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PREFACE

Plle foundations are used extensively on bullding sites
which contain soils with 1nadequate strength or undesirable
deformational properties. Such foundations often represent
a considerable proportion of the total construction costs;
improvements in installation methods might therefore result

in considerable savings.

The Division of Building Research has maintained an interest
in the performance as well as in the method of installation
of pile foundations. Exploratory measurements carried out by
members of the Division on the vibratory effects of pile driving
have established the need for a more realistic theoretical
treatment of this complex phenomenon. This translation is
made available in the hope that the present work may provide
a basis for a better understanding of the pile driving phenomenon

and permit a more rational gquantitative treatment of the
subject.

The Division is grateful to Mr. V. Poppe of the Translations
Section, National Research Council, for translating this paper

and to R. Ferahian of this Division who checked the translation.

Ottawa N.B. Hutcheon
December 1971 Director
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THE EFFECTS OF THE DYNAMIC CHARACTERISTICS OF A VIBRATOR

ON THE FORCED VERTICAL VIBRATIONS OF PILES

1. Introduction

The paper examines the relation between the vibratory character-

istics of piles driven into soll by vibration and the characteristics
of the vibrator, i.e., the driving moment and number of revolutlions.

The first experimental study of this relation was carried
out by D. D. Barkan, V. P. Sukharev and V. N. Tupikov(l) in 1951.
They found that the linear vibration theory, according to which
the bearing capacity of soil 1is assumed to be proportional to
the displacement, 1s not always in agreement with experimental

data on the relation between the amplitude and frequency.

The resonance curves obtained in these experiments referred
to a small range of rpm. The curves which extrapolate experimental
data beyond this range are somewhat arbitrary, especially 1if we
consider that the frequency range in the experiments was an un-
stable zone.

Owing to the fact that individual experiments in this field
invariably produce some erroneous data, generalizations can be

made only on the basis of a large number of experiments.

Our tests involved the sinking of 170 piles (12, 15, 20, 25
and 31 cm in diameter) and 2 sheet piles (ShP and ShkK) about 4 m
in length. The cross-sectional areas of sheet piles were 70 and
60 cm? respectively. (For description of experimental site see

the article by N. A. Preobrazhenskaya in this collection of papers).

The total weight of the vibrator was 700 kg, and the maximum

eccentric moment 660 kgcm.

The amplitude of vibrations and the power used by the motor
of the vibrator were determined for four values of the driving

moments and revolutions up to 1700 rpm.



The amplitude and power changed relatively little with depth,
which was evidently due to specific geology and relatively small
deptn of sinking. Geology and testing techniques are described

in the paper by Precbraznenskaya.

2. Theoretical Resonance Curves for Different Hypotheses

of the Bearing Capacity of Soil

To find the relation between the amplitude of so0il vibration
and the characteristics of the vibrator, i.e., the driving moment
and rpm, let us examine the simplest case, i.e., the vibration
of mass with one degree of freedom. Let us represent the bearing

capacity of soil in the form of two components:

R=R{z)+R,(z),

where Ri1(z) is the component dependent on the displacement of z;
Rz(é) is the component dependent on the vibration rate, i.e.,

the damping force or force of friction.
Let us examine the following cases:

1. Ri(z) is nonlinearly dependent on z, while R, (z) is

proportional to velocity (viscous friction).

2. Various hypotheses concerning damplng forces Rz(é)

during displacement proportional to R(z).

3. Forced vibrations of a pile during separation from tne

soil.

First case. In a conventional linear theory, Ri(z) is

assumed tc be proportional the the displacement, wnich is true

for small amplitudes.

However, in the case of a vibrator with a large driving moment,
the amplitudes may be fairly large, and therefore the relation

of Ri(z) to the displacement must obey a more complex law, e.g.:

Rl (Z) i?'l it le:\-‘:‘1 - (Z‘



If Ry(z) = oz the equation for the vibration is as follows:

__Q_z + R(2) + az = Loz w” sin of ,
£ g

where Qéi w? is the perturbation force of the vibrator; @ is the

weight of pile and vibrator, including the motor, etc.

Q

On dividing the equation by - We obtain:

Z+ Nz — 2} 4 325 4 2nz = A.o?sin ot} (1)
Al = Qoe ) (2)
Q

Let us take the following equation as a first approximation:
. ,

zZ=asin of — bcos ol = A sin (ol + o), tgqgif., (3)
then

Z= — Az 4 128 — 8z° — 2nz 4 A.o?sinof, ()

On substituting equation (3) into the right half of (4) and
replacing the squares, cubes and products of trigonometric factors
by their expressions in terms of higher harmonics including the
fifth, we obtain after inteeration-

wzz=8iﬂmt(al’——i—7a"—.%_-:ab2+_E_.aa5+_189_aab2+

+-:—ab4 + 2mnb—-A-mz) +cosmt(— b2 - —:—-;a’b +

3 5 10 ) Y
— 1 — -—8a'b — — a’h’ — L b - -
+41 5 S a‘b’ < b5i-2nma) ;

. { a3 Jvabs 5 . Oasht
+sin 3wt ( ~{;6 - 3:: T 14 ba’ + : 1{;: o+ 11464 Mb‘) + (5)
- 3yatb b3 15 1 ;
<+ cos Bmt( L 736 + ™ da'b + -I-J%— 8a*p’ — —5—4—- Bb‘) +
+ sin S? (@ — 16a™h? +- 5ab')y - f'i()c"i_ E{=5ah — 10a263—b%).



Let us define a and b such that the coefficients of sin wt
and cos wt will be identical for (3) and (6) giving:

4

1 2 3 . .5 ‘ o
a=— (ak — —~alA*+ ~8—6aA‘ + 2nob —-A,.ur) ;
l 3 g’ 5 - 3 [

or

a (A — o?) — .3- yaA? -+ i BA* + 2n0b — A_o?=0;

— b (3 — %) +-——-1bA’ ry 2 3bA* L 2nwa =0. (7)

From this we find a and b, which we shall identify with

subscript 1:

Aiu& 8 4
2
by= 2 2nw; (8)
Ale?

Then the coefficients at high harmonics for sin and cos will

be as follows:

P . 5 ) ' '
a; = 3:;, lﬂaf --30, rM-aE‘ +- 2a§bf+3b‘,‘)],
ba=-56~,;-[ (51 —3a}) + = &(— bl +2al 6} 4 3a1) |:
y = ‘—L"‘ (ai — 10aib + 5b;) . (©)

by = "'" (— 6% + 10a}6} — 5al);

VAT A=Y EFE = 554l - )
A=Y @ =g A



and consequently the displacement will be

z == (a, sin of — b, coswl) + (@, sin 2! ~ b, €08 3ut) -

o BN " (10)
+ (@ 3in Swf — b CosSell

a:+ b= A7; (11)

From (8) we obtain:

A?
A= =
3 5 : ! (12)
R

(in the case of A; subscript 1 will be omitted).

For the phase shift of the first harmonic we have:

— b, 2nw
ee= VR NP I (130
4 ! 3
hence
_ b 2nA
SN = y, = -

TIT R x=ant (14)

Then, on solving (12) with respect to w?, we obtain

,  x . G ————
Alf}_z___A“ — 1+ A VA2 }?’—A?' V& AA;{ 2 2\
3 'y + - |t XAZIAY — 4% .
a? = A 2 ) ( ’ ) \ y 4

A A2 - (15)

Let us proceed to generalized coordinates. Let

LT A o \[4:;
b= a=gss ow= g5

5 AL -
"zT'T; R=u—a, ==



then

=t l{c’(lma’ﬁ—-g-)iaa/(l-—a’ﬁ)’-—ia’(l——a'p——i—)}. (17)

at £ = 0
e (=W (17")
a+

One of the limits of w? at a + 1 will evidently tend towards

infinity (w = «).

The second limit of w? at ¢ + 1 will be
o 2( e) (17")

l-—ﬂ-?;

In abstract coordinates equation (10) will assume the

fellowing form:

A - . A -
= at(@B+ et —1); by="T-a%;

ln..w..___

o} —~38) - 2 (-a?+2a¥b¥+3b:)];

18A%

[ 5 b3+ 2 (=0 2401 + 3

)

4

b’r_“f‘“, 7742 184%
T= (106107 4 501)
b, = 25(2;; (6% — 10262 4+ 5a3) ;
A=) &+ 8; As='f§.;(%-u~2va’):
R

To avolid possible incompatibility, let us examine the relation
between the bearing capacity of soil and displacement.

The bearing capacity of soil has the following form:



R==m Az — yz8 4 32%)

Let

then
2 4 s 8 rs
R=A\ A»m C‘—“—s—ht “l“‘g“@ s
R’ = m (1 — 4ul? 4 8uC?).
It 1s natural to assume that with the increase in displace-

ment (amplitude) the bearing capacity will increase also, i.e.,
R' > 0.

On solving the equation R' = 0 with respect to z?, we find:
:,2:_—_ Vuz 2v.
40
z [4
Consequently, at V2 5 , R > 0.
2
In the treatment that follows we shall take v = %—, then

R =wnm (1 — 20l

i.e., R' is always positive or equal to zero.

The calculations show that the error due to the neglect of
the third harmonic does not exceed 20% of the value of the amplitude
for u = 8, and is considerably less for other parameters. The
error due to neglect of the fifth harmonic is quite negligible.
Therefore, additional harmonics may be ignored.

Figure 1 showizthe resonance curves calculated from (17).

In every case Vv = 5

If we use the first harmonic only, then the instantaneous

power will be equal to:

1 ’”3 dz W .
w :-——ﬁf———-w—-«-}i tisin {20l 4-2) — s ,
A . & 2g A (20t + 7) — sin 7]
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and consequently, the power for the cycle of vibrations T = %E
will be equal to:
T
i AtenQ
We= — dt = . (18)
T inat f 4

Figure 2 illustrates the relation between power and frequency
at different values of the attenuation coefficient for two values

of u:
u=0(v=20) and u = 0.5(v = 0.125).

Second case. Let us now examine various hypotheses concerning

the friction forces.

The general form of the vibration equation for any relation

between damping forces and velocity f(é) is as follows:

Let us denote:

and rewrite equation (1):

£+ 9(2) 4 Ngam A0 8in of . (19)

There 1s no precise solution of this equation. For an

approximate solution use is made of the equivalent equation with

(3),

linear attenuation
zZ4+2nz +Wz=A o?sinof, (20)

where k
o=t A=
m

The solution of this equation is as follows:

A_w?
z=Asin(oft —¥); A= >
V¥ (& = ol  dnte?
it ] . 1
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We also assume that the work of damping forces within a

vibration cycle in equations (19) and (20) is the same, i.e.,
r ... S r .
W’=}ﬂz)dz=§f(z)zdt-gaz’dl.
0

On caleulating the integrals for a vibration cycle, we

evidently have

x ¥
-
and
3 pt2
4 | cosrtietd (ot) =2V r(pf_a)-
r(45)

If we take £(z) = B2 (the sign of B must be such that the

friction force would counteract the movement), then on substituting

into
r . ;-
we obtain
r("5)
aAlolr = Bwrt1AP+1Q V,‘,’ 2 ]
I,(p+3)
2
e
2 =(Aw)p-1y L
m T (22)

where

(23)




- 12 -

The values of coefficient y are given below.

n o Ye 1 2 3 4 s
4 8 3 39 5 64
A e 1 3 32 5 64
i = ! 3= 3 Tom 8 35m

On substituting the values of % from (22) into (21), we

obtain:
A, _o?
A= V()«’—Ol)’»i;-nll!"l(b)ﬁp—i;; ’ (2h)
where
A= £; 2n= = (25)
» m

After simple algebraic transformations we obtaln from

equation (10):

A1() — &) 42 A% ¥ = AL ot (26)
_ 1 .
At p = 5> on denoting
- 2”" - @
"-‘l"‘- B = T!
we have

o —ie +V__E’.;’_~.;.__2-‘__,
. (-7 (-4 (-

From equation (26) at w = A, we obtain

A A_w 1

= =" -

A, Tanp

At p = 2, on denoting g = U4l%y?A®_, we have
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: e _ {1 _ a2 7 (G — a2)t
Ay Oo@p ST

Figure 3 shows the resonance curves for two values of p:

p = % and p = 2

Let us examine a combination of dry and viscous friction.

(4)

cannot use his resonance curves because in our case the perturbation

A precise solution was given by Den Hartog However, we
force 1s proportional to w?. Since the differential equation is
nonlinear, there will be no simple proportionality between the
perturbation force and the amplitude. Therefore, all curves have
been recalculated. Den Hartog's conclusions are briefly as
follows. In the presence of dry friction, we should distinguish
between motion without stops (Figure 4a) and motion with one or
several stops (Figure 4b). The stops result from the fact that
the perturbation force cannot overcome the friction force and

the bearing capacity of soil.

In the case of simple motion without stops, the differential
vibration equation may be expressed in conventional terms through-

out the entire period of time:

m§+k2j~_F+a2=-¥—“ﬁ-w2cps(mt+<P), (27)
g

In the half-period O<t<g-the velocity is negative, and

therefore for this interval F must have a minus sign.

The phase shift between the perturbation force and the
friction force is defined by angle ¢ calculated from boundary
conditions which will be discussed later. Let us divide the

equation by m = and introduce the following terms:

||

b d
~

E._—_%)C-’:_-ﬂz; Ae=22; % —on

k—-—
m - m Q m

-
2
.
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Then within the interval O<t<% equation (27) will have the

following form:
202 (z—f)+2nz=A. @?cos (of +9). (29)

Let

o T l 1y 2 p 2,
p=V¥R—n; ¢g=—_VN—o) +anie’; (3

g2 coss = (A’ — w*)cos ¢ + 2nwsin p;
ghsine==(A\* — w?)sing — 2n®wCcos ¢ .

The general solution of this differential equation is as

follows:
A_w? ‘
2 e™(Cycospt + C.sinpt) + —g—cos(ot + )+ f. (51

The three arbitrary constants C;, Cz and ¢ are found from
four boundary conditicns including one other unknown A which,
consequently, is also found from these equatlions at t = 0, z = 4,

z = 0 and

t=-=, z=—A, z=0.

Without going into detail, let us represent the solution of

this equation in a form which differs somewhat from that used by

Den Hartog:
A 1 4 z .
—-—-A- SV"—;(%)-(——‘I{. ) Hz————l-{—:-(l, (32)
where il
He ) . sin " ‘
. ¢h — + cos -—
-
W= _n
G=— " P = .
ch‘——~-fco;4Ei
»

. Az
sine=—L2 fH; cose=-£_(Atap. G

sin ¢ and cos ¢ are found from (30).
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Let us now examine the case of motion with one stop. We

shall assume that the stop starts at t = t,.

The differential equation for the section from O to toy has
the same form (29) as for the case of continuous motion. There-

fore, its general solution is also given by equation (31).
The boundary conditions are similar:

at t = 0, z = A, z =0,

at t = te, z = -A, z = 0.

In contrast to the preceding case, the equation will contain
the unknown factor to,. The additional ratio for its determination
may be obtained if we observe what happens at the beginning of

motion t = 0.

Since at this moment the mass is at rest, velocity and

acceleration are equal to zero, i.e., z = 0 and Z = 0.

In this case the differential equation (27) has the followilng

form:
kA--F-—-Qiuﬂcosep:O
4
or
A_ow?
A—f=—3-C08¢% (35)

All unknowns are found from equations (34) and (35):

Cl; Cas; ¢ A and to.

We shall omit the intermediate calculations and proceed
directly to the solution of the differential equations for the

section 0Ogt<ty:



A : .
AL T AC + ~7 €08 %;
Aqt Bg?

Sin g == COS ¢ ==

. V (AgR + (Byip ’ V (AR + (B
Aq===(| — 5 Jresinoty — 2= evhcos otot- 2> cospty+ (46

A8 ¥)
P (B o
— 2ne . »?
Bg* = —a e*sinwf, — (l — —i;—} e*scos wfy +

+(l -—--:'—:)cospt. + -%(l +—-§-)sinpt..

cos € and sin € are found from (30) and ty, from the transcendental

equation:
— \
%—f—'\-';—-: ——cosq-f—e-”*cospt.( cost —-cos;j -+
. n n - . i
+rnt-smpto(;cose—-;cos?—--’;snns)-u;-cos(oto-}—e). (37)

This equation cannot be solved directly with respect to to
at given f and w. It can be solved by the graphoanalytical method.
If ty and w are given, we can find A and f analytically from (35)
and (37). Then for a given w we can construct two sets of curves
(A, tg) and (f, to) from which we can find t, for the given A

and f. At ty = % we obtain the boundary between the two solutions.

Figure 5 shows the resonance curves for one case of viscous
friction % = 0.5 and different values of dry friction f calculated
from precise equations. The dotted line in Figure 13*¥represents
the boundary separating the region of motion with one step from

the region of continuous motion.

¥ Sic. Probably Figure 5 (Transl.).



The curves in Figure 6 illustrate the case where viscous

friction is absent, i.e., = = 0.

The continuous resonance curves have been constructed from
cpproximate equations. The dotted lines and individual points
indicate the points of resonance curves calculated from precise

equations.

The form of the approximate solution is simple, and closely

resembles that of the precise equation:

VT

= o \2 o (38)
=(5)
A

Third case. Forced vibrations of a pile with separation

from the soil.

We shall examine the simplest case where the action of soil
on the pile is replaced by the reaction of a spring (inertialess)
with rigidity c, while the mass is assumed to be concentrated

at a point.

Let x; denote the position of this point during its motion
on separation from the soil (spring), and x, denote the position
when the point is on the soil (spring). Let the boundary between

these positions (x; = X2) be the start of the coordinates.

Let us assume that steady-state motion with a period which
is a multiple of the period of induced force (nT = E%Q, where

is the frequency of the induced force) is possible.

As 1is usually done in the case of vibrators, let us represent
the induced force as follows:

P=22 otsin(ut -2},
£

where Q¢ 1s the driving moment of the vibrator and ¢ is the as
yvet unknown phase shift between the induced force and the separation

moment.



Let us assume that in the time interval 0gt<t: the pile moves
while separated from the soil (t = 0 is the separation moment,
t = t, is the moment of impact with the spring). If Q is the
weight of pile, then the differential equation of its motion in
this time integral will be as follows:

%fx“-’-‘ *g";*""sin(wt-i—v)+Q; X, <0. (39)

Let us assume further that at t1$tsggg-the pile vibrates to-

gether with the spring¥. The differential equation of its motion

in this time interval will have the following form:

?x,+cx,=~‘%j+---sm(»t+v)+a; >0 (1)

The differential equations (39) and (40) must be integrated
at the following boundary conditions:

at tno, x1=0,
at t=¢, Xy =Xy =0, x;(tl)-x;(tl)'

2z i
at t= 5’ x,—O 1 (41)

and at x;(0)=x;( -5"-)

It is assumed under such conditions that the fall of the
pile fo the ground occurs without sudden changes in the rate of
fall.

Hence, altogether there are six boundary conditions.

Let
Qe NA A
An=—a-) k=‘_—§--’ C:::—;—. (ug)

*¥ We could have assumed in a more general case that the pile
would separate from the soil more than once within this period.
However, it was found experimentally that the separation occurs
within the first, second and third periods of the induced force.
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Then a general solution of equations (39) and (40) will have
the following form:
X3 . g2 at i
I—=——*—S¥n(mt+?)+:}/; + y, + A ¢ 0ty

1 . 1 c . d
ﬁ-w — o sin(et o)k —- 4= sindf+ ——cosM, (43

tht‘a’g“?"v

where
x;{iO, Xo > 0.

The six unknowns (a, b, ¢, d, ¢, and ti1) are found from the

boundary conditions given above.

The unknown time t, is determined from the following trans-

cendental equation:
A a | .
(_-“ g u-m
k= ,

um@+an9m€%

by

where

= f=0mnl; a=7(l —1);
u":.:v“.::mf‘; wtlzztﬂf.

For ¢ we have the following expression:

wl,

4 3=
P = — or P=T — — —
2 2 2 9

F

Here the value of ¢ is such that k 1s positive. Finally:

a«  —nnl b .. c / 4o & .
Ao = g ¢ A =SNE 4= M(sinn tg 3 cosn),
.r‘t Ld
d . 5 8>
—;.—-—-M(cos'q-}- tg-—z-simg); M= .

k(tg-—;-tqu)



The pile velocity at the moment of separation from the soil

(t =0o0rt = 2%3) is given by:
v /)4

The pile velocity at the moment of impact with the soil
(t = t;) is equal to but has the opposite sign than the velocity

at the moment of separation.

The physical meaning of the problem evidently demands that

( i )Ml>0.

If this condition is not satisfied, then the solutions are

nonsensical, although they satisfy all boundary conditions and

differential equations.

It is readily seen that x; and x; in the solution obtalned

will be symmetrical with respect to the middle of their sections.

The investigation of the solution obtalned is made difficult

by the transcendence of the equation.

The resonance curves should be constructed by taking k for
a number of values of ¢ to find 1, which does not have to be single-
valued, and then by using equation (5) construct the curve of
corresponding motion, from which the vibration amplitude could

be determined.
If k 1is given, T may be found from the k curve.

Figure 7 shows the k(z) curves for various values of T and

v
= <.
Acw t €1<0
Consequently, the solutions for these sections have no physical

two values of n. The dotfted sections correspond to

meaning.

As may be seen from the curves, k for certain n and ¢ is a

very complex function of T.

Figure 8 shows the curves of pile motion under different
conditions. It may be seen that there are large variations in

the form of pille motion.



3. Comparison of Experimental and Theoretical Resonance Curves

The circles on curves 1n Figure 9 indicate the experimental
data. The frequencies w = 0.014 N (N - rpm of the vibrator) are
shown along the abscissea, while the relative amplitudes % are

shown along the ordinate.

On comparing experimental and theoretical data we may con-
clude that the experimental data are best approximated by theoret-
ical curves with allowances for the highest terms of expansion
in the bearing capacity of soil and introducing one more coefficient

a

The experimental values of amplitudes for high driving fre-
quencies of the vibrator tend towards values less than the
theoretical (% = 1]. Therefore, to express the experimental
data by way ofwtheoretical resonance curves, it is essential to
introduce one more coefficient (am), which represents the actual
ultimate value of relctive amplitudes on the increase in rpm.
The decrease in the ultimate value of A_ is probably due to the
fact that some soil in contact with the pile is subjected to
vibration; consequently, the actual weight of the pile must be

increased.

Figures 9a, b, ¢, d and e show two thecoretical curves for
u = 0, (dotted lines) and u # 0 (continuous lines).
For the driving moment of 660 kgcm, we take u = 0.5 as the
closest to experimental data. Since u = %1 . %;3, while vy and X
for the given soil conditions are approximately constant, then
for the driving moments 495, 330 and 165 kgcm we should take u = 0.30,

0.10 and 0 respectively.

The curves show that A is greater at u # 0 than at u = 0.
This is due to the fact that in the linear theory the bearing
capacity of soil is given in the form of one term kz, while in

the nonlinear theory it 1s represented by three terms:

- 3 A -

kz-dz;+¢rz*=>.=uA_[: — 4u( z )'+ ssv(; )s]



Therefore, the linear theory gives an averaged value of
k (and consequently A?), which is less than the calculated first

term in the nonlinear theory.

The deviation of theoretical resonance curves from experimental
vaiues is often greatest at low frequencies, especially at u = 0.
This 1s evidently due to the fact that in the case of theocoretical
curves the friction forces are taken as proportional to the
vibration rate. This law probably holds better for large frequencles

than for small frequencies.

At small driving moments (Figure 9), the amplitudes on the
resonance curve in the resonance region differ greatly from the
ultimate values. At large eccentric moments the resonance is not

evident.

Tables I-VII contain the parameters of theoretical resonance

curves for testing piles and sheet piles.

The tables contain two values of u, A, % and a_ for a number

of piles and four eccentric moments.

The data in the tables show that at driving moments 660,
495 and 330 kgem and u = 0, % (the damping coefficient), A sec

(natural frequency) and a_ (the coefficient of lowering the

-1

ultimate amplitude) are in some cases approximately the same.

This indicates that for the given range of the eccentric moment,

A is linearly dependent on A = Qée, and consequently on the

eccentric moment Qoe, mainly at w>A.

The power used by the vibrator motor was recorded simultaneously

with the recording of the resonance curves.

Figure 10 shows the power W-Wy, vs. the square of vibration
rate (Aw)2. W, is the power lost in the vibrator itself, which
was measured in the vibrator freely suspended on a shock absorber.

The results of measurements are given in Figure 11.

It follows from (18) that

-4
W; )Wz'o _ _Oni0 = Qnl0-7 kg sec/cm (45)
{7 £
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The friction coefficient n calculated from the resonance
curves does not quite coincide with that calculated from (39),
as may be seen from Figure 9 which shows straight lines® at coefficients
n obtained from the resonance curves (at eccentric moments 660, Ug5
and 330 kg cm).

For wooden piles, n determined from the power measurements
will be somewhat smaller, while for a sheet pile, somewhat larger

than that found from the resonance curves.

This is probably due to the fact that n is not a constant,
but depends oa the number of revolutions N. Moreover, 1t would
be more accurate to determine Wo while the vibrator is firmily

fixed.

' Conclusions

1. At large values of eccentric moments of the vibrator,
the amplitude of forced vertical vibratlons of piles and sheet

piles may be calculated mainly from the nonlinear vibration theory.

At small eccentric moments, the amplitudes are well approximated

by the linear theory (u = 0, v = 0).

In the case of vibration frequencies higher than the natural
frequencies, the amplitudes may be calculated from the linear

theory irrespective of the magnitude of the driving moment.

2. The ultimate values of amplitudes A differ from the
theoretical values. This may be corrected by using coefficient
a_, Which for the given 501l conditions varies between 0.60 and
0.80.

3. The natural frequencies of wooden piles and metallic
sheet .pile are somewhat dependent on their cross-sections and
the depth of installation. For the given soll conditions, the
natural vibration frequencies vary between 60 and 85 sec !
according to the non-linear theory, and from 55 to 70 sec ! if

calculated from the linear theory.

¥ Sic. "Continuous lines"? (Transl.).



4. The power required to maintain forced vibrations of a
pile is very approximately given by equation (18). For practical
purposes, the coefficlent of friction n may be taken as approxi-

mately equal to 20-30 sec l.

5. The total power required by the vibrator motor 1s greatly
affected by the power required to overcome the resistance in the
vibrator itself.

6. It is essential to carry out tests in various types of
soil to determine the effect of soil properties on the forced
vibrations of piles.
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Table I
Wooden pile, d = 12 cm, welght¥* 735 kg

Driving moment
in kgem
} 660 495 330 165
Parameter;\\\\\\\ }
u 0,50 0 0,30 0 0,1 0 0
nj 0,30 0,40 0,35 0,40 0,35 0,40 0,20
A zec™ 80 65 72 62 73 65 65
a_ 0,74 0,74 0,71 0,66 0,72 0,72 0.54
Table II
Wooden pile, 4 = 15 cm, weight 760 kg
Driving moment
in kgecm
660 495 330 165
Parameters
u 0,50 G 0.30 0 0,1 0 0
nji. 0,30 0,40 0,35 0.40 0,35 0,35 0.20
Asec. ! 75 58 85 65 65 65 65
a, 0,67 0.67 6,76 0,72 0,66 0,61 0,49

Including vibrator
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Table IIX
Wooden pile, d = 20 ¢m, welight 800 kg

Driving moment
in kgecm
- 660 495 330 165
Parameter;\\\\\\\
u 0,50 0 0,30 0 .10 0 —_
LI 0,30 0,40 0,35 0,40 0,35 0,40 -—
Aec. ! 75 58 80 65 65 58 ~
a_ 0_?57 0.64 0.72 0.70 0,64 0,67 ~——
Table IV
Wooden pile, d = 25 cm, Welght 860 kg
Driving moment
in kgem
660 495 3% 165
Parameters
u 0,50 0 0 0 0
n/A , 0,30 0,40 0,30 0,35 0,20
160 50 50 50 65
a, ‘0,78 0,78 0,68 0.84 0,57
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Table V

Wooden pile, d = 31 cm, weight 890 kg

Driving moment
660 495 830 168
Parameters
u 0,50 0 0 —
aj\ 0,30 0,20 0.35 —
bec ! 65 57 S -
a, 0,84 0,78 084 -—
Table VI
Flat ShP-type sheet pile, 890 kg
Driving momeng
in kgem
@50 a5 30 166
rarameters
a 05 0 030 0 0.1 0 0
n/h 00 030 040 050 04 OS50 030
AsecT! 60 S5 58 55 65 6 77
e, 066 066| 070 074 072 078 048
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Table VII

Trough-like ShK-type sheet pile, 905 kg

in kgecm

Driving moment

o 3 ) 165
Parameters
a ! 050 O 0.30 0 010 0O 0
n/\ 030 040} 035 040 | 035 040 030
Asee ! 68 55 60 54 66 65 77
a, 065 062 062 062 061 0564 0.72
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Motion in the presence of dry friction
(after Den Hartog)
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Pile motion

1, £ =0.3, © = 0.4, k= 1.312, ¢ = 0.314; b - n = 2,
, T =20.2, k=0.75, ¢ =0.314; ¢c -n=2,1¢7=1.0,
T = 0.8, k = 4.237, ¢ = -3.456
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Resonance curves for:
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a - wooden pile d = 12 cm, A = =35 T 0.45 cm;
b - wooden pile d = 15 cm, A = %%% = 0.65 cm;
¢ - wooden pile d = 15 cm, A = %%%—= 0.22 cm;
d - wooden pile @ = 20 cm, A_ = %%% = 0.62 cm;
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Resonance curves for:

25 cm, A_ = %g%-= 0.78 cm;
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e - wooden pile d

(@)
(@)

]
]
1]

f - wooden pile d 31 cm, A 0.74 cm;
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g - metal ShP sheet pile, A 0.74 cm;
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h - metal ShK sheet pile, A_ 0.36
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W - Wy = f (Aw)?
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wooden pile, d = 15 cm;
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metal ShP sheet pille;

metal ShK sheet pile
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Power of vibrator freely supported on a shock absorber



