

iid, An aesthetically satisfactory derivation of the correction equation can be
obtained if vector analysis or tensor analysis is used exclusively. For this
purpose, a third vector product, the dyad, and the sum of such products, the
dyadic, must be used.

In the preceding sections of this chapter, these have not been used be-
cause they are relatively unknown. Here, they will be defined first and the
required theorems will be listed.

The dyad St, where 8 and t are vectors, is an operator which trans-
forms a third vector U into another vector as follows:

st-u =s(t.u)
and u-st =(u.s)t ce. (6.7)

Since st -u is a vector parallelto 8 and ts . u isa'vector parallel to
t , the product s t does not conform to the commutative law.

By definition, the distributive law applies to the product of a sum of
dyads and a vector. Thus, the products A-u and uU.A of a dyadic and a
vector can be written as sums of vectors by first applying the distributive law
and then using equation (6. 7).

It follows from the definitions that this third vector product conforms to
the distributive law. Therefore, by writing each vector in a dyadic as a linear
function of three unit vectors, as in equation (6. 1), using this distributive law,
and collecting the resulting terms with the same dyad, any dyadic can be written
in the form

A =a il +a,ij +a13lk
tay, i +a,,l]) +az3jk
+ag ki o+ a32k] ta, kk ... (6.8)

The dyadic is then said to be in its nonion form, and the nine coefficients are
called its components.

In the following, dyadics will always be used in their nonion form.

The matrix A formed by the nine components is called the matrix of the
dyadic. By writing each vector as a linear function of the unit vectors, as in
equation (6. 1), and expanding the products, it follows easily that the product
A.u ofa dyadic and a vector and the matrix product A u, where A is the
matrix of the dyadic, represent the same vector.

The dot product of two dyadics R and A is the dyadic defined by
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(R-A)-x =R-(A-x) ... (6.9)
It follows from this that the dot product of two dyads is
rs-uv =(s-u)ryv ... (6.10)
Also, the components of the dyadic R. A are identical with the elements of the
product of the matrices R and A.
The cross product of a dyad and a vector is a dyad:
rsxu =1r(sxu) .o (6.11)

Through the distributive law, this definition is extended to the cross product of
a dyadic and a vector.

It follows from the definitions that the following relation exists between
any dyadic A and any two vectors r and S :

(Axr)-s = A .-(rxs) «e. (6.12)
In terms of the unit vectors, the unit dyadic or idemfactor is:
I = ii + jj + kk ... (6.13)
The dot product of the idemfactor and a vector is the same vector:
l-r = r ... (6.14)
Therefore, substitution of the idemfactor in equation (6. 12) gives:
(Ixr)-s = rxs ... (6.15)

The cross product I x r is in terms of the unit vectors:
I xr = al( kj -jk )+az( ik - ki )+a3( ji -ij )...(6.16)

Such a dyadic, whose matrix is skew-symmetric, is called antisymmetric. Thus,
equation (6. 15) states the theorem that the cross product of two vectors is equal
to the dot product of the antisymmetric dyadic, formed from the first vector,
and the second vector.

Analogous theorems can be formulated when tensor analysis is used.
The vectors and dyadics are then replaced by tensors of valence one and two,
respectively.

With the help of these theorems, the condition equation for relative
orientation can now be linearized. The equation itself remains unchanged:
. x X =0 ... (6.17
B.X i i+l ( )
Dyadics Ai+1 and R are now introduced to define the approximate
orientation of photograph i+l and its correction, respectively. The dyadics will
be used in their nonion form, and their matrices will be defined as being the
matrices Ai+l and R of the preceding sections.
This brings the condition equation in a form which is equivalent to equa-
tion (3.1):
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B X, «(R- (A - X, Ne=o0 ... (6.18)

Once R has been computed, the dyadic R . A i+1 will become the new
approximation or the final value of A i+1+ The components of this dyadic are,
according to equation (6. 9), identical with the elements of the matrix RA +1°

The equation (6. 18) is linearized by differentiation. The differentiation
follows the ordinary rules for the differentiation of a product. The result is an
equation which is equivalent to equation (3. 4):

B-Xix(R1 )+ dB . X Xi+1+B-xixx =0 ...(6.19)

i+l irl

Here, Rl is the antisymmetric dyadic formed from the parameters of
R. Therefore

R, =1xr . {6.20)

1

where I is the vector of equation (6.1). By means of this equation and the
theorem in equation (6. 15), equation (6. 19) can now be written

B . Xix(r x xi+1)+ dB - Xix X“_l+ B- Xix x1+1 =0 ...(6.21)

This equation is identical with equation (3. 6). It is converted to equation
(3.7) by the method described in section 3.

7. Remarks on the computations

i. Simplification of the condition equation

When a strip of aerial photographs is triangulated, the matrix Ai which
is used in the correction equation for relative orientation can be the orientation
matrix of photograph i computed during the relative orientation of that photo-
graph. The best first approximation of the orientation matrix of photograph i+l
will then be the same matrix and the best first approximation of the base com-
ponents by and by will be the definitive values of the base ratios in the preced-
ing model. This method was used in the NRC program for the IBM 650.

However, it is also possible to replace the matrix A . in the correction
equation by the unit matrix. The first approximation of the matrix Ai+1 will
then also be the unit matrix, and the first approximation of by and by will be
equal to zero. After completion of the relative orientation, the obtained matrix
A, 41 and the base must then be premultiplied by the matrix A,. This method
has been used in the FORTRAN program.

Neither method has great advantages over the other. The change from
one method to the other was made mainly because the FORTRAN program for
the IBM 1620 was originally intended to be a program for single models only.

When the second method is used, the correction equation for the first
iteration of the relative orientation becomes much simpler. If in addition the
photograph coordinates are divided by the focal length and the base component
bx is made equal to unity, the vectors B, xi and xi+1 become:
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B =i
x1+1“"1+1' +V1+ll + k e (7.1)

Substitution of these vectors into equation (3. 7) or of their components into
equation (3.11) gives the simple correction equation

yyygp tlag - x4 yi(a,4+b) - xjag + (g -2 )by - Xy, by + (v, -y,,,) = O

. (7. 2)

in which Xi» ¥i» X410 and y; .y are the photograph coordinates after division by
the focal length.

ii. Simplification of the matrix R

In the FORTRAN program, equation (4. 6) of chapter III is used to com-
pute the correction matrix R from its three parameters.

If the division of each element of this matrix by their common denomina-
tor were omitted the matrix and, as a result, the transformed vectors X
would be multiplied by the factor 1+a2+b2+c2,

Since a comparison of equations (3.2) and (4. 6) in chapter III shows that
the relations between the two sets of parameters in these equations are:

a=}\tan%a
1

b = u tan 20
c=v tan-;—a ce. (7.3)
it follows that
1+a2+b2+c2=1+tan2%a e (7.4)

Even if the convergence of two photographs is 90° (¢ = 90°, b=yu=1, a=A = ¢
=v = 0), this factor is only equal to 2. If the difference in tilt is 5°, it is equal
to 1.002.

Therefore, if the division were omitted, the diagonal elements of the
matrix R could become somewhat larger than unity. Because of the use of
floating-point arithmetic, this will cause inaccurate values of the least signifi-
cant digit of the elements of Ai+1‘ If the length of the mantissas of the floating-
point numbers is 10 decimal digits or more, this will have no effect upon the
computed strip coordinates.
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V. Absolute orientation and computation of strip coordinates

1. Absolute orientation
During the computation of the relative orientation, the base component
by is assigned unit length.

The scaling of the model is now performed by computing the scale factor
which reduces the model to the proper scale and by multiplying the three base
components by it.

The first model of a strip can be given an arbitrary scale. This can be
done by specifying thé¢ length of the base component bx or of the base B. It is
of advantage to specify that this length in the triangulated strip must be the
same as the length in the photographs. In this case the triangulated strip will
have the same scale as the photographs and the quality of the triangulation will
immediately be evident from the size of the residual parallaxes and from the
coordinate differences of points that are common to two models.

The scale of all other models must be reduced to that of the first model.
For this purpose, one or more distances in the model are compared with the
same distances in the preceding, already scaled, model. The ratio of the dis-
tances is accepted as the required scale factor and, therefore, as the numerical
value of the base component bx.

This computation presents no problem if a scale transfer point in the
preceding model and the same point in the present model lie on the same ray
through the projection centre of the common photograph. The required scale
factor is then simply the ratio between the distances from the point to the com-
mon projection centre in the two models. This ratio is then equal to the ratio
between the differences in Z-coordinates of the point and the projection centre
in the two models.

However, in general the point will not lie on the same ray in the two
models. This is a result of the facts, discussed in the next sectlon, that after
the adjustment of the relative orientation corresponding rays do not in general
intersect and that the point that is defined as the point of intersection will not
lie on either of them. In addition, if the readings have been made on a stereo-
comparator, the two sets of readings of the point in the common photograph may
differ slightly and, therefore, may produce slightly different rays.

As a result, if a point lies at some distance from the axis of the strip,
the two vectors from the common projection centre to a scale transfer point can
have slightly different transversal tilts in the two models. In that case, the dis-
tances from the point to the projection centre and the heights of the point in the
two models cannot simultaneously be the same. Therefore, scaling with these
distances and scaling with these heights will give slightly different results.

Since want of intersection of corresponding rays is caused by uncorrect-
ed errors, the origin of these errors is presumably unknown and it is difficult
to say which of the two methods of determining the scale will serve best to re-
duce the effect of these errors upon the triangulation.
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In the above case, where the two sets of readings of the point in the com-
mon photograph differ slightly, the points measured in the two models are not
precisely the same. It is then more likely that the two measured points have
the same terrain height than that they are at the same distance from the common
exposure station. Therefore, it is better to use the heights for the scaling than
to use the distances to the common projection centre.

In the FORTRAN program, the scale factor is derived as the ratio be-
tween the distances from the points to the plane z =0 of the common photograph.
This is equivalent to using the heights of the points in a coordinate system in
which the common photograph has tilts equal to zero. Therefore, the computed
scale factor is independent of the tilt of the strip in the X,Y,Z coordinate
system,

The distance from a point to the plane z =0 is numerically equal to the
z-component of the vector from the projection centre to the point. Therefore, if
A, is the definitive orlentation matrix of the common photograph and the sub-
script P refers to the common projection centre, these distances dj and d; in
the preceding and the present model are:

(X-Xp) -k .o (101)

)

Here, X in the first equation is the definitive position vector of the point in the
preceding model and X in the second equation is the position vector in the
present model before absolute orientation. The second equation is simpler than
the first one because in the present model the orientation matrix of the common
photograph is still the unit matrix.

The scale factor is now computed as the mean of the ratios dl/d2 for all
scale transfer points, and the base vector is multiplied by this factor.

The absolute orientation is completed by pre-multiplying the base and the
orientation matrix of the new photograph by the definitive orientation matrix of
the common photograph:

B = (dl/dz)mean Ai.(B)rel. or.

A .. =A(A ) oo (1.2)

i+l +1°rel. or.

The position vector of the projection centre Q of the new photograph is
computed by adding the base vector to the position vector of the projection
centre P of the common photograph:

X =X_+B o (0o5))

2. The point of intersection of two rays

The strip coordinates of all measured points can now be computed by
intersecting the rays from corresponding image points in the two photographs.
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If the photograph coordinates are free from all errors, the relative
orientation is also error-free and each two such rays intersect. In practice
that is not the case and consequently the rays cross at a short distance.

This makes it necessary to select a point that is to represent the point
of intersection.

There are three points that can be used as such., The selection that is
made will depend upon the point of view.

i. 1f the use of the method of least squares in the adjustment of the relative
orientation is considered to be the best procedure, and not only a convenient
one, it is logical to use this method also to give the photograph coordinates such
corrections that each two rays do intersect. The point of intersection of the
corrected rays will then be used.

This adjustment can be based upon equation (4. 2) in chapter IV and itcan
be applied not only to the points which have been used to establish the relative
orientation but also to all other points. Since orientation corrections are not
computed at this stage, the terms with r and with dB are omitted from the
equation. Representing further the constant term and the coefficients of the
remaining terms by d, dl’ dz, d3, and d4, the equation becomes

dldxi +d,dy, + d3dxi+1 + d4dy“1 = d ... (2.1)
Assuming equal accuracy of the coordinates and freedom from correlation, the
application of the method of least squares to this equation gives the following
corrections to the photograph coordinates:

3

24324424 42
dld/(dl +d5 +d§ + dj)

24492 +42 442
dzd/(dl +d5 +dg+ dg)

Qu
<
-
n

"

2442 +42 442
d,d/(df + d5 +d5 + dj)

2,432+ 42+ 42
dy, 11 d4d/(d1+dz+d3+d4) .. (2.2)

ii. If the strip triangulation is performed on a first-order plotter, the point
which represents the point of intersection is defined as a point in the horizontal
plane at the height where the X-parallax between the two rays is equal to zero.
It lies on the line which connects the points of intersection of the rays and this
plane, midway between these points.

This point is obtained also if the first method of correcting the photo-
graph coordinates is applied to exactly vertical photographs. This is the result
of the fact that in this case, with the x - and x;, -axes parallel to the X-axis,
the coefficients d; and d; become equal to zero while the coefficients d, and dy
become equal. Since these coefficients change very little when the photographs
arc given small tilts, this choice of point is suitable for all nearly vertical
photographs.

iii. If one wishes to represent the point of intersection by the point that lies
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as close to the two rays as possible, the point which lies midway on the line of
shortest distance of the non-intersecting rays should be selected.

If the photographs are of a good quality the want of intersection of cor-
responding rays {s small and consequently the three points are almost identical.
If systematicerrors occur, the method of least squares should be looked upon as
only a convenlent adjustment procedure. It is then impossible to say which point
represents the point of intersection best. Therefore, in practice each of the
three points is acceptable,

In the NRC program for the IBM 650, the secondcholce wasmade. In the
present FORTRAN program, the third point has beenchosen. However, a return
to the second point would only require changing a few FORTRAN statements.

3. Computation of the point of intersection

In case il and in case iii of the preceding section, the "point of intersec-
tion'" of two corresponding rays lles on a specified line from a point on one of
the rays to a point on the other ray, and midway between those two points.

This situation is shown in Figure 8, inwhich )(l and X 4] are the vectors
from the projection centres to the image points in the orlcnteé photographs and

Figure 8. Definition of the position of a point
in the case of non-intersecting rays.
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Dis avector of arbitrary length, parallel to the line onwhich the point of inter-
section lies.

The two vectors from the projection centres to the above two points are
collinear with Xi and X i+1 and, therefore, can be denoted by Alxi and AZXHI'
in which the factors Ay and ), are scalars. Similarly, the vector which connects
the two points is parallel to 6 and can be denoted by 1, D.

It follows directly from Figure 8 that

B - Alxi-xzxi+l+x3n ... (3.1)

According to a theorem from vector analysis, any four vectors a, b,
€, and d in three-dimensional space are connected by the equation

(a-bxc)d -(b-cxd)a+(c-dxa)b-(d.axb)c=0(@3.2)

This theorem is derived by regarding a vector product of these vectors in two
ways as a triple vector product, expanding it and equating the two results:

(axb )x(exd)=(axb-d)c -(axb .c)d
(a- cxd)b -(b-cxd)a ...(3.3)

Since equation (3.1) is valid only for unique values of A1» Az, and A3, and
equation (3. 2) is valid for any four vectors, the values of A], A2, and 13 follow
immediately when the vectors a, b, €, and d are equated with the vectors
B, X,, xi+l' and D), and the coefficients of the two equations are compared.
This gives

D' BxXH_l A_D'B"Xi AzB'xixle
2 DX Xy, DX X,

.. (3.4)
i i+1

Alternatively, but less elegantly, this result can be obtained by decom-
posing equation (3. 1) into three equations between vector components, solving
these equations by means of Cramer's rule and replacing the resulting deter-
minants by the .scalar triple products to which they are equivalent.

The position vector of the point in the strip coordinate system can now
be computed by means of the equation

X=XP+ A1X1+o.5 A3D ...(3.5)

A measure of the want of intersection of the two rays is the length of the
vector A3 D:

Want of intersection = A3\/(—D- D) ... (3.6)

The above formulas can be especially adapted to each of the three cases
in the preceding section.

In case i, the rays intersect after correction of the photograph coordi-
nates. As a result, A3 is equal to zero and any vector which is not parallel to
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the plane which contains the base and the corrected image points can serve as
the vector D. A simple set of equations is obtained by taking for D the unit
vector ] in the positive Y-direction.

In case ii, the vector D must be parallel to the Y-axis. Here also, the
unit vector j in the positive Y-directionis a suitable choice. This gives for A,
and XZ the simple expressions
L o ozXin ke <t 0 W 4 " by .7
= an <. (3.
L7 Zi X4 - X244 2 23Xy - X2y

The X- and Z-coordinates of the point are now computed as the X- and Z-compo-
nents of the vector Xp + A2, X, or, which gives the same result, those of the
vector XQ + AZX 4+ The Y-coordinate is computed as the mean of the
Y-components of t}xese two vectors and the want of intersection is computed as
the difference.

In case iii, the vector D must be parallel to the line of shortest distance.
The simplest choice, and the one used in the FORTRAN program, is

D =X, *xX,, ...(3.8)

This vector product is here substituted for D in the equations (3. 4), (3.5), and
(3. 6). The want of intersection is positive if, in the area where the rays cross,
points on the ray from photograph i+1 have greater Y-coordinates than those on
the ray from photograph i, and it is negative if the former points have smaller
Y-coordinates.

The computation of the position vectors of all measured points and of the
want of intersection completes the computations for the model.
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VI. A FORTRAN IV program

1. General remarks

This FORTRAN program follows the specifications described in the pre-
ceding chapters. It differs from the earlier NRC program for the IBM 650 and
the IBM 1620 {2] in the following respects:

i. The photograph coordinates can be corrected for differential film
shrinkage.

ii. The lens correction table contains a list of radial corrections for lens
distortion instead of ratios of correction and radial distance.

iii. The corrections for earth curvature and refraction are applied directly by
the program instead of being included in the table.

iv. The relative orientation of each photograph is started with the unit matrix
as the orientation matrix of the preceding photograph and with base com-
ponents by and bz equal to zero.

v. The elements of the orientation matrix are computed as rational functions
of the three parameters.

vi. For relative orientation, any number of points may be used. At the most,
three iterations are performed.

vii. An experimental formula for weighting the equations for relative orienta-
tion is included as an option.

viii. The point of intersection of corresponding rays is defined as the point
midway on their line of shortest distance. The want of intersection of
corresponding rays is defined as their shortest distance.

ix. For scaling a model, a maximum of ten points may be used. These points
are given equal weights.

x. The scaling is performed by comparing for each scale transfer point its
distance in the present and in the preceding model to a plane which
contains the common projection centre and is parallel to the plane of the
common photograph.

The program was first written in FORTRAN II for use on a 40000-digit
IBM 1620, in anticipation of the arrival of an IBM System/360 computer at the
NRC laboratories in July 1965.

The small storage capacity of this IBM 1620 made it imperative to use
as little space as possible for the instructions. For this reason, a great number
of unsubscripted variables were used in the FORTRAN statements. They were
equivalenced with elements of arrays by means of the EQUIVALENCE and
COMMON statements. Also, the use of FORTRAN II for the IBM 1620 made it
necessary to avoid mixed-mode expressions.

The program was subsequently converted to FORTRAN IV for use on the
IBM System/360. The above features of the program have been retained in the
FORTRAN 1V program. With very minor modifications, this program has been
in use since August 1965.

This chapter describes the December 1966 version of the FORTRAN IV
program.
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2. Ih_e_it_t_zr_at_i\ﬁa_pio_cgl\irf of relative orientation

In chapter IV, the condition equation for relative orientation has been
linearized and it has been shown how the linear equation can be used in an
iterative procedure to determine the relative orientation.

The FORTRAN program performs at the most three iterations of the
relative orientation.

In the first iteration, the unit matrix is used as the matrix of the approxi-
mate orientation of photograph i+1, and the approximations of the base components
bY and bZ are assumed to be equal to zero. Accordingly, the equation(IV 7. 2) is
used as correction equation. In the second and in the third iteration, equation
(IV3.7) is used.

If none of the five orientation parameters computed during the first
iteration is larger than 1/30th of a radian (about 2°), only two iterations are
performed; otherwise, three iterations are performed. If these parameters are
all smaller than this test value, it is certain that the corrections which further
iterations will apply will be of the order of 10' or smaller. Such corrections
can be obtained by one iteration and, accordingly, a third iteration would then be
superfluous.

In the first iteration and also in the second iteration, provided that this
is not the final one, the FORTRAN program applies the weight 1 to each correc-
tion equation and it does not use other points than those whose coordinates can
be stored in the arrays in core storage. In the final iteration, either each cor-
rection equation receives the weight 1 or its weight is computed by means of
equation (IV 4.4). Also, there is here no limit to the number of points that can
be used.

1f one wishes, the above test value can be changed by changing the con-
stant in FORTRAN statement S§.0087.

3. The scaling of models

The scale of the triangulated strip is determined by the value of the base
component by, of the first model. This value is punched in the first card of the
input deck for the strip and is expressed in microns at photograph scale. There-
fore, if this value is equal to the actual length at photograph scale and the base
components bY and b., are small, the computed strip coordinates and parallaxes
will be expressed also, at least approximately, in microns at photograph scale.

For the scaling of the first model, only the base component by is re-
quired. Each following model is scaled to the preceding one by means of points
in the overlap of the two models. At the most, ten points can be used and in each
model these points must be among the first 100 of the points used for relative

orientation. They are given equal weights.

The selection of points for scaling can be made either by specifying that
one of four standard patterns is to be used or by marking the input cards of the
selected points individually.
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The standard patterns are selected by punching one of the digits 1, 2, 3,
and 4 in the first field in the first data card of the strip. These patterns are the
following (the numbering of the points refers to their sequence in the card deck
and not to the point number).

1. Point 2 in one model is the same point as point 5 in the preceding model.

2. Points 2 and 3 in one model are the same points as points 6 and 7,
respectively, in the preceding model.

3. Points 1, 2, and 3 in one model are the same points as points 4, 5, and 6,
respectively, in the preceding model.

4. Points 1, 2, 3, and 4 in one model are the same points as points 5, 6, 7,
and 8, respectively, in the preceding model.

Patterns 1 and 3 can be used when six of the points for relative orienta-
tion have been measured in the classical six positions. Patterns 2 and 4 can be
used when eight of these points have been measured in the same positions: one
in each corner of the model and two near each principal point. Patterns 1 and 2
serve to scale on points near the principal points only; patterns 3 and 4 make
use of points near the strip edges also.

If in any model one or more points for relative orientation are marked
by the digit 1 punched in column 40, these points will be used for scaling the
following model. In such a case, a standard pattern will not be used even if it is
specified on the first input card. Since the digit 1 is read as the number 1 in
columns 38-40, if necessary it can be erased simply by punching a minus sign
or a non-zero digit in column 39.

If a standard pattern is used, a point that is used for scaling need not
have the same point number in the two models that are involved. If the l-punch
in column 40 is used, such a point must have the same point number in the two
models.

The program will discard a scale transfer point if the difference between
the scale factor derived from it and the mean of the scale factors from all as yet
not discarded points is larger than 0.0005 times the mean. This elimination of
anomalous points is performed in an iterative procedure, one point at a time. If
here the scale factors of two anomalous points differ by the same amount from
the mean, the second point is discarded.

The above test value can be changed by changing the constant in the
FORTRAN statement S. 0155.

The program uses a card reader as its input device.

Each deck of cards for the triangulation of a strip must contain all the
information that is needed to perform the triangulation.

Decks for different strips, including single models, may be stacked for
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sequential processing. In this case, they must be separated from each other by
means of a card with a negative non-zero number in its first four columns. A
blank card must be placed behind the deck for a single strip triangulation and
behind the last deck of a stack.

All data punched in the cards mustbe in the form required by FORTRAN
fixed-point format: the leastsignificant digit of each number must be punched in
the right-most column of its field, and if a number is negative a minus sign must
be punched in one of the columns of its field to the left of the most significantdigit.

i. Cards with general information

The first few cards in the deck of a strip contain all the necessary infor-
mation other than the measured coordinates.

The first card in the deck contains:

field 1, columns

field 2, columns

field 3, columns
field 4, columns
field 5, columns

field 6, columns

field 7, columns

field 8, columns

1-4:

5-9:

10-16;
17-23

24-30:
31-37;

38-44;

45-51:

The code number of the pattern for the scaling of the
models. The code number is zero, and may be omitted,

if the scaling is to be performed on points marked by a
digit 1 in column 40 of the coordinate card in the preced-
ing model. The code number is 1, 2, 3, or 4, respectively,
if the scaling is to be performed on points in one of the
four standard patterns described in the preceding section
of this chapter.

The code number for weighting the correction equations
for relative orientation. The code number is zero, and
may be omitted, if the equations of all points are to be
given equal weights. It is 1, or any other positive non-
zero number, if the experimental formula for Wild
Aviogon 6'" photography is to be used.

The calibrated focal length in microns.

and
Correction factors for film shrinkage in x- and y-direc-
tions, respectively, multiplied by 100000.

The value of the base component by, of the first model,
expressed in microns at photograph scale.

The average flyingheight above ground, in meters. This
value will be used for the computation of the earth curva-
ture correction. If this correction must not be applied,
this field must contain zeros or blanks.

The coefficient c¢| in the formula for the refraction cor-
rection, multiplied by 107. This is the value of the photo-
grammetric refraction in Table II for the actual flying
height and the average terrain height, multiplied by 10.
If this correction must not be applied, this field must
contain zeros or blanks.

Thus, the correction for earth curvature and the refrac-
tion correction will be used to correct the photograph
coordinates of all points, irrespective of differences in
terrain height.
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field 9, columns 52-58: If no card output is needed, a non-zero number. Suppres-
sion of card output reduces the computer time and may
be acceptable during the first triangulation of a strip.

columns 79 and 80: A serial number. This serial number provides the only
check on the correct sequence of the cards with general
information. Consecutive cards must be punched with
consecutive numbers.

The second card and, if needed, following cards contain the lens correc-
tion table. This table consists of a list of values of the radial lens correction dr
for values of the radial distance r which are separated by a constant interval and
start at r = 0. The interval must be sufficiently small to allow linear interpola-
tion between consecutive table values.

The second card is punched as follows:

field 1: The number of entries in the table. This number is at the
most 162.

field 2: The interval of the argument r, expressed in 0. I mm as unit
of length.

fields 3 to 11, of 7 columns each, and covering columns 10 to 72: Up to nine
values of the lens correction dr, starting with dr = 0 for
r = 0, and followed by the values for consecutive values of r.
The lens corrections are expressed in 0.01 micron as unit
of length.

columns 79 and 80: The serial number of the card.

If more than nine values of the lens correction are to be punched, the re-
mainder are punched sequentially in one or more followingcards. In these cards,
the contents of only fields 3 to 11 and of columns 79 and 80 need be punched.

The last value of the lens correction mustapply to a radial distance which
is larger than the largest possible distance.

ii. Cards with measured coordinates

The remaining cards contain the measured coordinates. They are ar-
ranged in groups according to the models, and the models are arranged in the
sequence in which the triangulation is to be performed.

The first card of a model contains the coordinates of the principal points
of the two photographs. Each of the following cards contains the coordinates of
corresponding image points in the two photographs. The cards of the points that
are to be used for relative orientation come first, and are followed by the cards
of any additional points.

The cards are punched as follows:

field 1: Strip-and-model identification (numeric and positive);
field 2: Point identification (numeric and positive);

field 3: x-coordinate in the oriented photograph;

field 4: y-coordinate in this photograph;
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field 5: x-coordinate in the new photograph;

field 6: y-coordinate in this photograph;

columns 38-40 of the principal point card: The number of points to be used for
relative orientation of the model;

columns 38-40 of the card of a point for relative orientation: If the point is to be
used for scaling of the next model and is to be designated as such by a
l-punch: a l-punch in column 40 of the card of the present model.

As an example, a listing of the input data for two models of a strip flown
with a 6" focal length camera at a height of about 700 m above sea level over
terrain with an average elevation of about 300 m is shown in Table 6.

Table 6. Example of input

4 152740 100000 99930 88000 400 87 1
51 30 0 - 130 - 250 - 350 =~ 450 - 540 - 620
- 850 - 910 - 970 -1020 -1060 -1090 -1110
-1090 -1050 -1010 - 960 - 890 - 820 - 740
- 470 - 370 - 260 - 150 - 20 110 240
610 720 820 890 940 930 890
650 550 430 300 150 0
5070 0000 120343 118614 119715 118943 10 ////’“”_nhhb”/

5070 1001 120523 223974 36397 223122
5070 1002 132629 122445 47553 121117
5070 1003 93605 124372 10981 123073

5070 1004 100176 14086 22127 17638 SUDBURY 1966 RC8 0
5070 1005 200915 222512 116082 222691 - 700 - 780 RC8 1
5070 1006 218270 123049 132377 121827 -1120 -1110 RC8 2
5070 1007 171382 127079 84606 125669 - 650 - 570 RC8 3
5070 1008 199052 18650 113297 20487 370 490 RC8 &
5070 1009 150244 227139 65455 226770 830 750 RC8 5
5070 1010 152235 17789 69085 20341 RCB 6

5070 149 100177 14084 22127 17638
5070 151 119773 66341 34725 66653
5070 31 198200 105289 109110 104017
5070 185 139233 129921 52923 128414
5070 16 91349 156199 7608 154360
5070 184 211999 186798 126626 186079
5071 0000 119715 118943 120236 119416 10
5071 1001 116082 222691 49782 215326
5071 1002 132377 121827 59147 116384
5071 1003 84606 125669 12999 123122
5071 1004 113297 20487 35480 18275
5071 1005 193339 225947 122988 214860
5071 1006 221938 132637 145954 121191
5071 1007 178761 124887 103461 116349
5071 1008 202243 30954 120437 21106
5071 1009 149634 220311 81151 211450
5071 1010 152643 26698 72925 21080
5071 0031 109110 104017 33171 100400
5071 43 166152 51144 87120 44227
5071 183 154512 122135 79341 115189
5071 184 126626 186079 57328 179343
5071 32 215611 181117 141274 169573
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5. Restrictions on the input data

The x-axis must be chosen roughly in the direction of the strip. It is not
necessary to place the photographs in the comparator with the lines which con-
nect the fiducial marks parallel to the coordinate axes. However, it goes almost
without saying that if a strip triangulation is to be performed the orientation of
a photograph must not be changed between the measurements for the two models
in which it participates.

The positive direction of the x-axis may be chosen at will, but it must be
the same for all photographs of a strip.

The calibrated focal length and the measured coordinates mustbe expres-
sed in the same unit of length, that is, in practice, in microns.

The numbers in fields 1 of the coordinate cards are used to recognize
the cards of all points that beilong to the same model. Therefore, these numbers
must be the same for all points of the same model and they must be different
for different models.

In the output, this "strip-and-model' number is listed together with the
elements of the orientation matrix and with the coordinates of the projection
centre of the new photograph. Therefore, it should contain the number of that
photograph and, if possible, a code number for the strip or the job.

At least six points must be used for the relative orientation of a photo-
graph. However, since points that are used for scaling are selected from among
the points used for relative orientation, the scaling patterns 2 and 4 require at
least 7 and 8 points, respectively.

There is no upper limit to the number of points that may be used for
relative orientation of a photograph, but the strip coordinates and parallaxes
of only the first 100 of these points will be printed and punched. Those of any
remaining points can be obtained by punching for each a second card with the
measured coordinates and placing these cards behind the cards for relative
orientation.

6. Output

The program uses the on-line printer as its output device. Card output is
optional and is needed only for subsequent strip- and block-adjustment.

Model by model, the following lines are printed.
i. One line for each iteration of the relative orientation. These lines contain:

columns 1 -4: The digit 1 for the initial iteration, 2 for the intermediate itera-
tion, and 3 for the final iteration.

columns 10-79: In 14-digit fields and in floating-point notation, the corrections
aj, ap, a3, dby, and dbg.
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ii. One line for each rejected scale transfer point with:

columns 1 -4: The sequence number of the point in the set of scale transfer
points.
iil. Three lines for the orientation matrix of the new photograph. These lines
contain:
columns 1-4; Strip-and-model number.

columns 10-51: The elements of the orientation matrix, row by row.

iv. One line for the projection centre of the first photograph, but only for the
first model of a strip and for independent models.

v. One line for the projection centre of the new photograph.

vi. One line for each of the measured points. The latter lines contain:

field 1: Strip-and-model number,

field 2: Point number (the projection centre is given the point number
zero).

field 3: X-coordinate.

field 4: Y-coordinate.

field 5: Z-coordinate.

field 6: The want of intersection, that is the minimum distance between

corresponding rays.

In addition, if card output is specified, the above data for the projection
centres and the measured points is punched in cards. In the cards, the six
fields cover columns 1-4, 5-9, 10-18, 19-27, 28-36, and 37-45, respectively.
The cards can be used directly as input cards for the FORTRAN program for
strip- and block-adjustment [11].

As an example, the listing of the output data generated by the input data
in Table 6 is shown in Table 7.



Table 7.

5070
5070
5070

5070
5070
5070
5070
5070
5070
5070
5070
5070
5070
5070
5070
5070
5070
5070
5070
5070
5070

1
2
3
5071
5071
5071

5071
5071
5071
5071
5071
5071
5071
5071
5071
5071
5071
5071
5071
5071
5071
5071

TIME

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
149
151
185
16
184

0
1001
1002
1003
1004
1005
1006
1007
1008
1009
101¢C

31
43
183
184
32

Example of output

- 66 -

-0.0327096034 0.0179926156 -0.0016700507
0.0000678989 0.0027799451 0.0009854273
0.0000015948 -0.,0000010700 -0.0000005409
0.9997844773 0.0003001301 0.0207583426

-0.0009775841 1,9994669297 0.0326328184

-0.,0207374829 -0.0326460783 0.9992518153

200000 400000 600000

288000 406544 601138

200183 507345 444372 1
212152 403786 448839 -6
173167 405776 446652 -4
179140 291882 442003 -1
281260 504782 445944 -8
297498 404420 447911 10
250040 408299 450196 1
278156 300734 448328 -10
230293 509953 445246 6
231995 298852 446750 11
179141 291882 442006 1
199445 349124 451296 -2
274622 387229 453576 2
218483 411062 450479 -1
171050 437523 447433 -9
291734 468249 447123 15

N.0110158977 0.0312391395 0.0659782488

-0.0017823685 -0.0010266709 -0.0005603526

-0.0000047872 -0.0000028771 -0.0000210818
0.9965921121 -0.0646230940 0.0512641957
0.0634396546 0.9976876574 0.0243874670

-0.0527216489 -0.0210521744 0.9983873165

367431 415268 600230

281261 504762 445974 5
297499 404424 447894 -3
250032 408296 450161 -9
278157 300749 448352 9
356365 505389 448190 -8
384739 414949 449528 4
343145 407434 449026 9
366171 314874 451849 -3
314374 501415 446898 3
317948 308588 449683 -7
274624 387225 453596 -14
331185 333829 449916 -17
319133 404738 4499717 -8
291733 468250 447138 -1
376985 461299 450801 -15

8.4 SECUNDS

-0.0023767904
0.0000115503
-

0.0767361294'>

0.0163212603
-0.0033980163
0.0000154507

0.1121171144
-0.0016480327
-0.0000141855

0.0238870539
-0.0109504055
-0.0000164685
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7. Error detection

The program contains a number of tests to detect certain errors in the
data deck. If one of these errors occurs, an error message will be printed, the
triangulation of the current strip will be discontinued, and the remaining cards
of this strip will be skipped.

The computations will be resumed with the next strip. However, thiswill
be done only if earlier a card with zeros or blanks in field 1 is not met. For
this reason, it is advisable to punch a positive non-zero number in field 1 of all
the cards with the lens correction table.

The error messages and their possible causes are the following:

i. ERROR x. EXIT AT CARD yy

In this case, an error occurs in one of the cards with general information
on the strip triangulation. The number x is a code number that indicates the
nature of the error. The number yy is the serial number of the last of these
cards that has beenread. The code numbers and their meaning are the following.

l: The code number of the pattern for the scaling of models, punched in
field 1 of the first card, is not in the range from zero to four.

2: The number of values in the lens correction table, punched in field 1
of the second card, is greater than the allowed maximum of 162.

3: According to the serial number on the card, the cards with general
information are not in the correct sequence.

ii. ERROR x. EXIT AT CARD yyyy zzzzz

In this case, an error occurs in one of the cards with photograph coordi-
nates. The number x is a code number that indicates the nature of the error.
The numbers yyyy and zzzzz are strip-and-model number and point number,
respectively, in the last card that has been read. The code numbers and their
meaning are hére the following.

4: A cardis considered to be a principal point card (either because it is
placed directly behind the last of the cards with general information
or because the model number in the card is different from that in the
preceding coordinate card) but the specified number of points for
relative orientation, punched in columns 38-40, is smaller than six.

5: The model on which the computer has been operating contains fewer
coordinate cards of measured points than the number of points
specified for relative orientation.

6: The number of points for relative orientation, punched in columns
38-40 of the principal point card of the preceding model is smaller
than the seven or eight which the selected scaling pattern (2 or 4)
requires.
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The following errors do not produce an error message:

i. No standard scaling pattern has been selected and also in the preceding
model no points have been marked by a l-punch in column 40.

If this occurs, a new triangulation will be started, beginning with the
current model.

Because this omission does not cause an error exit, it can be used to
perform triangulations of independent models without repeating the cards with
general information and without using a card with a negative non-zero number in
field 1 to separate the models. For each model, the unit matrix will be retained
as the orientation matrix of the first photograph and the value of the base com-
ponent by in the first data card will be used for scaling.

If a standard scaling pattern has not been specified, the absence of a
l-punch in the last model of a strip can be used in the same way for the consecu-
tive triangulation of different strips.

ii. The program has drawn the wrong conclusion concerning whether the
photographs are in positive or in negative position.

This conclusion is based upon the sign of the difference of the x-coordi-
nates of the first orientation point, after shifting the origins to the principal
points. When the convergence of the camera axes is very great, for some of the
points this sign may differ from the sign in the case of parallel axes. If thisis
the case for the first orientation point, the model that is computed will be upside
down. The correct result can be obtained by placing the card of a suitable point
directly behind the principal point card.

iii. An error occurs in one of the coordinates punched in the input cards.

The program can detect such an error only if it occurs in a scale trans-
fer point and affects the height of the point. In that case, that point will still be
used for relative orientation but it will not be used for scaling. If the affected
point shows only a small want of intersection, the error will not appreciably
affect the triangulation.

8. Block diagram of the FORTRAN program

The computation starts at Block A and proceeds from each section to the
next one, unless specifically stated otherwise. The number above each section
is the statement number of its first FORTRAN statement.

Block A Initialize the triangulation

1000

Read the first data card with assorted data on the strip triangulation and read
the card or cards with the lens correction table.

Check the card sequence and process the data.

Read the card with the coordinates of the principal points of the first model.
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1018

Initialize counters for triangulation and assign coordinates to the first projec-
tion centre.

Block B Perform the relative orientation

1100

Initialize counters for relative orientation.
Check and store the number of points to be used for relative orientation.
Zero the normal equations.

1110

Use the read-a-point subroutine in section 2010 to read the cards of the points
that are to be used in the first iteration of the relative orientation for the cur-
rent model and to perform the following operations.

i.  Reduce the measured coordinates to coordinates with origins in the princi-
pal points of the two photographs and multiply them by the correction factors
for film shrinkage.

ii. Use the first point in the first model to decide whether the photographs are
in positive or in negative position.

lii. Use equations (6.1), (6.3), and (6.5) of Chapter II to correct the photographl
coordinates for lens distortion and, if specified, for refraction and for earth
curvature.

iv. Divide the corrected photograph coordinates by the calibrated focal length
and, if the photographs were measured in positive position, change the signs.
Further, store the resulting coordinates in the array PHC. If a point is marked
by a l-punch in column 40, store its point number in the array LIST.

Compute the correction equation (IV 7. 2) for the first iteration of the relative
orientation and add its contribution to the normal equations (IV5.4).

Finally, solve the normal equations, print the solution, and compute the matrix
R from its parameters with equation (III 4. 6).

1150

Store the computed values of the base components b, and b,,.

Store the matrix R as the orientation matrix Ai+1 of the new photograph.

If the absolute values of the five orientation parameters are all smaller than
1/30th of a radian, go to section 1300; otherwise go to section 1200.

1200

Zero the normal equations.

For each of the earlier read points, compute the correction equation (IV 3. 7)
for relative orientation and add its contribution to the normal equations.

Solve the normal equations, print the solution, and compute the matrix R.
Premultiply the orientation matrix of the new photograph by the matrix R and
add the computed corrections to the base components.
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1300

Use section 1200 to perform the final iteration of the relative orientation. This
time, however, read also the remaining points, if any, that are to be used for
relative orientation and add their contributions to the normal equations.

Go to section 1400.

—

Block C Scale the model

1400

For the first model of the strip, make the base component bx equal to the value
specified in the first data card.

For all other models, compute the scale factor. For this purpose, if in the pre-
ceding model no point has been marked by a l-punch in column 40, go to section|
1410. If one or more points have been marked in this wdy, go to section 1430.

1410 and 1430

For each point that has been designated as a scale transfer point, replace the
distance from the point in the preceding model to the plane z = 0 in the common
photograph by a scale factor which is the ratio of the distances in the two
models.

1440

Compute the mean of the scale factors and store this as the base component
by. Eliminate in an iterative procedure one at a time those scale factors which|
differ from the mean by more than 5 parts in ten thousand. If two scale factors
differ too much from the mean by practically the same amount, eliminate the
second one.

By way of identification, print for each discarded point the number that gives
its position in the set of scale transfer points for the current model.

Block D Complete the absolute orientation

1500

Multiply the base components bY and bZ by the scale factor.

For each model except the first one, compute the final values of the orientation
matrix and of the base vector by pre-multiplying the above computed values by
the orientation matrix of the first photograph of the model. Print the orienta-
tion matrix of the new photograph. For the first model only, print the coordi-
nates of the first projection centre.

Compute and print the coordinates of the new projection centre.

If this is specified on the first data card, punch the coordinates.

Block E Compute strip coordinates

1600
Initialize counters for selecting the scale transfer points to be used in the next
meodel.
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1610

Use section 1200 to locate the photograph coordinates of the stored points and
use the read-a-point subroutine to read the cards and to compute the photograph
coordinates of all other points which belong to the same model.

For each point, use subroutines to compute the position vector of the point with
respect to an origin in the projection centre of the firstphotograph of the model
and the want of intersection. Then go to section 1620.

| Finally, after reading a card with a different strip-and-model number, go to
!‘section 1700.

1620

ICompute the strip coordinates of the point that is being processed.

Print and, if that is specified, punch the coordinates and the wantof intersection.
If the point is a scale transfer point for the next model, compute and store its
distance to the plane z = 0 of the new photograph of the model.

IReturn to section 1200 and use that section as specified in section 1610.

Block F Prepare for the next model

1700

If the last card read has a negative non-zero number in field 1, return to state-
ment 1000 to start the triangulation of the next strip.

If this card has zeros or blanks in that field, end the computations.

Otherwise, the card is the principal point card of the next model. Set counters
and shift data in preparation for the triangulation of that model. If one or more
distances for scaling that model are available, go to section 1100. If not, go to
section 1018.

9. Symbols in the FORTRAN statements

AL, and AL1 to ALS9: Array for the orientation matrix Ai of the first photo-
graph of amodel, and its elements (column after
column).

AR, and AR1 to AR9: Array for the orientation matrix Ai+1 of the second
photograph of a model, and its elements.

R, and Rl to R9Y: Array for the matrix R for correction of the relative
orientation, and its elements.

PP, and PPl to PP4: Array for the coordinates of the principal points, and

its elements.

W, and U1, V1, U2, V2: Array for temporary storage of the photograph co-
ordinates of a point in first and second photograph of
a model, and its elements.

ID and PHC: Arrays for point identification and @otograph coordi-
nates of points used for the relative orientation.

CLIST: ' Array for the corrections for lens distortion.

T, and Tl to T9: Array for the correction equations, and its elements.

Also used for temporary storage.



St
SLIST:

F, CX, CY, BX1, CE, CR:
DELR:

X1, Y1, Z1:

X2, Y2, Z2:

Al, A2, A3, DBY, DBZ:
BX, BY, BZ:
PX, PY, PZ:

WANT:
I1X, 1Y, 1Z:
LIST and LYST:

ID1 and ID2:
K, KA, KB, KC, KD, MOD:

Kl:
K2:

K3:

K4:

K4MAX:

K5:

K6, K7, K8:
KK:

KK1, KK2:

KKK:
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Array for the normal equations.

Array for the distances and the scale factors com-
puted for each scale transfer point.

The quantities in fields 3 to 8 of the first data card.

The interval of the radial distances for which the
lens correction is listed.

The components of the vector Xi of the point in the
first photograph of a model.

The components of the vector X, of the point in the
second photograph.

The parameters of relative orientation.

The three base components.

The coordinates of the projection centre of the first
photograph of a model.

The want of intersection.

The strip coordinates of the measured points.
Arrays for the point identification of the scale trans-
fer points.

Locations for storing the model number.

Indices which control the exits from the subroutines
and the transfers from one part of the main routine
to another. In particular, K progresses from 1 to 4
during the computation of each model. MOD is equal
to 1 for the first model and is equal to 2 for all fol-
lowing models.

Counter for the points used for relative orientation.

Counter for locating the coordinates of those points
in the array PHC.

Index which is used in the determination of positive
or negative position of the photographs.

Index which specifies the number of points to be used
for relative orientation.

Index which states how many of these points can be
accommodated in arrays in storage.

Index which is equal to the smaller one of K4 and
K4MAX.

Locations for temporary storage.

Index which contains the code for the specified
scaling pattern.

Indices which indicate whether any point has been
marked for scale transfer by means of a 1-punch.

Index which indicates whether the correction equa-
tions are to be given different weights.
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10. Listing of the FORTRAN statements

§.0001

$.0002

$.0003
$.0004

$.0005

$.0006
§.0007
§.0008
$.0009
§.0010
$.0011
$.0012
5.0013

$.0014
$.0015
$.0016

$.0017
s.0018

§.0019
5.0020
§.0021
$.0022
§.0023
$.0024
$.0025
$.0026

§.0027
$.0028
$.0029

w
oo &S~ WN

94

anoaoaOnon

1000

1001

aAann

1010
1011

ANALYTICAL STRIP TRIANGULATION.
N.R.C. PROGRAM OF DECEMBER 1966 - G.H.S.
DOUBLE PRECISION R(9),AR(12),AL(9),W(4),PP(4),T(9),

1 S(20),CLIST(162),SLIST(10),PHC(404)

DOUBLE PRECISION R1,R2,R3,R4,R5,R6,R7,R8,R9, AR1,AR2,
AR3,AR4,AR5,AR6,AR7 ,ARB,AR9, BX,BY,BZ, AL1,AL2,AL3,
AL4,AL5,AL6,AL7 ,AL8,AL9, U1,V1,U2,V2, PP1,PP2,PP3,
pP4, T1,T2,T3,T4,T5,T6,T7,T8,T9, Al,A2,A3,DBY,DBZ,
x1,Y1,z1,X2,Y2,22,PX,PY,PZ, DELR,WANT, F,CX,CY,BX1,
CE,CR

DIMENSION ID(101),LIST(10),LYST(10)

COMMON R1,R2,R3,R4,R5,R6,R7,R8,R9, AR1,AR2,

1 AR3,AR4,AR5,AR6,AR7,AR8,AR9, BX,BY,BZ, AL1,AL2,AL3,

2 AL4,ALS5,AL6,AL7,AL8,AL9, Ul,V1,U2,V2, PP1,PP2,PP3,

3 pP4, T1,T2,T3,T4,T5,T6,T7,T8,T9, S
EQUIVALENCE (R1,R(1)), (AR1,AR(1)), (AL1,AL(1)),

1 (u1l,w(1)), (pP1l,PP(1)), (T1,T(1)), (Al,s(16)),

2 (A2,s8(17)), (A3,s(18)), (pBY,S(19)), (DBZ,S(20))

wn &N

FORMAT (14,15,F7.3,2F7.5,F7.0,F7.3,F7.4,17,20X,12)
FORMAT (I4, F5.1, 9F7.2, 6X, 12)

FORMAT (I4, IS5, 4F7.3, I3)

FORMAT (1H I4, 5X, 5F14.10)

FORMAT (14, IS5, 419)

FORMAT (1H 14, 15, 4I9)

FORMAT (6HOERROR I2, 14H. EXIT AT CARD216)
FORMAT (1H1)

SELECT CARD READER, CARD PUNCH, AND PRINTER
IRCD =1

IWCD = 2

IPR =3

CALCULATE ACTUAL COMPUTATION TIME
FORMAT (7H0O TIME F5.1, 8H SECONDS)
CALL CLOCK (ITEM1)
BLOCK A INITIALIZE THE TRIANGULATION

READ CODES, FOCAL LENGTH, ETC

READ (IRCD,1) KK, KKK, F, CX, CY, BX1l, CE, CR, NOCRD,
CR = CR / 1000.

CE =(CE / 12756. + CR) / (F*F)

WRITE (IPR,9)

KK = KK + 1

K8 =1

IF (KK) 2901, 2901, 1001

IF (KK-5) 1010, 1010, 2901
READ CORRECTION TABLE
K1 =1

K2 K1 + 8
READ (IRCD,2) k3, T3, (CLIST(I),I=K1,K2), K5

K7
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$.0030 IF (K1-1) 1012, 1012, 1014
$.0031 1012 K6 = K3
$.0032 DELR = T3
$.0033 K8 = 2
$.0034 IF (K6-162) 1014, 1014, 2902
c CHECK CARD SEQUENCE
$.0035 1014 K7 = K7 + 1
$.0036 K8 =3
$.0037 IF (K5-K7) 2902, 1015, 2902
$.0038 1015 K1 =K1l + 9
$.0039 IF (K6-K2) 1016, 1016, 1011
c DIVIDE RADIAL CORRECTION BY INTERVAL
$.0040 1016 DO 1017 I = 1,Ké
$.0041 1017 CLIST(I) = CLIST(I) / (DELR * 1000.)
C
c READ FIRST CARD OF FIRST MODEL
C
$.0042 K4MAX = 100
$.0043 READ (IRCD,3) ID1, ID2, (PP(I),I=1,4), K6
$.0044 1018 K& = K6
$.0045 MOD =1
$.0046 K3 =1
$.0047 PX = 200000.
S.0048 PY = 400000.
$.0049 PZ = 600000.
C
C
C BLOCK B PERFORM THE RELATIVE ORIENTATION
C
c FIRST ITERATION
C
$.0050 1100 K =1
§.0051 KA = 1
$.0052 K2 =1
$.0053 KK1 =1
$.0054 WRITE (IPR,55)
$.0055 po 1101 1I=1,10
$.0056 1101 LIST(I) = -1
$.0057 LI =1
$.0058 K5 = K4MAX
$.0059 IF (K4 - K4MAX) 1102, 2030, 2030
$.0060 1102 K5 = K4
$.0061 K8 = 4
$.0062 IF (K4-6) 2903, 2030, 2030
c
c READ FIRST GROUP OF ORIENTATION POINTS
C
$.0063 1110 Do 1121 K1 = 1,K5
$.0064 GO TO 2010
S.0065 1111 DO 1112 I = 1,4
$.0066 PHC(K2) = W(I)
$.0067 1112 K2 = K2 + 1
C TAG POINT FOR SCALING NEXT MODEL
$.0068 IF (LI-10) 1113, 1113, 1120
5.0069 1113 IF (K6 - 1) 1120, 1114, 1120
$.0070 1114 LIST(LI) = ID(K1l)
$.0071 LI = LI + 1

$.0072 KK1 = 2



$.0073
$.0074
$.0075
$.0076
§.0077
5.0078

$.0079
$.0080

$.0081

5.0082
$.0083
§.0084
§.0085

§.0086
5.0087
5$.0088
$.0089

$.0090
§.0091
5.0092

5.0093
$.0094
$.0095
5.0096
§.0097
5.0098
5.0099

$.0100
§.0101
5.0102
§.0103

$.0104
$.0105
§.0106
§.0107
$.0108

$.0109

e N NN

e NeNe]

OO0
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CORRECTION EQUATION FOR FIRST ITERATION
T2 IS THE COEFFICIENT OF 2A2+DB2
T6 IS IN SECOND PART OF EQUATION

T1 =Vl * V2 + 1.
T2 ==Vl % U2

T3 ==U2

T4 = U2 - Ul

T5 = Ul * V2

T6 = V2 - V1

FOR THE CONTRIBUTION TO THE NORMAL EQUATIONS,
GO TO 2090
CONTINUE

TO SOLVE THE NORMAL EQUATIONS,
GO TO 2100

BY = DBY

BZ = DBZ

DO 1151 1I=1,9

AR(I) = R(I)

TEST SIZE OF CORRECTIONS

DO 1152 1I=16,20

IF (30. * S(I)) 1200, 1152, 1200
CONTINUE

GO TO 1300

SECOND ITERATION, USED ONLY IF
FIRST CORRECTIONS ARE LARGE

K = 2
K2 =1
GO TO 2030

USE FIRST GROUP OF ORIENTATION POINTS
DO 1204 K1 = 1,KS

DO 1203 1I=1,4

W(I) = PHC(K2)

K2 = K2 +1

GO TO 2040

CONTINUE

GO0 TO (2999, 2100, 1302, 1602), K

FINAL ITERATION

K =3
KB =1
GO TO 1201

GO TO (1204, 1303), KB
USE REMAINING ORIENTATION POINTS, IF ANY
KB = 2

K1 = K4MAX + 1
K8 = K5
K8 = K8 + 1

IF (K8-K4) 2010, 2010, 2100

BLOCK C SCALE THE MODEL

1400 KA = 2



§.0110
§.0111
§.0112
$.0113

§.0114

$.0115
$.0116
§.0117
$.0118
'$.0119
$.0120
$.0121
§.0122

§.0123
§.0124
$.0125

$.0126
8.0127
$.0128
$.0129
$.0139
§.0131

§.0132
$.0133
$.0134
8.0135
$.0136

§.0137
$.0138
§.0139
§.0140
§.0141
§.0142
$.0143
S.0144

§.0145
S.0146
$.0147
$.0148
$.0149
$.0150
$.0151
$.0152
S.0153
$.0154

1401

1410

1411
1412

1413
1414
1420
1421

1422

1423

1424

aaa

1430
1431

1432

[eNeNe]

1440

1442

1443

1451
1452
1453
1454

1455
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GO TO (1460, 1401), MOD

KD =1
BX = 1.
J =0

TO COMPUTE SCALE FACTORS,
GO TO (1410, 1430), KK2

USE SPECIFIED REGULAR POINT SEQUENCE
KKB = 3

GO TO (2999, 1411, 1412, 1414, 1413), KK
KKB = 2

KKA = 2
GO TO 1420
KKB = 4
KKA =1

DO 1424 M2 = KKA,KKB

REPLACE DISTANCE IN SLIST BY SCALE FACTOR
DO 1422 I = 1,4

K7 = 4 * M2 - 4 + I

w(I) = PHC(K7)

FOR X2, X1, D, B*X2, LAMBDAl, AND 0,5 LAMBDA3,
GO TO 2040

J = J + 1

SLIST(J) = SLIST(J) / T6

€0 TO (1424, 1432), KK2

CONTINUE

GO TO 1440

SCALE WITH TAGGED POINTS

DO 1432 M1 = 1,10

IF (LYST(M1)) 1440, 1431, 1431

DO 1432 M2 = 1,K5

IF (ID(M2)-LYST(M1)) 1432, 1421, 1432
CONTINUE

MEAN THE SCALE FACTORS

T1 = 0.

BX = 0.

DO 1443 I = 1,J

IF (SLIST(I)) 1443, 2999, 1442

BX = BX + SLIST(I)

Tl = T1 + 1.

CONTINUE

BX = BX / Tl

DISCARD ANOMALOUS SCALE FACTORS
T2 = 0,

DO 1455 I = 1,J
IF (SLIST(I)) 1455, 2999, 1451

T3 = SLIST(I) - BX

IF (T3) 1452, 1455, 1453

T3 = ~T3

IF (T3 - .9999999999 * T2) 1455, 1454, 1454
K7 = 1

T2 = T3

CONTINUE



-7 -

§.0155 IF (T2 / BX - .0005) 1500, 1500, 1456
§.0156 1456 SLIST(K7) = -SLIST(K7)
5.0157 WRITE (IPR,55) K7
§.0158 GO TO 1440
C
$.0159 1460 BX = BX1
C
C
c BLOCK D COMPLETE THE ABSOLUTE ORIENTATION
C
c BASE COMPONENTS AND ORIENTATION MATRIX
C
$.0160 1500 BY = BX * BY
5.0161 BZ = BX * B2
$.0162 GO TO (1510, 1501), MOD
5.0163 1501 DO 1502 I = 1,9
$.0164 1502 R(I) = AL(I)
$.0165 J = 12
5.0166 GO TO 2210
c
C PRINT MATRIX AND COORDINATES OF CENTRES
C
$.0167 1510 DO 1511 1=1,3
$.0168 1511 WRITE (IPR,4) ID1, AR(I), AR(I+3), AR(I+6)
$.0169 WRITE (IPR,55)
S.0170 K7 =0
$.0171 GO TO (1512, 1514), MOD
5.0172 1512 1IX = PX
5.0173 IY = PY
§.0174 12 = PZ
5.0175 WRITE (IPR,55) ID1l, K7, IX, 1Y, IZ
5.0176 IF (NOCRD) 1514, 1513, 1514
§.0177 1513 WRITE (IwcD,5) ID1l, K7, IX, 1Y, IZ
5.0178 1514 1IX = PX + BX
5.0179 IY = PY + BY
$.0180 1z = PZ + BZ
5.0181 WRITE (IPR,55) ID1l, K7, IX, 1Y, 1z
5.0182 IF (NOCRD) 1520, 1515, 1520
$.0183 1515 WRITE (IwcD,5) ID1, K7, IX, 1Y, IZ
C
c
c BLOCK E COMPUTE STRIP COORDINATES
C
C INITIALIZE TRIANGULATION
C
S.0184 1520 KD = 2
c SET COUNTERS FOR THE COMPUTATION OF DISTANCES
$.0185 GO TO (1521, 1527), KK1
§.0186 1521 KKB = 5
§.0187 GO TO (1600, 1526, 1523, 1524, 1525), KK
§.0188 1523 KKB =17
$.0189 KKA = 6
§.0190 GO TO 1527
5.0191 1524 KKB = 6
$.0192 KKA =4
$.0193 GO TO 1527
$.0194 1525 KKB = 8

$.0195 1526 KKA 5
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§.0196 1527 KKC =1
c
c TRIANGULATE STORED POINTS
c
5.0197 1600 K = 4
5.0198 KB =1
$.0199 K2 =1
$.0200 GO TO 1202
c
c TRIANGULATE ADDITIONAL POINTS
c
§.0202 1602 KB = 2
$.0203 K1 = K4MAX + 1
$.0204 1603 GO TO 2010
c
c POSITION VECTOR AND WANT OF INTERSECTION
c
$.0205 1610 IX = T4 + PX
$.0206 1Y = T5 + PY
$.0207 1Z = T6 + PZ
c ROUND OFF PROPERLY
§.0208 K7 = WANT * DSQRT(T9) + .5
$.0209 IF (WANT) 1611, 1612, 1612
8.0210 1611 K7 = K7 -1
s$.0211 1612 WRITE (IPR,55) 1ID1l, ID(K1l), IX, 1Y, IZ, K7
$.0212 IF (NOCRD) 1614, 1613, 1614
$.0213 1613 WRITE (IwWCD,5) 1ID1l, ID(K1l), IX, 1Y, IZ, K7
8$.0214 1614 GO TO (1620, 1603), KB
c
c STORE DISTANCE FOR SCALING NEXT MODEL
c
5.0215 1620 GO TO (1621, 1630), KK1
$.0216 1621 GO TO (1204, 1622, 1622, 1622, 1622), KK
3.0217 1622 IF (KKA-K1) 1623, 1623, 1204
$.0218 1623 IF (K1-KKB) 1624, 1624, 1204
$.0219 1624 SLIST(KKC) = AR7*(T4-BX) + ARB*(T5-BY) + AR9*(T6-BZ)
§.0220 KKC = KKC + 1
$.0221 GO TO 1204
c
§.02.2 1630 IF (KKC-10) 1631, 1631, 1204
$.0223 1631 IF (LIST(KKC)-ID(K1l)) 1204, 1624, 1204
c
c
c BLOCK F PREPARE FOR NEXT MODEL
c
$.0224 1700 K8 = 5
$.0225 GO TO (2904, 1701), KA
5.0226 1701 1ID1 = ID2
s.0227 IF (IDl1) 1000, 2999, 1702
$.0228 1702 Do 1703 1I=1,4
5.0229 1703 PP(I) = W(I)
$.0230 GO TO (1704, 1706), KK1
§.0231 1704 Go TO (1018, 1706, 1705, 1706, 1705), KK
$.0232 1705 K8 = 6
$.0233 IF (KKB - K4) 1706, 1706, 2904
$.0234 1706 K& = K6

$.0235 po 1707 I = 1,10



§.0236
§.0237
§.0238
§.0239
§.0240
$.0241
5.0242
§.0243
5.0244

§.0245
§.0246
$.0247
$.0248
§.0249
§.0250

$.0251
$.0252

§.0253
$.0254
$.0255

$.0256
§.0257
5.0258
$.0259
§.0260
$.0261
5.0262
§.0263
5.0264
§.0265
$.0266
5.0267
5.0268
§.0269

§.0270
§.0271
$.0272

§.0273
§.0274
$.0275
$.0276

§.0277

[sHeEsNe Ko

[eNeNe]

1707

1708

2010

2011

2012

2013
2021

2022

2024

2025

2030
2031

2040

2050
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LYST(I) = LIST(I)

KK2 = KK1

PX = PX + BX
PY = PY + BY
PZ = PZ + BZ
DO 1708 I = 1,9
AL(I) = AR(I)
MOD = 2

GO TO 1100
SUBROUTINES

READ A POINT
READ (IRCD,3) 1ID2, ID(K1l), (W(I),I=1,4), K6
IF (ID2-ID1) 1700, 2011, 1700

Ul = (Ul - PP1) * CX

V1 = (V1 - PP2) * CY

u2 = (U2 - PP3) * CX

v2 = (V2 - PP4) * CY
CORRECT PHOTOGRAPH COORDINATES
KC =1

T1l = Ul * Ul + Vvl #* v1

USE FIRST POINT TO DEFINE POSITION OF PHOTOGRAPH
GO TO (2012, 2021), K3

K3 = 2

IF (Uu2-Ul) 2013, 2013, 2021

FOR ROTATION TO NEGATIVE POSITION

F =-F
T2 = DSQRT (T1)

J = T2 / DELR + 1.
T3 = J

T3 = DELR * T3 - T2

T4 & (T3*CLIST(J)+(DELR-T3)*CLIST(J+1))/T2 +CR +CE*T1
K7 = KC + 1

DO 2022 I = KC,K7

W(I) = (W(I) + W(I) * T4) / F

GO TO (2024, 2999, 2025), KC

KC = 3

T1 = U2 % U2 + V2 % V2

GO TO 2021

GO TO (1111, 2999, 2040, 2040), K

ZERO THE NORMAL EQUATIONS
DO 2031 M1l = 1,20

s(M1) = 0.

G0 TO (1110, 1202, 1202), K

VECTOR X2

X2 = ARl * U2 + AR4 * V2 4+ AR7
Y2 = AR2 * U2 + AR5 * V2 + ARS
z2 = AR3 * U2 + AR6 * V2 + AR9

GO TO (2050, 2230),KA

CORRECTION EQUATION FOR SECOND ITERATION
CROSS PRODUCT B * Ul
T7 = BY -~ V1 * BZ



$.0278
$.0279

$.0280
§.0281
$.0282

$.0283
$.0284
$.0285
5.0286

$.0287
§.0288
$.0289
§.0290
§.0291

$.0292
$.0293
5.0294
$.0295
$.0296
$.0297

$.0298
$.0299
$.0300
$.0301
§.0302
$.0303
$.0304
§.0305
$.0306
$.0307
$.0308
$.0309
$.0310
$.0311
§.0312

§.0313
5.0314
§.0315
§$.0316
5.0317
$.0318
$.0319
$.0320
§.0321
$.0322
§.0323
$.0324

aaon

2051
2052

2053

2090

2091

2100

103
102
101

105

120

- 80 -

T8 = Ul % BZ - 1.

T9 = V1 - Ul * BY

CROSS PRODUCT X2 % (B * Ul)

Tl = Y2 * T9 - 22 * T8

T2 = 22 * T7 - X2 * T9

T3 = X2 * T8 - Y2 * T7

CROSS PRODUCT Ul * X2 AND Ul * X2 . B
T4 = X2 - Ul * Z2

TS5 = Ul * Y2 - V1 * X2

T6 Y2 - VI * 22 - T4 * BY - T5 * BZ

GO TO (2999, 2090, 2051), K

APPLY WEIGHT

IF (KKK) 2090, 2090, 2052

T7 = 1./((.144UL*UL+VI*,VI)*%24+ (. 14+U2%U2+4V2%V2)*%2)

T7 = DSQRT(T7)
DO 2053 I = 1,6
T(1) = T7 * T(I)

FORM THE NORMAL EQUATIONS

M3 =1

DO 2091 M1 =1,5

DO 2091 M2 = M1,6

S(M3) = S(M3) + T(M1) * T(M2)
M3 = M3+1

Go TO (1121, 1204, 1301), K

SOLVE THE NORMAL EQUATIONS

ELIMINATION

K7 =0

Do 101 L1 = 2,5

M1 = K7 + 1

K7 = M1 + 7 - L1

M3 = K7

M4 = Ml + 1

M5 = K7 -1

DO 102 L2 = M4,M5

T1l = S(L2) / s(Ml)

Do 103 M2 = L2,K7

M3 = M3 + 1

S(M3) = S(M3) - T1 * S(M2)
s(L2) = T1

S(K7) = S(KR7) / S(M1)

DBZ = DBZ / 8(19)

BACK SUBSTITUTION

M1 = 20

DO 105 L1 = 2,5

M1 =M1l -1

M2 = 20

M3 = M3 - 2

S(M1) = S(M3)

DO 105 L2 = 2,L1

M3 = M3 =1

S(M1) = S(M1l) - S(M2) * S(M3)
M2 = M2 -1

6o To ( 120, 2200, 2200), K
A2 = A2 - DBZ

ORTHOGONAL MATRIX, COLUMNWISE
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2200 WRITE (IPR,4) K, (S(I),I=16,20)

2201

2201

[t HeEeErsNsErEeE2K2]

an

2210

2211

2220

anoaaon

2230
2231

2232
2233

Tl = ,5 % Al

T2 = .5 % A2

T3 = ,5 % A3

R1 = T2 * A2 + T3 * A3

RS = T3 * A3 + T1 * Al

R9 = Tl * Al + T2 * A2

R2 = T1 * A2 + A3

R4 = Tl * A2 - A3

R3 = T3 * Al - A2

R7 = T3 * Al + A2

R6 = T2 * A3 + Al

RS = T2 * A3 - Al

T8 =1, + .5 % R9 + T3 * T3

DO 2201 1=1,9

R(I) = R(I) / T8

R1 = 1. - R1

RS = 1. - RS

R9 = 1. - R9

FOR ACCURATE LAST DIGIT, COMPUTE INSTEAD
T7 = ,5 % (R9 + T3 * A3)

T8 =1, / (1. + T7)

T8 = T8 + ((.5 - T8 + .5) - T7 * T8) / (1. + T7)
DO 2201 1I=1,9

R(I) = R(I) * T8

R1 = .5 - Rl + .5

R5 = .5 - R5 + .5

RY = ,5 - R9 + .5

J = 9

GO TO (1150, 2210, 2210), K

REPLACE MATRIX AR() BY MATRIX PRODUCT R() * AR()
Do 2211 I = 1,J,3

T1 = AR(I)

T2 = AR(I+1)

T3 = AR(I+2)

AR(I) = R1 * T1 4+ R4 * T2 + R7 * T3
AR(I+1)= R2 * T1 + R5 * T2 + R8 * T3
AR(I+2)= R3 * T1 + R6 * T2 + RO * T3
IF (J-9) 2999, 2220, 1510

BY = BY + DBY

BZ = BZ + DBZ

GO TO (1300, 1300, 1400), K

POSITION VECTOR IN STRIP COORDINATE SYSTEM
X = P1 + LAMBDAl X1 4+ 0.5 LAMBDA3 D
VECTOR X1

GO TO (2231, 2232), MOD

X1 = Ul

Y1 = V1

z1 = 1,

GO TO 2234

GO TO (2231, 2233), KD

X1 = ALl * Ul + AL4 * V1 4 AL7
Y1 = AL2 * Ul + AL5 * V1 + ALS
z1 = AL3 * Ul + AL6 * V1 + AL9
CROSS PRODUCT D = X1 * X2, AND D.D
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$.0366 2234 T1 = Yl % 22 -~ 721 % Y2
$.0367 T2 = 21 * X2 - X1 % 22
$.0368 T3 = X1 * Y2 ~ Y1 * X2
$.0369 T9 = Tl *# T1 + T2 * T2 + T3 % T3
c CROSS PRODUCT B * X2
$.0370 T4 = BY * 22 - BZ * Y2
5.0371 T5 = BZ * X2 -~ BX % 22
§.0372 T6 = BX * Y2 - BY * X2
c LAMBDAl, LAMBDA3, AND 0.5 LAMBDA3
§.0373 T7 = (T4 * TL + T5 * T2 + T6 * T3I) / T9
§.0374 WANT = (BX * T1 + BY * T2 + BZ * T3) / T9
$.0375 T8 = 0.5 * WANT
C POSITION VECTOR, REFERRED TO ORIGIN IN FIRST CENTRE
$.0376 T4 = T7 * X1 + T8 * T1
§.0377 T5 = T7 * Y1 + T8 * T2
$.0378 T6 = T7 * 21 + T8 * T3
$.0379 GO TO (1423, 1610), KD
C
C ERROR MESSAGES
$.0380 2901 K5 = K7
$.0381 2902 WRITE (IPR,6) K8, K5
C
$.0382 2910 READ (IRCD,3) ID2
$.0383 2911 IF (ID2) 1000, 2999, 2910
C
$.0384 2903 WRITE (IPR,6) K8, ID1l, ID2
$.0385 GO TO 2910
$.0386 2904 WRITE (IPR,6) K8, ID2, ID(K1l)
$.0387 GO TO 2911
c
§.0388 2999 CALL CLOCK (ITEM2)
$.0389 SEC = (ITEM1 - ITEM2) / 76800.
$.0390 WRITE (IPR,94) SEC
$.0391 CALL EXIT
c

§.0392 END
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Notes on the use of the FORTRAN program for analytical strip triangulation
in publication AP-PR 34

The use of this program with a compiler that has not exactly the same
features as the one used on the IBM S/360 at the NRC laboratories may require one or
more of the following modifications in the program.

i. Appropriate changes in the read and write statements and in the associated state-
ments S.0014, 15, and 16 may have to be made.

ii. The statements S.0017, 18, 388, 389, and 390 which make use of the CLOCK
subroutine in the compiler package may have to be eliminated. In that case, statement
S.0391 receives the label 2999. Replace S.0391 by the appropriate STOP statement.

iii. If the compiler requires listing the variables in COMMON from the end of the
COMMON storage to the beginning, as for the IBM 1620, the sequence of the variables
in statement S. 0004 must be reversed.

iv. If the compiler cannot deal with some of the entries into DO-loops, as in the case
of the compilers for the IBM 7094, some or all of the possibly offending DO-loops must
be changed into IF-loops. Insert the following statements in the place of the ones in the
program listing:

S. 0063 1110 K1 = 1

S.0080 1121 K1 = K1 + 1
S.008] IF (K1-K5) 2010, 2010, 2100

S.0093 1202 K1 = 0
1205 K1 Kl +1

H

S.009& 1204 IF (K1-K5) 1205, 1206, 1206
S.0099 1206 GO TO (2999, 2100, 1302, 1602), K

S.0122 1420 M2 = KKA

S.0130 1424 M2 = M2 + 1

S.0131 IF (M2-KKB) 1421, 1421, 1440
S.0132 1430 Ml = 0

1435 M1 = M1 + 1
S.0134 1431 M2 = 0

1436 M2 = M2 + 1

S.0136 1432 IF (M2-K5) 1436, 1437, 1437
1437 IF (M1-10) 1435, 1440, 1440

Prospective users are requested to punch their own card deck from the listing.
The listing was typed in order to make it easy to read and it was proven to be free from
errors by punching a carddeck from the listing and testing this deck. Incase difficulties
should occur in making a program operational, some assistance can be obtained from
the author.

Ottawa, March 1967



