| hd |

NRC Publications Archive
Archives des publications du CNRC

Needle insertion test bed: users' and reference manual
Johnston, Daniel F.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de I'éditeur, utilisez le lien
DOl ci-dessous.

Publisher’s version / Version de I'éditeur:
https://doi.org/10.4224/21272488
IMTI ITFI Publication; no. IMTI-TR-039, 2007

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=48e46a7d-0776-423d-92fe-089c5ec88662
https://publications-cnrc.canada.ca/fra/voir/objet/?id=48e46a7d-0776-423d-92fe-089c5ec88662

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’accés a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la
premiére page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

 Ld

National Research  Conseil national de C d
Council Canada recherches Canada ana a


https://doi.org/10.4224/21272488
https://nrc-publications.canada.ca/eng/view/object/?id=48e46a7d-0776-423d-92fe-089c5ec88662
https://publications-cnrc.canada.ca/fra/voir/objet/?id=48e46a7d-0776-423d-92fe-089c5ec88662
https://nrc-publications.canada.ca/eng/copyright
https://publications-cnrc.canada.ca/fra/droits

INDUSTRIAL MATERIALS
INSTITUTE

Pages: 80

Fig.
Diag. 62

For
Pour

REPORT
RAPPORT

INTSTITUT DES MATERIAUX
INDUSTRIELS

Date: __September 12, 2007

SAP Project #
# de Projet de SAP_55-DRA01

Unclassified
(Classification)

/ REPORT NUMBER

IMTI-TR-039 (2007/10)

\_

Needle Insertion Test Bed — Users’ and Reference Manual

Submitted by

Présenté par _Dr. Gord Campbell
Group Leader

Approved
Approuvé ___Michel Dumoulin

Director

THIS REPORT MAY NOT BE PUBLISHED WHOLLY
OR IN PART WITHOUT THE WRITTEN CONSENT
OF THE INDUSTRIAL MATERIALS INSTITUTE

First Author
Auteur Premier 0

CE RAPPORT NE DOIT PAS ETRE REPRODUIT, NI EN
ENTIER NI EN PARTIE SANS UNE AUTORISATION
ECRITE DE L'INSTITUT DES MATERIAUX
INDUSTRIELS







NRC-IMI PUBLICATION APPROVAL FORM

This form must be completed and given to your Administrative Assistant before a
manuscript or abstract is submitted for publication.

1. General information (Please Print)
Author(s) (listed in the order in which they will appear in the citation):

Author Signature Date )
__Daniel F. Johnston W W 2007 ~ Sev/~ /2

Title: Needle Insertion Test Bed — Users’ and Reference Manual__

Where will the paper/report be submitted (indicate charges if applicable):

Name, date and location of conference:

2. Approval . Signature Date

Principal Author: ?V'W} W 2007 - S/~ /2
Reviewed by Group Leader: W ‘éjﬂ 6"7\)‘/’ Zo,20c7

Approved by Director: Qﬁj {/j e

N.B. A copy should be sent to the Director General

3. Category (this section to be completed by Director)
Please check one of the following:

[_] Journal Paper (Refereed) [[] Book/Book Chapter

[] Journal Paper (Non-refereed) [] Technical/Client Report

[] Conference Proceedings (Ref.) [] Article in Trade Magazine

[] Conference Proceedings (Non-ref.) [] IMTI Controlled Technical Report
X Technical Report [C] Other (specify)

[] General Report

For Office Use Only: .
IMI Pub. No: LML =T E~( Zfﬂ szﬂ/ éﬁzred in ProCite: Od:a/o’«}
75






Table of Contents

Table Of CONMEENLS ......cciviereeeeierie ettt ettt sre e sae et aeeseesat st esneesesasesaesra e bseseis i
LiSt OF FIZUIES ....eeuteieieeie ettt sttt sb st s il
ACKNOWIEAZEIMENLES......c.eevuieiiiiieeeite et et v
{15 (0 e L1 115 o) s OO OO OO 1
2. SUITHIIAIY coevtereeeiientteniie et eeiree et e stt s sb e st s s e e san e e sbe s saasssaas e baesabeseabeebesenbsesansebeennss 3
K T 011 o) o /RO OO POOOOOUO T PSP 5
4. SyStem DESCIIPLION ....cevvirriiiitieiteititcri ettt st re s 7
4.1.  Mechanical COMPONENLS.........coceeririerrerieerireteir ettt srresre e ssesaeeaees 7
4.2.  Electrical COMPONENLS .....c..ovvierirerieiiiiiiertenie it st sas s 8
4.3,  Software COMPONENLS.....ccceruieriiriniiiriiierrieie ittt ebeennes 9

5. USEr'S Manual........ccoceiiuierieiniienieeste ettt s 11
5.1, Typical OPeration ........cc.coeeveeruieiereererieiniiieiiie st sb e 11
5.1.1. SHATT-UP . vee ettt s 11
5.1.2.  Preparation to collect data..........ccccoceevveeiriniiiiiiiiiiiiiii 12
5.1.3.  Fine tune POSItION. .....cccuiriermieierterereeenie sttt 12
5.1.4. Edit MOtON SEQUENCE.......covuririrereniiiierierreirereetesnseneees e era e 13
5.1.5. OPETate SEQUETIICE ......eerurierrrieriiiiiiiieiirecerestrt ettt ebaesaseaeeenns 13
5.1.6.  Stop the application...........cocevieiiniiiiiiiniinii e 14

5.2. Detailed Description of User Interface.......c...ccoceeeeveiviinieniniinninininiinine, 15
5.2.1.  Application window decorations ..........c.coeueveerierviciiiniiiinnicniccceeene 15
5.2.2.  Application main window — general controls..........cccocevenviiiiniiiinnnnnn. 16
5.2.3.  Application main window — Operate motor ..........ccccceevreuriiriiinniiiiinncnnes 16
5.2.4.  Application main window — define motions..........ccecevveiviiiiiiiiniinnnns 17
5.2.5.  Application main window — data collection .............ccccciviniiiiiiiniinnnns 19

6. Design — SOWArE......cooeiiiieiiericiicici s 21
6.1.1. Initialize and home functions........ccccoeveeeieniennennicec e, 21
6.1.2. Motion and limit SWItChES........cccvceiruieiierierieniieiecicecr e 22
6.1.3. ETTOT TESPOMSE ...ttt ettt st s 22
6.1.4.  Application’s constants and HmitS..........ccccecvviiiiiiininniiiniii 22

7. FUUIE PIANS .oooiiiiicie ettt s 25
Appendix A — Mechanical Drawings...........cccoccviviniiniiiiiiiicic e 27
Appendix B — LabView Software Drawings ..........cccceiviininiininennicceeeccicienins 43



ii



List of Figures

Figure 1 IMTI’s Needle Insertion Test Bed (May, 2007)...c...coccerieveriinienennennienieneennens 1
Figure 2 Early version of Needle Insertion Test Bed .........cccocveeiivincniecinenicniccene. 5
Figure 3 New Test Bed — Power Switch Side.......c.ccooeoiiiiiinininiciececece, 7
Figure 4 New Test Bed — Limit Switch Side.....c.cccoeoieriiiiniiniineiicciic 8
Figure 5 Electrical Block DIagram ...........cccoeecuerieriiniennenienieniieiecirenieniecinesieseeseeeseeennes 9
Figure 6 Control Software - FUnctions ..........cccccvciiviininiiniiniininciiecneecnen 10
Figure 7 Constant Motion versus Jab Motion........c.coceveverievverenincnienrciciieneeeenereiinens 13
Figure 8 Main application window with decorations, Operate Motor panel.................... 15
Figure 9 Define Motions application Pane...........ccceeeevervieniininireinieniienteseesieneeseresnennne 18
Figure 10 Data collection application pane .........c.cccoceecereinriniiniiiiiniiniinicnenicnereeenes 19
Figure 11 Hierarchy of the Needle Insertion software (main app. i 1) ....cccccvecvveerecenene. 43
Figure 12 Main program - Start UP ........c.ccocviriiiiiniinninieiniecnecienienec st s 44
Figure 13 Main program — StOP....c.cccceeerriiiiiiiniiiiiiiiiiiiii e 45
Figure 14 Main program — Tab control Subprogram ..........c.cccecereeniercernieneenieenersrennnens 46
Figure 15 Main program — Define motions tab .........cccccocevvereiccieiinecrnenrcnienicneeneenenn 47
Figure 16 Main program — Manually operate motor ..........cc.cocceeeevvenvenenenicnenneenninnennenne 49
Figure 17 Main program — Sequence motor and data collection..........c.ccccveevrvenrennenene 50
Figure 18 Main functions — Edit array subprogram..........c..cccoeeveevencninininnrcennennennenn 51
Figure 19 Main functions — Manual motor control —Part 1 .......cc.coocevviiiiiiniiiinicninnne. 52
Figure 20 Main functions — Manual motor control —Part 2 ..........c.ccccocevininnicnicennns 53
Figure 21 Main functions — Manual motor control —Part 2 ..........cc.cccccecininininnnninnn. 54
Figure 23 Main functions — Manual motor control — Part 3 - False case..........c..cccccueuee 55
Figure 24 Main functions — Manual motor control — Part 3 - True case ........c.c.cceeueeee. 56
Figure 25 Main functions — Manual motor control — Part 4 ..........c...ccccccevenenrninnncennns 58
Figure 26 Main functions — Manual motor control —Part S.........cccoccocviiiininininnn. 60
Figure 27 Main sub-functions — Move Sequence — Part 1..........cccocoeconniinninnnnn. 61
Figure 29 Main sub-functions — Move Sequence — Part 2.............cccccoviiviiniininnenninnnenn 62
Figure 30 Main sub-functions — Move a Distance at Speed — Part 1.........ccccoceeveenenninnenn 63
Figure 31 Main sub-functions — Move a Distance at Speed — Part 2.........cc.ccccoveerenuennenn. 64
Figure 32 Main sub-functions — Fast Jab move — Part 1 — Less than 10 mm ................... 65
Figure 33 Main sub-functions — Fast Jab move— Part 1 — Greater than 10 mm ............... 66
Figure 34 Main sub-functions — Fast Jab move—Part 2..........cc..ccccoevniiniininniniinninenan 67
Figure 35 Main sub-functions — Fast Jab move—Part 3..........c.cccccoerinninininnninnennan 68
Figure 36 Motor functions — Initialize motor communication — Part 1............c.cceceennnn. 69
Figure 37 Motor functions — Initialize motor communication — Part 2........c....ccceceeunenne. 70
Figure 38 Motor functions — Stop MOtOr .......c.ccoevviiriiiiiiniiiiiniee e 71
Figure 39 Motor functions — Send command ..........cccccceererivieiiiiiiiniinenineeceeeneen 72
Figure 40 Motor functions — Get Status........cocccceeviriiiniiiiiiiinic e 73
Figure 41 Motor functions — Get POSIHION.....cccevirviiriiiiiniiiiiciriccrce e 74
Figure 42 Motor functions — Find home position — Part 1.........ccocovvvniiininnnnnnn. 75
Figure 43 Motor functions — Find home position — Part 2..........c.cccoeviiiinnininnnnnnnnne. 76
Figure 44 Motor functions — Find home position — Part 3.........cc..occoeviiiiiiininninninnnne. 77

il



Figure 45 Motor functions — Find home position — Part 4..

Figure 46 Motor functions — Go to home position — Part 1
Figure 47 Motor functions — Go to home position — Part 2

..............................................

..............................................

v



Acknowledgements

The following people have contributed to the design and evolution of the Needle
Insertion Test Bed;

- Ms. Victoria Hornblower was responsible for original concept and the design of
the components, selection of motor, and purchasing. She also performed initial
testing and operation of the system with manual commands to control the motor.

- Mr. Bill Wells supported the design process, located some surplus mechanical
components which became part of the system, purchased or manufactured
remaining components, assembled the initial system, and has been responsible for
subsequent repackaging and upgrades (e.g. adding limit switches)

- Dr. Mile Ostojic has independently created a version of needle driver with a
similar motor and controller, but higher quality mechanical hardware. It also
includes a second motor and controller to rotate the needle. He created his own
‘one insertion with rotation’ control software. This higher quality needle driver is
intended for robotic surgery applications in collaboration with a commercial
company, and a patent application is filed for this device.

- Mr. Dan Johnston supplied the software for force data collection and then added
the first, simple, ‘one insertion’ version of automatic motor control software.
Recently he created the current control software with better safety and more
force/speed options, suggested the addition of safety switches, and created this
document.

- Mr. Steve Kruithof created some mechanical drawings from the original CAD
models.






1. Introduction

A unique test bed is required to support existing research and collaborative projects. It
must insert a needle into different materials and measure the force versus depth profile of
this penetration. Some devices exist, such as syringe pumps, which could move at
controlled speeds over a defined distance, but none of these would hold the new,
patented, Needle Attachment Fixture (NAF) with its built-in force sensor.

The current version of the Needle Insertion Test Bed is shown in Figure 1. This
document describes the device and how to use it. It also captures the design of its
hardware and the details of the control software.

AW canada go.ca

e ———y

Figure 1 IMTI’s Needle Insertion Test Bed (May, 2007)






2. Summary

The National Research Council of Canada, Industrial Materials Institute (IMI), has
created a “phantom” for Prostate Cancer Brachytheraphy. This phantom is a 3D physical
model of the prostate and surrounding tissue that is accurate in geometry and scale, has
similar response for the ultrasound imaging, and is realistic in needle penetration forces.
The initial phantom was created with support from a national grant, and then refined as
part of a project with a commercial company. This enhanced phantom will be used to
train doctors in this common medical procedure. Other phantoms will be developed to
mimic different body geometry and other medical conditions.

To select materials for the components of these phantoms it is necessary to test many
samples of material for their (force) resistance to needle penetration. These tests must be
done with a consistent and repeatable needle velocity, so a new device was needed to
perform these tests. A motor on this new device will drive standard needles into material
samples with a controlled velocity and to a defined depth. Force data will be recorded
during this needle penetration. Then the device will withdraw the needle from the sample
and prepare for the next insertion.

The Needle Insertion Test Bed was designed and developed to perform these material
tests. This document was created to record the design of the test bed, and will emphasize
the operation and software for this testing system. History of the device is provided in
Section 3. A complete description on how to use the device for material evaluation will
be found in Section 5. Some details of the mechanical and software design will be found
in Sections 4 and 6, and in the appendices. Descriptions of the Needle Attachment
Fixture and its data acquisition system can be found in other documents.






3. History

A grant was awarded to NRC by the Canadian Prostate Cancer Research Initiative
(CPCRI) to develop a phantom with needle penetration forces similar to those
encountered during actual prostate brachytheraphy treatments. Part of the research
project created a system to measure these needle forces versus depth in the body.
Phantom development required the systematic testing of different materials for
penetration by the same types of medical needles. A Needle Insertion Test Bed was
developed to perform these tests. Standard medical needles for prostate cancer
brachytheraphy and prostate biopsy would be used in the device.

A search for existing mechanical hardware began in May, 2006. A suitable motor and
controller was purchased and a borrowed power supply was connected. Needles were
attached via a force-sensing Needle Attachment Fixture (NAF). The new device was
tested using the vendor’s supplied software running on the data collection computer.
Figure 2 shows this early system ready for material testing. Motions of the motor were
controlled by laboriously entering sequences of commands into the vendor’s software.

Figure 2 Early version of Needle Insertion Test Bed



By the fall of 2006 the system was being heavily used so the motor and controller
hardware was re-packaged, with its own power supply, into a single, solid assembly.
Software was created that integrated the existing collection of force data with several
standard motor commands. Now the user could easily define the distance the motor
would move and the speed it would drive the needle. Still, the software could only
provide a single insertion motion and speed, and there was no provision for motor limit
switches or any motor status checking. Several needles were destroyed during testing -
but no one was hurt.

In April 2007 a new version of the control software was created. This version supports
up to five combinations of distance and speeds for the motor so that motions can imitate
the techniques observed in actual medical procedures. The new system also provides
much more checking of safety status. New software was designed to make the device as
safe and automatic as possible. Limit switches have been added to improve reliability and
safety during the needle penetration and force data collection.



4. System Description

General descriptions of the mechanical and electrical components of the Needle Insertion
Test Bed are found in this section of the document. This device was created to solve an
immediate materials testing need for an active research project. Salvaged, new and
manufactured components were assembled to create a suitable test system in a very short
time and with a very low cost. Improvements have been to remove deficiencies
identified when the device was used. The following information on the system is to be
considered the “as built” description.

4.1. Mechanical Components

Note: Refer to Figures 3 and 4 for components mentioned in this section, and to
Appendix A for component drawings.

Figure 3 New Test Bed — Power Switch Side

A motor and attached position encoder (Fig. 3, Item 1) provide rotary motion, which is
translated to a linear motion by the worm gear (Fig. 3, Item 2) and the traveller (Fig. 3,
Item 3). Needle Attachment Fixtures (Fig. 3, Item 4), with their sensors for position and
force, are clamped into the traveller. Needles (Fig. 3, Item 5) are inserted through the
needle support (Fig. 3, Item 6) and are threaded into the needle attachment fixture. When
in operation, this needle will be driven into the material contained in the sample holder
(Fig. 3, Item 7) and the forces will be recorded by the software. Two limit switches (Fig
4, Item 1) are provided to restrict motions of the traveller and the needle.



PTSPEN

- s
sy P g e, SN

Figure 4 New Test Bed — Limit Switch Side

All motion components are mounted on a base plate, which is in turn mounted on a metal
enclosure. This enclosure contains the main power switch (Fig 3, Item 8), the power
indicator light, the electrical fuse, the power supply and the motor controller electronic
module.

4.2. Electrical Components

Most of the electronics in the test bed are contained within the motor controller, and this
is packaged by the vendor as one module. Connections to the motor and encoder are
made to this module. The power supply and limit switches attach to this same module.
A connector on this module is attached to the serial communication line of the computer.

The following diagram, Figure 5, shows all of these components and their connections.
Switches, fuses and other miscellaneous components are also shown.



Fuse, 0.75 A Main Power Switch On/Off light

— \\
— -®—
120 Volts AC
Power Supply
24 Volt %C
+ -
10K Position
é: > Encoder
-3
Analog In HEDS 5500
I Motor Controller
Limit ome Faulhaber Motor
Switch Switch MCDC 2805 024 CR|
Analog ”
Ground

RS232 Serial Communication

Figure 5 Electrical Block Diagram

4.3. Software Components

All the control software modules for the Needle Insertion Test Bed, and its interface for
the user, are written using the LabView®© graphical programming environment provided
by National Instruments. This control software, called “Needlelnsertion”, will only run
on a computer which has the application and its sub-components installed and a full,
licensed version of the LabView software. Or, the application can be installed as a “stand
alone” version where it is packaged with all the support needed to run on a computer
which does not have a full version of LabView.

The “Needlelnsertion” software can be considered to contain five (5) main sections as
shown in Figure 6. All of these software functions are described in other sections of this
document, and in detail in Appendix B

When started up, the ‘initialize’ section of the software will perform a set of tests to
verify correct connections to the test bed, and to check motor and limit switch status.
Then the motor will move the system to search for the ‘zero’ or ‘home’ position. Errors
or timeouts in this search will halt the system. This software section provides a more
secure and safe environment for the subsequent operation of the test bed.



Initialize,

Home Motor
Manual Moto}
Control
Edit Motions Ogerate Motor
ollect Data

Figure 6 Control Software - Functions

Tabs on the software’s main user interface allow the selection of one of the three main
software sections.

One section provides simple manual control over the motor. Users can verify
system status, observe the current position, move the motor, and reset the home
position.

Another section displays a table of five motor movements that can be edited.
Each line in the table defines a distance to move, a speed to use while travelling
that distance, and a time to wait after this movement before proceeding to the
next. A switch at the end of every line in the table will allow this movement to be
changed from a constant motion to a fast set of ‘jabs’. Users can modify one of
these motion profiles, or create their own.

The final, and very important, section of the software will start the motor so that it
follows the currently defined array of motions. Force data will be measured from
the needle, collected, and stored into a file during the entire insertion sequence at
the sample rate defined by the user. This software section will allow the motion
sequence to be repeated as many times as the user needs, with the force data from
each insertion stored in its own data file.

The “Stop” software section will shut down and disable the motor to prevent any needle
movement after the data collection is complete. Then the software application will halt.
The software will also enter this section, with an error message displayed, if ever a limit
switch is activated during a motor/needle motion.

10



5. User’s Manual

This section provides a description of how to use measure needle insertion force using the
test bed. Emphasis is placed on the features of the Needle Insertion Test Bed and the
software that controls its operation. Descriptions of the NAF and separate data collection
hardware system are found in their own documentation and reports.

5.1. Typical Operation
5.1.1. Start-up

Before operating the test bed, always perform a quick visual inspection. Power for the
test bed should be initially switched off. Check that the motor rotates freely, that the
traveller can move forward and backward easily, and that the traveller is positioned close
to the ‘home’ limit switch, i.e. lose to the motor. Verify that the Needle Attachment
Fixture (NAF) is securely attached to the traveller and that its sensor cables can move
freely even if the traveller moves over its full range of motion. Now the test bed can be
plugged in and powered ‘ON’. The light next to this power switch should now be lit.

Connect the computer, i.e. the research computer with data collection hardware and the
labview software, to the test bed and start the “Needlelnsertion” application. A user
interface in the LabView style will be visible on the main computer screen. Start this
application (arrow button at top left). A key feature of the control software is the
initialization and ‘find home’ component. When first started the application performs a
number of checks to verify that there is a motor controller of the correct type attached to
the computer, that the status of the controller and limit switches are as expected, and that
the motor can move. If any of these tests fail, the user will see a warning light displayed
in the software’s user interface and the screen will display an error message.

If the motor communication warning illuminates, check the test bed power and/or the
computer connection cable. The application will loop at this check until it receives the
expected response from the motor controller. Without any error, the software will try to
move the traveller and search for the ‘home’ limit switch. If the limit switch is not found
after a few attempts, the application will display an error message and then halt. The test
bed must be examined and the problem fixed before restarting the application.

Correct start-up operation of the test bed is to move slowly towards the home position
(towards the motor) until that limit switch is reached. Then the motor and traveller will
move away from this limit until it is positioned just beside this switch. This location will
be assigned as the ‘zero’ position. All motion will then stop and the system is ready for
use.

Caution! Under normal software operation of the test bed the limit switches are used to

set the ‘home’ position for the motor and as a ‘stop if too far’ limit switch for every
programmed movement. It is possible for manual motor operation, or a software error, to

11



drive the motor past the point where one of the switches is turned on. If this ever
happens, turn off the main power switch, stop and exit the application software, manually
move the traveler back to a mid-range position, restore power to the test bed and restart
the application.

5.1.2. Preparation to collect data

Load the sample to be tested into the sample holder and secure the holder on the test bed.
The holder can be rotated to allow for multiple needle penetration tests of the same
sample. Insert needle tip through the small hole in the needle support. Screw the needle
hub into the threaded opening of the Needle Attachment Fixture.

Decide where to store the force data on the computer, i.e. which folder (directory) and
which name to use as the template for the set of data files'. Carefully record a description
of the array of motions as this information is not stored with the force data. Also record
the position of each of the ‘jab’ switches that can be used to modify each part of the
motion.

5.1.3. Fine tune position

Based on the sample’s size and the needle used, it may be necessary to modify the ‘zero’
or home position obtained during the start-up sequence. One option is to power
everything off, move the physical location of the ‘home’ limit switch and to re-start the
test bed and software application. This would be done if there were a large number of
samples of the new size. For a faster and simpler adjustment, click on the “Manual” tab
on the main user interface and use the manual control of the motor.

Use the ‘jog’ button to move the traveler in either direction, i.e. where this direction is
selected by a switch provided in the software’s display. Another switch will control the
size of the motor ‘jog’ steps. Some status information is displayed on this tab panel,
including the status of the limit switches.

Caution: It is possible to ‘jog’ the motor far enough to activate a limit switch - and
beyond. Do not leave the test system in this condition or the remaining software will not
work correctly!

Once the ‘jog’ movement has reached the desired position, use the ‘Home’ button to
establish this motor location as the new ‘home’ or ‘zero’ for the test bed. If the “Go to
Home” button is used instead, the system will move back to its current ‘zero’ position.
Position information is converted to millimetres and displayed on the interface.

A “Help” button is provided for this user interface tab, and for the others. If pressed, it
will display a brief description of the buttons and controls that are visible. Dismiss the
help message by clicking on the “OK” button.

V'If the template name is “Data”, then the set of files will be automatically named “Data0”, “Datal”,
“Data2”, etc.

12



5.1.4. Edit motion sequence

If the mode switch on the front panel is set to ‘edit’, then the software option for defining
the insertion motions is active. Decide which sequence of motions to use for the needle
insertion. Several pre-defined sequences are provided. These range from a simple ‘one
motion, one speed’ insert to several insert/withdraw operations each with its own speed
and dwell time. Pre-defined sequences are designed to imitate the common techniques
observed in medical practice. Any of the pre-defined sequences can be modified, or the
user can define his/her own sequence.

For each line in the table the user can define a distance to travel in that motion (positive
or negative), a speed for this motion, and a time to wait after the motion is completed.
Total distance traveled over all five steps is checked against a limit, using a simple
summation, and will cause a warning light if exceeded. If any speed value exceeds
another pre-defined limit, a second warning light will be lit. If either the distance value or
speed is zero, the motor will not move and the sequence will not delay, even if there is a
time specified for that line of the table.

Larger positive motions, i.e. larger distance values, can be changed from a constant
advance to a series of high speed jabs. Change the jab option to ‘on’ for the selected line
in the table of motions. Jab motions are a series of fast forward and partial reverse
movements similar to those used by some medical staff. This jab option switch will be
ignored when the distance is negative or when the distance is too small.

" [ L4
’ >~ .
Al 1) I
8 b A ) ‘ L4 ’
7

c ¢ ! ’ - v
5 ~ 5
(4] - * 4 ol }
Q ral ‘a . ” ¢

n ) "

o, ’ Smooth Motion

= = = .Jab Motion

Time

Figure 7 Constant Motion versus Jab Motion

5.1.5. Operate sequence
When the mode switch on the front panel is set to ‘operate’, then the software option for
collecting data during needle insertions is active. Use the “(Re)Start” button to select a
new of different location for the force data files, and to specify a ‘template’ name for the
files. After this option the next data file will always have a “0” appended to the template
name.

13



Modify the “rate” value in the software display to control how fast to record force data.
In most cases the user will prefer the highest possible number of data samples per unit of
time (smallest time per sample) since this will provide the most detail from the
experiment. Slower rates will, however, reduce the size of the data files and speed up the
post-collection analysis.

Use the “Next” button on the computer display to start the needle moving through the
previously defined motion sequence. If either of the two warning lights from the ‘edit’
page are ‘on’, then the needle will not move. The sequence will proceed line by line,
with delays if specified, until the end of the last delay, and then the needle will withdraw
back to the home position.

Once the needle starts to move, the “Motor Ready” light will extinguish and the
“Inserting” light will illuminate. The latter will stay illuminated until the system has
completed the defined insertion motion sequence, then it will extinguish. Force data is
only collected during this insertion sequence. The “Motor Ready” will remain
extinguished until the needle is back at the home position and the motor is stopped.

If the motion sequence causes either the limit switch or the home switch to be tripped,
then the software will stop the motor, stop the data collection, and display a message.
Move the traveller away from the switch, exit and restart the application, and modify the
motion sequence. It may be necessary to change the location of one or both of the limit
switches to support the desired motions.

At the start of the first line in the motion sequence the system will also start to collect
force data. The raw sensor voltage information is displayed on the application’s graph
and also stored in the current data file. The graph will adjust its axis as required, but this
behaviour can be modified by the user for the displayed graph while the application is
running. Data collection will stop at the end of the last line of the sequence. The current
data file will be closed and the system will prepare itself to record another set of data
using the same template name but with a new appended number.

If the “(Re)Start” button is used instead of the “Next”, then the user will be able to
provide a new template name and thus start a new series of data files.

5.1.6. Stop the application

Whenever the motor is at rest, i.e. at the end of the sequence after the needle is back to
the home position, then the user can stop the application by using the large, red, button
always visible in the user interface. The motor will be disabled, any open data files will
be closed, and the software will shut down. There are other ways to stop the application,
and these are described in the next part of this section of the document.

14



5.2. Detailed Description of the User Interface

This section will describe the user interface of the “Needlelnsertion” application in detail.
Every button and control will be mentioned and its operation explained.

5.2.1. Application window decorations

The main window of the software application will look like Figure 8 when started by the
user. Some of the controls are not created as part of the software development of the
application, but are provided as part of every LabView application as a set of controls
across the top of the application’s display window.

P Needlelnsertion. vi

Direction [

£

Current Position (mm)
0

Status_fél_aggll._.-_ }
Drive Disabled Position Reached  Limit Switch

Press to go to HOME Press to re-define HOME

Set
HOME

Figure 8 Main application window with decorations, Operate Motor panel

On a computer with full LabView installed, the user will find a row of menu options
(File, Edit, Operate, ... Help). These are used during the software development and
testing and are not needed by anyone just using the application.

There is a row of buttons with small pictures in them. Only two of these are important to
the application user; the ‘run’ button and the ‘stop’ button. The button on the left side

15



with the right-pointing arrow is the ‘run’ button. This is used to start the application, i.e.
the application does not start working as soon as the main window is visible but waits for
the user to activate this control. Use this button when it is time to define a motion
sequence and collect needle force data, or to restart the application after an error.

The button with the small, red hexagon represents a small stop sign. It is used to
immediately stop the software application. Motion commands that have already be sent
from this software to the motor controller will still complete. If this stop control is used,
there is no option to allow the motor to be disabled and shut down. It provides an
immediate stop.

5.2.2. Application main window - general controls

Also shown in Figure 8 are some general controls created for the “Needlelnsertion”
application. In the top right corner is the “Motor Comm Error” light which will be lit if
the software cannot receive an expected response from the motor controller. If power is
switched off for the test bed device, or if there is a problem with the RS232 connection
cable, then this light will illuminate. The application will loop at this test until it gets the
expected result, or until the application is halted. When the test bed is powered up and
connected the light will extinguish and the ‘home’ motion sequence will begin.

In the bottom left of the window is a button with the National Research Council of
Canada’s (NRC) symbol on it. Press this button when the application is running and a
brief message about the software and its copyright will be displayed.

In the bottom middle is a switch used to select between the ‘edit’ and ‘operate’ modes of
the application. Notice that the position of this switch will activate or deactivate two of
the tab panels on the main application (when it is running). If the switch is set to ‘edit’,
then the “Define Motions” application pane is active and the controls on the “Data
Collection” pane are disabled. If the switch is set to ‘operate’ then the active state of both
pane’s is reversed.

At the bottom right is a large “Stop and Exit” button. This will perform a controlled
shutdown of the application and is the preferred method for stopping the software. Motor
motions already in progress are not affected, but the software will disable the motor at the
end of active motion, close all data files, and halt the application. Restart, if necessary,
with the small LabView ‘run’ arrow.

In the center of the main window is the largest part of the application, with three tabs
shown on the top. Select a tab to display the application panes associated with each of
the three operation modes of the software.

5.2.3. Application main window - “Operate Motor”

For this description, look at the main application pane as shown in the center of Figure 8.
Use the “Direction” switch to select whether subsequent manual motions will move the
traveller toward the sample or away from the sample. The size of each motion can be

16



adjusted with the “Jog Size” switch. In “Large” mode, each jog step will be 1 mm. With
“Small” selected each jog step will be 4 mm.

Click on the “Jog” button and hold to cause the motor to perform a manual move.
Motion will continue until the button is released. Manual operation will allow the motor
to move until a limit switch is activated, and even beyond. A limit switch status
indication will illuminate. Do not try to move the traveller in the same direction once the
mechanical system has reached its end of travel. Do not leave this application pane until
the traveller has been moved off the limit switches.

A few of the motor status values will be displayed while in this application pane. ‘“Drive
Disabled” should be on only when the motor has been disabled by the software, such as
after hitting a limit switch during a programmed motion. “Position Reached” will flash on
at the end of every jog step — because the motor has reached the position it was asked to
move to. “Limit Switch” will illuminate whenever either one of the two limit switches is
“ON”. Limit switches would be triggered if the traveller moved over one of them, or the
user could simply be operating these switches as part of system testing.

The position of the needle and traveller is shown on a display as the distance from the
current ‘home’ location. This will be updated after every motor movement. Notice how
the position value oscillates at the end of every motion before obtaining the final value.
This position “hunting” is caused by the large mechanical inertia of the test bed. Motion
‘overshoot’ is automatically corrected by the motion controller.

A “Go to Home” button will cause the traveller to reposition itself to the current ‘zero’
location. It has no affect if already at ‘zero’.

Also under the status lights is a large “Set HOME” switch. Whenever this button is
pressed the current position of the motor is set as the new ‘home’ or ‘zero’ location. The
traveller will return to this position after every sequence of motions. Do not set a
position as ‘home’ if either one of the limit switches is activated. Do not set a ‘home’
position too close to the sample holder as this will cause standard insertion sequences to
hit the “end of travel” limit switch.

In the bottom right of this application pane is a small “Help” button. Activate this control
to see a small description of the controls shown on the screen and how to use them.

5.2.4. Application main window — “Define Motions”

Switch the “User Modify Array” to OFF. Then click on the small ‘down arrow’ control
in the “Operate Modes” menu shown at the bottom left of Figure 9. Select one of the pre-
defined sets of needle motions from the list provided. As each set is selected from the
control’s options, the values will be used to populate the distance/speed/dwell array
shown in the middle of this pane. One of the options from this “Operate Modes” menu
will clear all the existing values in the array to zero.

17



Change the “User Modify Array” switch to ON and the user can modify any value in the
array. If any speed value is set to faster than the limit (60 mm/sec), then the “Max
Speed” warning light will illuminate. Reduce the large speed value to clear this warning

light.

If the total of the distances defined in the table is greater than the travel limit (80 mm.),
then the “Too Large” warning light will illuminate. Reduce the total distance to clear this
warning light. Note that this check is a simple sum of the distance values, i.e. a negative
distance is subtracted from the total. The current total distance will be shown in the
“Total Distance” indicator. It is possible for a user to define a single distance greater
than the travel limit, as long as there are negative distances to reduce the total. This
would result in a motion error, i.e. the traveller would activate a limit switch.

The test device and motor will not move to execute the motion sequence if either one of
the two warning lights is still active.

e

=

e —————

P — T
[‘ Define Motions | Data Collection ] Operate Motor I

Distance Speed Dwell Jab

{mm.) (mm/sec) | (sec) Mode
J ek o>
2| (.js '5!40 {Jl >
3] i;’,jss azn 332 -
4] i_'gis ‘{-}m gjz >
=00 o C G »

7014 . &4 >

Total Distance Too large!

J
Max Speed
Operate Modes

Sequence i T~ i

User Modify Array

on] AW off

Figure 9 Define Motions application pane

For each row in the table, there is a switch to select ‘Jab’ mode for this movement. These
switches are not set or reset by the predefined motion selections provided from the

18



“Operate Modes” menu, and must always be set by the user. Any motion changed to a
‘jab’ will operate to move the same distance, but the motion speed will be increased and
the motion will be modified to be a series of forward movements followed by partial
withdrawals, as shown in Figure 7. ‘Jab’ mode is not allowed for movements with a
negative distance. The faster ‘jab’ speed is based on the base motion speed, but the new
speed cannot exceed 100 mm/sec and will be limited to that value. If the distance to
travel is less than 10 mm, then the ‘jab’ motion option is ignored.

5.2.5. Application main window - “Data Collection”

| Define Motions | Data Collection | Operate Motor |

| ForceVoltage

Time

2 Inserting MotorReady Samplz";gUR;Utg (ms)

‘ 200 4 ¢ 350
b Fd
150 400
(Re)staft‘

Next fle 100*/';)\*450 |
n 50 500

Use the “(Re)Start” button on the lower left corner to set the folder to store data files, and

to define the template name to use for this next set of data files. When these have been

defined the “MotorReady” light will illuminate. In the “Next file” display is the number

which will be appended to the template data file name. Use this number in the

description of the current data file when making notes during the experiment.

Figure 10 Data collection application pane

19



Set the desired sampling rate (time between samples) for the needle force data. The
default rate is the fastest one as this provides the most information. Slower rates may
miss fine details in the force data, but would result in much smaller data files.

Start the needle moving, and the data collection, by pressing the “Next” button. The
“Inserting” light will illuminate and the “MotorReady” light will extinguish. Needle force
data will be displayed on the chart as it is collected. “Right click” on the chart to change
the auto scale operation of the chart’s axis. When the motion sequence is complete the
“Inserting” light will extinguish and the data collection will stop. The needle will then
automatically, slowly, return to the ‘home’ position. After the motor is stopped the
“MotorReady” light will illuminate again. Notice that the “Next file” number will
increment. Use the “Next” button again to repeat the sequence again, but with the data
stored in a new data file.

Use the “Help” button to see a message that will remind users of the buttons and their
operation.

20



6. Design — Software

LabView was used to create the control and data collection software. This graphical
programming environment is designed to support rapid development of applications,
especially those which use data acquisition hardware, such as this system to collect
needle force data.

The latest version of software to control the Needle Insertion Test Bed was designed with
two main features;

o The motions are more complicated than just a simple, one speed, insertion and
withdraw. Doctors often insert, insert at different speed, withdraw, and insert
again. Some doctors will use a series of rapid ““jabs” instead of a constant
insertion motion. The motion control system for the test bed must support these
different motion techniques.

o The use of the test bed with early versions of motor control, and with manually
created motor commands, caused several minor accidents. Unexpected motions
caused the needle to contact the base of the sample holder, bending and
destroying the needle. Fortunately, no fingers were pinched or motors damaged.
The current software was designed to use safety stitches to limit motions and
provide a more secure system for data collection.

Software was created in LabView to implement the two consideration listed above, and to
provide the different functions of motor motions and data collection. This section of the
document records the design ideas and assumptions used during this software
development. Diagrams of the final graphical programs are provided in Appendix B.

6.1.1. Initialize and home functions

Motion commands for the low cost motor and controller used for this device only support
a limited response to safety switches. There is only one signal dedicated to limit
switches, so it is not possible for this motor controller to distinguish between the switch
indicating the lower limit of travel, and another indicating the upper limit. Higher level
software, and a few assumptions, must provide this understanding.

When first started the software will attempt to obtain status information from the motor
controller. Since no control is possible without this communication, the software will
pause at this first step, illuminate an error indication, and wait for the communication to
be restored.

When communication is working, the status of the limit switches is determined. If the
status is ‘Off” then the assumption is made that the traveller is located between the two
limit switches. Commands are issued to move the traveller slowly away from the sample
holder and towards the limit switch located closest to the motor. If this switch is not

21



activated after a time suitable for a full motion travel, then there must be a problem with
the switches, motor, coupling, worm screw or traveller. The software will stop sending
movement commands, display an error message, and halt the software.

Normal operation is for the traveller to continue moving until limit switch close to the
motor is activated. This position, with the switch now active cannot be the home position.
The software must move the traveller off the switch using a set of small reverse
movements. If it is not possible to move off the active switch, then the software must
have started the system with the traveller already activating the limit switch closest to the
sample holder. The software’s reverse movements are subsequently driving the traveler
closer to the sample holder, and this limit switch cannot deactivate. The code must halt
and allow the operator to manually correct this problem.

Once the traveller does move off the limit switch close to the motor, the traveller must
still be moved another small distance. Mechanical inertia and overshoot will occur even
on slow movements. The traveller will be moved, by the software, a small distance (2
mm) away from the lower limit switch. This final location is defined as the zero or
‘home’ position.

6.1.2. Motion and limit switches

All programmed motions will include a request to the controller to halt immediately if
there is a change in either one of the limit switches. The operator can adjust the locations
of the limit switches to insure safe motions for the operator and the equipment. Limit
switch reaction is active on all constant insertion motions, will work with some
restrictions on ‘jab> motions, and will also work on withdrawals back to the home
location.

6.1.3. Error response

Whenever there is an error due to a limit switch, the motor will be disabled, an error
message is displayed to the user, and the application software will stop. The operator is
expected to reposition the hardware so that neither of the two limit switches is active.
Any other problems, e.g. a loose motor coupler, broken switch, etc. must also be
corrected before the software is restarted.

The motor is disabled after any error or when the software is halted, so that the operator
can freely turn the motor and thus reposition the traveller and needle.

6.1.4. Application’s constants and limits

Parameters used in the application are listed in the table below. If these must be
modified, i.e. if the hardware is changed, then the parameter values must be changed in
the software.

Parameter Value Description

TotalDistance 80 millimetres The maximum total distance from all 5 lines in
the motion array. The check is simply the sum
of all the distance values

22




MaxSpeed

70 mm/sec

The base speed (speed of any single constant
motion) cannot exceed this value

MaxJabSpeed

100 mm/sec

Jab motions move, over small distances, faster
(up to 1.5 x) than the basic speed defined for an
insertion. However, jab motion speed cannot
exceed this higher limit

Home Retract

2 mm

Distance away from home switch to ‘zero’
position, to allow for motor overshoot

acceleration

0.312 rev/sec/sec

All motor accelerations and decelerations will
use this value. The motor will ramp up to its
defined speed value at the beginning of a motion,
and slow down as it approaches the end.

Command delay

50 milliseconds

The delay after every motor command before
allowing the software to issue another command.

Encoder Count

2048 per rev

One motor rotation will create 2048 pulses from
the encoder

Worm pitch

2 mm per rev

Each revolution of the motor will cause the
worm gear to rotate one revolution and the
traveller to move 2 mm

23




24



7. Future Plans

The following is a short list of potential changes that could be made to the Needle
Insertion Test Bed. There would be significant change required to the mechanical design
if either of these two changes was implemented.

A common technique used by medical practitioners during needle insertion is to
rotate the needle in order to achieve a straight line track for a bevelled needle tip..
Typically this is done by rotating the hub of the needle either with a continuous
rotation or the common technique of rotating in alternating directions (“bi-
rotation”) while inserting. The rotation technique should reduce the force needed
for insertion. A second motor and controller would add needle rotation, but
would require significant changes to the mechanical design of the traveller.
Software would have to be modified to support the second motor’s motion.

If this test bed is ever used with other needles and therefore other needle holders,
then the traveller must be modified to suit.

25



26



Appendix A — Mechanical Drawings

The drawings shown in this appendix were created from CAD models of the original
mechanical components of the Needle Insertion Test Bed. These drawings have been
captured in this document since they have not been documented elsewhere.

There have been a few minor changes since the drawings were created. All smooth holes
shown in the drawings are actually threaded, tapped attachment points. There has been
the addition of an enclosure for the power supply and controller. Limit switches have
been added. There are no drawings for these modifications.

27



8¢

=YelIN=1g
uolIasu|

¢l

@

=0,

o =L,

i

[

wiolog duinD JoLow “Z1
do) dwi|D J0Low | |
94oid dois "0l

(ma108 poaT) Bulpag |og
wiolog 9iNEX|d SIPS9N *
do| ainixi{ SIPOSN *
20814 pug Jong

20014 puUg 1UCI -

208ld poddng s|posN *
PINOW WA *

200ld Loddng pINow
o809

~— N <O OO0



6¢C

i 101 ams] woun]  Cravx]

A4

ix

fakd Ok ‘awa

THIAVIO PVIZ IO 00

[ 2= 1R o= VPR 3

an

" MOAIIN | ASSY XN

[

aspg

A DIN ==

F 1VIMDIE 1D%14 118wl

7 tW¥ADIO 35V OmI
Fada Fedvwvinony
CIVHLUDVA

AN VAN

S1eI0 M3V SHTANIMG

"aNnanlae

3NN DIMDPOSIVR TN m

1 IND=Im 1D Y SYA0 Ve

M NOIDINADN4 I ANV 11V D

40 21314004 1103 101 3 THEmYAD

IuiM QIHVINDD NIV 1x]
AN G Y A VIER e

[ ol 1%,

="t T

?€¢C

-
=]

G/L'G1

al

A

e

A

JANN

A
v

00°¢

v

A

v

GC'0

A

€100

G0




0¢

TioT ]

1._

e IR
e sl ¥
ar e Y

woyog

9802 397¢
30

Dhlmvad NYIE O O4

HEHYIaeY

MO QNS | ASEWIXIN
o

CHUTY-TT

EHTR=TURT=T= S TP VTN
InLIROml m 1IOma Y IV 4D Ve
M BOIDRA0IL 1D Y 114 D2k
10 AlA 16004 1102 In) 2 DIV

NIVRLDVEY

va - TRYe St bl AIMVIKOD NTIYIROH 3nl
P - TP MBOO Y AVIReOS
T 1 vrD1a 151 Tl
300w a1 £ 1vM330 101 Omi
oea| SO FeD¥YWaVIRONY

o

LLWI DN

xxxxx I55ONVANOI

SENDME KA Y SNTESEIPAA

£9°0

=

GZ0

soopid Z
"dqg #/L X g/l Wpay

Jo

w

?oOT do

¢

€0

O

?¢0

/

saop|d v\
"dQg 8/¢€ X QHL Z€-0l

0\

GLE0




1€

TioT ]

[RYES |

]
on oum

DHImyaa 11¥D3 108 OG [=Th 2= 1FTh

KOG | AS3VIXIN
ark

[

T w10 1DV 1At

€ (w4230 1DV Om)

FeDWW aYINDNY
NYNTIOVA

QOn_l . Kn.”.w.nn.
dwp|D JoJow o
LT DYN

‘SIShYanol

SinDM NIV SHOISHIMO

aecng

F1IFA 20N 1O NCIST A Ta HATIam

101 10D llon 11O%M Y 5V A0 ¥4

BEHOIINO00 1A 4t 1184 21

10 41314084 3105 101 3 TImyAA

Tei bl AIIVINOD DAY IO Tt
T MENOD BNV ANVT RO

8l'L

€0

seop|d g
IMa 8#

?€0

GLE0




1101 stiar] wewa] e SHImvAd 11V35 101 00 -1V =11 B
v s
.l._ ‘or D&-— am 0 o X1t J A DU IO POISIVII¢ N3O m
g n A Gaaman - vy | NOOIER | asTVIXIE Ju1 IROW M HONm Y SY 4O 1a¥e
1 @pinar 3 Aa weai 9 BT DPO0R 12 A0 13V 2t
m 0 m_ -, 104101400 ¢ 10T I 3 INIevaq
.d vo e D411 QIMYINOD MO PR 1ol
| YT ” N TMISNIHAOD AN AVIRAeONe
o _ — m m m 3 1vMOIa 1DV
[304v 2M T 1v#4210 1DVi4 Omi
TSea| S ar1 Sedvwavisony
AoV
WL DN O
M P
e s SIOM Bl 12V SHOSHIVAG
=" ]

SSE— 660

[

=

[N
-
L-—
-
[a—

08’1

661

0C'0)

v [
.U@t@wc_\

o 0] Buysng

4N soop|d Z

'dqg /€ X €01

T 0

GZ0

Oo gL'0 8l

ol




] ]
|

THImMYIQ 11YDS 106 0a (210 =10 )
I_l'_
o aval m

vou | MOOISH | assy e

poddns pjow —

Iu1N QINVINDD BAIWUON 3ul
I B BNV AN VT RAODS e
T VIMOIG FIYI Haw)
I 1vMDI0 10V OmI
arIt S uDwIaVIRONY

LRV TR
~owig) Sevan
I DN T o Sha bl b _.«.u.QW...iwn_

- /10 i
050 | — ’

nﬂ ]

W 811
....... m
o v

P¢e¢

v e

6¥°0

(£272)

v

o GC¢0 G0

™
o
(S8
]
J
x
S

m—.O@V =




123

Lo wia] o] _eriead SMmy2a 1MVIS 106 00 HOYIIY
_ _ <|_ QIO
3 on_avg| im 314 e O NCIST VR

i i, S B aw | O ISN | asTVIXIL 181 IRONHM NORm Y 5¥ 20 Ve

avarar 1 X umora M 1CIIDAGON 1 AV 1M Dk

o 1D Al 140 e 3OS It 3 DN wva0

ve LG Dui b GIMYINDD F DI IYIICHN 1nl

raow ourv - TV IO GV ASVIRAeOs
3 1ve210 10W 32ae1
U—_ _OE <>& v art E 1ww4310 1D¥le Omi
| 5 ari fedvwavindny
-0t
rarie 313N VANOL
_.C\/: OW_ 7_ o SIeDM M 1LY SHOSHIeAd .
S N
. < N> W
~ o
i e .
A mo.mou 808t
.
=1 ="

(Zr'€9)




S¢

|

W] S

‘aNaInOae

UG- IR 1= T PR T PO

11 (BONIm 108 m VIV IO Ve

HHOIDRGOIH ANV IR Dan

10 A1 14004 1ILE 1013 THmYID

Inl M QINYINDD HO IO In]
I IGO0 OV IV RReMa

Tolmvan Y235 1on oa LOUYIIeeY
¥
..:_ = .u..w_.la s 3ne vou | FE@IS [ assy
> L T ) ]
_ _ —mmw Beaat 3 ka wroa
— Q ‘va I
4ev B
gangs 1spPl|S 2] ysia o s
. dvar 2 vMDIT 1014 Omi
Tnowal FOnI Sadymawvinoesy
€ ivreani vas
N Foaven SIT VA 1O}
[IWNI DdN ) SIm M 13V J AT IMA




Sriaelg 1 1o OB QYA

apear - ragse | ascrrar

mom_ m [ i end

pu3j 354 sl

LI O8N | = e e

L4174 S 407 ST <E
amen

¢C 6C

T [Tozzt)

1




[

(40.02)

L]
-
N cram
e
v
——
;i
oz

Im

Ball Bearing

MRC INTI

B

oA

(zTve)

[

(e57¢T)

(19.85)

~66)

37



] vaua] s veend SHmYEa H¥IT 1T D0 HOIYIHLY
qUHI~O
¥
ar ow _ i s N T11€4 Dk (ORISR H 1T
[l - vay | MO GNP | asxvixik 1§ INOulim 110mm V 5Y 3O 2¥e
Gruedr 3 i et I OHDACOI 1A A 114 Db
- N 10 4434084 $105 In] 3 DImVIG
\_ m U_ o —I_ 7o T Tu1 1 QINVINDD ROVEROH Ju)
..... ) N BN IEAO0 BV AIVIRbeOSe
F I¥MDI0 1DV 11ae1
m ® ® 2esvam T 1YMDI6 1DVie Omi
...... I Gt EedywaviaTey
S oo
11111 1IN VAol
LW DN o — ey S
S |
w _. ' _. o
=1 -
W | [
G/'0 = )

€920

8t'0

o Hq
HEi ]
50 |
A




6¢

1391 amr]

) IR

Tultd QIO MENUNWIEL Tnl
AR IEHOD VY AV Relibe

_ Dhim¥aa 19¥3S 10K OO POUVIIEY
¥
MY —
or_owg} im B0z 30 KO QIS | ASSVIXIN
St Aqpadna -y
@303 3 Aa wm
o]} - - e
..... " -
T Y310 10Vis Has)
RXTL -1} € 1yvaD310 1DV Ol
. oo| S AN FeOVWaVIRONY
HVNOIDYAY
WL DYN arnama
i LIMOM BEIAV SHOISHIM G
HE
“ )
HE
i
i
I O
H )
' | .
| O.
)
“ )
|
]
R
e Fuu S —
v !
I
] H
o~ ==

v

seop|d g
lup m#/

VA

@

G/81°0

="

|

G/810

s

G/E0




130 1_auins] e RS

DMmyYad HYDI 106 06 HOUYIHeY
_ _< ‘O
K h
fll or _owuag| im] P - roarsn | assy e S TN 1O HTISI I e ITHIm
1awaaua. n AdRIRIg et
ngarar ) 2 umarg
va - Y 10 A “
11s9 Duee - P IO ANY AVIRIeOSe
¥ 1¥#MD10 1D%14 10aal
[2aav B w310 1D¥le Oml
...... Sapit FeDVW aVINONY
HVhODYE
..... ISIDhVADOL
_.:\4_ UN_ 7_ e o SIDB N 1Y ShOSHIMA

SO R W= |
| =t E— e |

G/81°0 G/81°0

0G0

G

€10 soop|d g S
P 81 # oy

AN _A Gl v_

G20




|87

130t awmsf

]

e |
¥
on_aun} im]

yanz 3w

1awaquia. » AQR3LR3L
@y

DWm¥aa 11VD3 1O 00

rONVIY

. MO QIR | AZIVIXIN

Q=
L IICOR=URT=TT= R T TP [ETTY
1ul 1NOnHm NO=m Y IV 4D 1aVe

BUHOIINGO0IE AY T i

+D 4114004 11035 10l 3 THImYI0

Tl QINIYIOD OV POM Ix]
TRSINENOOEY AV Rbelbe

=y

[

0e0

L9°0

a wman
. M
208ld puj e
H ¥ 1YMDIQ 1DVIe d1am
vesv arl £ 1yvA310 1DV1e Ol
shons| © AN EDVW avIaDhy
NNV
wanin SIS YAHOL
_._.__\4_ Um Z o SIDM M 1Y SNDISHIVAG
o -]
~ °
oco 1 = TA)
T !
1 r
La =
—
_—"“n *
b= On
020

€10

]

o

G¢0

)




44

110+ away] wonu] coovx] DHImvIa YIS 1O 06 MO YTl Y
_ _(h_ qaMn=Cae
Rad) ar_aus| x| . . S 11 Dat 1O NCISTVA I R IR M
amaqua ' AdeSary ow | NOISN | asEYIXY 1ol IROnlM 11OH M Y VA0 laVe
Dres3r ) Ae avarg ™1 NOHDRAO4 12 ARY 1WA 2ok
O > m e 10 A1 1400 ¢ 1103 Ini T D0l wvad
® va Tl b QIIVILDD N O VIO 10l
° v o - R IBNID GV AVIES DS

¥ 1ve4D1a 15V Haw)

Co_ x—mwc_ ..... are € 1v¥4210 13VI4 Oml

. mra| © QMY FeDYW avIRONY

VROV

..... SSEDhYAIOL

_.C\/z UW_Z e SI=DM N 1AV SHOISHIMG

IC'“ -_ N
\,
SN N
N\,
N\,
/@C:O®Q |leleplel=lvl]

. .

1

Bulysnq co_u,mﬁ\




Appendix B — LabView Software Diagrams

Control and data collection software for the Needle Insertion Test bed was created using
the LabView graphical programming environment. All the logic of the software is
captured in the diagrams shown in the following pages.

Some software functions cannot be shown in a single diagram, i.e. the components and
labels would be too small to read. These are instead shown as a sequence of diagrams,
usually panning the whole diagram from left to right.

Some software contains “case” components to designate options. If the other case(s) is
(are) non-trivial, it will be shown in a subsequent diagram.

One software function, i.e. the display of the NRC copyright, is so simple that the
diagram for this function is not shown.

e

; ‘
= == =

Gt n} Motor E\dotor ! P Metoql)
AR Collect Maint Home Tabey Stop

Y] ™ ™

i - L‘h .
'\. EM“H T

it N —l
LF1 [T [ Cefertry AT [ LS DAt - (T | DAr o
vz A > Move o=
i e s B () B
C A 5]

Al Y 1] £ ™ ]

Fazt
Jab

_‘ [ y b
ISend cvent
émd

Figure 11 Hierarchy of the Needle Insertion software (main app. is 1)

43



Shown in Figurel2 is the start of the main sequence of the application. The application
will execute a couple of steps of start up, then loop while the operator selects between the
three tabbed options, and then it will stop because of an error or because the user pressed
the button.

Needle Insertion Device Control]
e

TWError P[] )
§
§ 1 dit/Operate|

otor Comm Error

1=
Motor
Home

----- b Tt
Reset until no timeout Cause the motor to execute our
during status read 'home' sequence. If cannot
home, then stop the program

Figure 12 Main program - Start up

The first step in the sequence is the check for motor status. This check will be part of the
“Motor Init” subprogram (which will be described later). If the initialize subprogram
returns an error, then the “Motor Comm Error” light will illuminate and the software will
continue the loop and continue to try to establish motor communications. If there is no
error, the software can proceed to the second frame of the sequence.

The complex “Motor Home” subprogram will now execute. If there is an error return,
the program will display a message and halt the application. If there is no error, the
program will proceed to the next frame of the sequence, which will be the tab selection
and one of the three modes of the application.

44



Qoooo0ooon

i
7
{r 35
o @
N
0 R
@
&g
o
&£
o3
S

A

=19
J Meotor
tof
- — Done the main loop, close down ... stop the program
: Error P : the tab control, shut off the
Error] y % motor, and then ...
Application wil
1=
— i i
O = H = =l = « (= = i =i« =« 6 S
KRC Loaol
NRC Logo At any time the user can
L select the "NRC" button
I and display a copyright
NRC |message.,
Logo
-

Qoo0ooogogon

Figure 13 Main program — Stop

Within the main application loop, checked every 200 ms., the operator can press the
“NRC” button. This will cause the “NRC Logo” subprogram to run, which simply
displays a copyright message. The user will “OK” the message to have it cleared from
the display.

A subprogram called “Tab Ctl” (tab control) will execute every cycle of the loop. This
sub-function hides the logic for enabling and disabling two of the tab options. A full
description of this function is provided in this appendix.

Any error from the motor in any one of the three modes of operation of the program will
cause the display of a message for the user. Once this message is acknowledged, this
error-handling mini-sequence will halt the application. The motor will already be
disabled by the motor function which first detected the error.

If the “Stop” button is pressed in the main loop, the loop will terminate. This will cause
the “Motor Stop” subprogram to halt and disable the motor. The tab control processing
will be shut down (and any error message displayed) and then the application can precede
to the last frame of the sequence and halt the application.

45



» =¥ Page
] PageEnb

-

Figure 14 Main program — Tab control subprogram

This subprogram will expect an input which is a set of pages grouped as a ‘tab control’.
Each ‘page’ is an independent collection of user interface controls and indicators. The
software will separate the three (in this application) pages and then extract a ‘property
node’ of the application’s tab control. Specifically, this is the property which controls if
the individual tab is enabled or not. The selector switch input will set the ‘enabled’ state
for tab options 0 and 1. Tab option 2 (the manual control of the motor) is not modified
and is therefore always enabled. The remaining two tab options will alternate between
‘enabled’ and ‘disabled and grayed’.

46



1 "Define Motions"®, Default hf

ser Modify Arra ‘
: - ; Max Speed
Distjspeed Array 1n] || M [T reed Array ) j—' Babi]
; s — .
. | 1 Eluster]
Emndi @_—____ _______ ! e . S
dit T 1 mm ﬁ
i 00 large! pab2] . oipd
e =
otal Distance [T7]
pliza) - pab3]
o =51
i
i
1

controlto

Operate Modes add
H e e v v m
[ "Operate - ey, R

1
2y
@ § Modes”

Figure 15 Main program — Define motions tab

Inside the main program’s loop is the case (a choice or selection) function driven by the
tab selection of the user. When the “Define Motions” tab is selected, and the related
controls are shown and enabled, then the logic shown in this diagram will operate.

On the bottom is the help button (“Help 37). If the help button is pressed the message
will be displayed using a standard LabView dialog. The user selects “OK” on the dialog
to dismiss the message. If the help button is not pressed, i.e. the other case option, then
nothing happens.

The column of five (5) jab motion switches is collected into a cluster of Boolean values.
This makes it easier to send the information to subprograms as a single input. A local
variable is formed from this cluster and will be shown and used in other parts of the main
program.

The “Edit” subprogram will use the selection from the predefined “Operate Modes”
selection to place values in the five lines of the distance/speed/dwell array. The array is
used as both an input to the subprograms and (a ‘local variable’ of the array) as an output.
This will allow changes in the selected array to be forced into the array displayed on the
user interface of the program. Values in this array cannot be changed.

Switching the “User Modify Array” control switch will disconnect the displayed array
from a fixed, pre-defined set of values to the current values from the software display.

47



Now these values can be modified and user changes will not be reset by the software
loop.

The displayed set of array values is incorporated in the “Dist/Speed Array In”
component. Another local variable copy of this component was made and is used by the

insertion and data collection function of the main program.

If the array values are not valid then the subprogram will turn on Boolean outputs. These
outputs will illuminate light displays for this part of the user interface.

48



T "Operate Motor” =

Press to re-define HOME

o j
hd 4™

R
urrent Position (mm, |

J_Wi_m . Position Reached
AL — 1 e
LT

ElUse the "Jog”
3 Bl button and -

o O O e O N O D O N O O O O O O O O e g o000 000D 000000000000

Figure 16 Main program — Manually operate motor

This tab option contains only simple components (buttons, switches, and lights) without

any references or local variables. One button will cause the help message for this option
to be displayed.

The other buttons and displays are connected to the subprogram. A subprogram was

created in this case to simplify the complexity of the main program and reduce the size of
the program’s connection diagram.

49



M. "Data Coflection” »f

. [rserting]  [fotorRead:
Tl = o
tefaise vhf

Dist{Speed Array In Use =

82 “(Re)Start” -
[Inserting] to define -

T T
M True ~pf

i
Opersty

[ H -
155:

Figure 17 Main program — Sequence motor and data collection

Figure 17 shows the logic for the main purpose of the application, which is to move the
needle as defined by the “Dist/Speed Array In”, and to collect needle force data while the
insertion proceeds.

The motion array and the ‘jab’ Boolean cluster are passed to the subprogram as inputs.
There are also buttons whose state is passed to this subprogram, i.e. the “Start”” and
“Next” buttons. The data sampling rate is read from the user interface dial and also
passed to the subprogram. The number of the next data file is passed back so that it can
be displayed.

Three components of this part of the program have no visible connection to other
components. Two indicator lights, and the displayed chart for force data, have been
copied as a ‘reference’ or pointer to the respective component. These ‘references’ are
passed down to the subprogram so that it can directly set the state of the lights and write
data to the chart. Without this technique the lights could only be changed after the entire
subprogram was complete. Without a reference to the chart a large stream of force data
would be passed up from the subprogram, and chart’s display would change all at once at
the completion of the subprogram without any intermediate update.

The “Help 2” button will display an informative message to the user, i.e. similar in
operation to the help button in the ‘edit array’ tab option.

50



Initial array, —i

with default i .gg
st{Speed Arrai In fvalues | 0 active array, h.0
[?.b """""" with user

defined values

EER)

elra

[ - - | |

serModif: B
DistanceMax

The user must provide a valid set of dlstances]
land speeds (and optional dwells).

Figure 18 Main functions — Edit array subprogram

A central component of this software is the case statement box. There is one ‘case’ for
each option in the “SelectArray” list, but each option is similar to the one shown. A
predefined array of distances, speeds and dwell times is selected by the case statement to
be sent to the selection module. As long as the “UserModify” Boolean is “True” then the
output of the selection and the displayed array values are always set to the constant
values provided by the case option, i.e. the values cannot be changed.

When the Boolean input is switched to “False”, then the new set of values for the array
will depend only upon the current values in the display. Thus the user can select and edit
any value(s).

The current set of values in the array is checked against limits. If any speed (column 1)
in the array exceeds the 70 mm/sec. limit in the diagram, then the output “SpeedMax”
will be set “True”. If the simple sum of the distance values (column 0) exceeds the 80
mm limit, then the “DistanceMax” output will be set as “True”. This simple sum is also
provided to the calling program for it to display.

51



Press to re-define HOME position| Fress to 9o to HOME

[Move (jogj the
selected relative

distance and direction, e True v
TAL
BN
=2 e il ol E e |

Figure 19 Main functions — Manual motor control — Part 1

This function will execute a sequence of checks and updates each time it is called by the
loop in the main program.

The first frame in the sequence will execute a motor movement, but only if the
“JogMotor” input is set to “True”, i.e. the button is pressed by the user. If the input is
“False”, the there is no reaction and the signals are passed to the next frame. Inputs for
size and direction will, respectively, control the value and the sign of the relative
movement.

If the function has the “Home” input set as “True” the subprogram will issue the
command to reset the ‘home’ location for the motor.

Another input to the subprogram controls whether the “go to home” motor function is
called.

Subprogram execution is then continued by the next sequence frames, shown in the
following figure.

52



imit5w -
N DriveDisabled
ME position. Press to go to HOME, PasReached wrrPosition

_____ - S EH B
A

IConvert position to
mm

1024 I> authaber serial resource name out

aulhaber serial error out

Figure 20 Main functions -- Manual motor control — Part 2

The next subprogram sequence to execute would be the “Get Status™. This routine will
set three output values (Booleans) based on the current motor status as read from the
controller.

The final sequence frame in this subprogram will read the current position information
from the motor controller and convert the value into millimetres of distance from the zero
location. Note: The application uses a conversion factor of 2048 position values for one
rotation of the motor, and 2 millimetres of linear distance for the traveller for one motor
rotation.

53



*HeN-H>N-HeH-NeHeX-H-Re Mmmummgj.niuﬂmuuﬂmnﬁiﬂ

authaber serial resource name in
i15hv et n u n:_

aulhaber serial error in

WTrue ~pf q | ripped path) |
ocalCount] § || s -
If ‘start’ then ask for a (—LI q | hamel
path and file template, e q |
reset the 'loop’ counter L ; Error oul] »ﬁ
l | =] u..

Loz

[Save the current values of
[path, name, error

{ MotorlRead
s

O OO0 0D D O OO0 OO 0000000000000 0 00000 [sHeHef=HeHefRege0epelsHeR-HeleH-H

Figure 21 Main functions — Manual moter control — Part 2

This function will cause the motor to execute the current array of motions and collect
data during the needle insertion part. Again, the program is defined as a sequence to
force an order on the operation and to make sure that multiple operations inside one
sequence box all complete before the operations in the next box are started.

The first frame in the sequence will simply set a local Boolean display to indicate
“MotorReady”. Since this “True” value is also wired to the “value” property of the
reference input, the main display’s motor ready light will also be illuminated.

In the second frame of the sequence the “Start” input is checked. If set “True” then the
subprogram will execute a dialog to ask the user for a
folder location and a template name for the data file. File s -
location (path) and file name are separated so that the
name can have a file number appended to it. File
information is displayed in the local interface for the
subprogram so that local variables can be formed for each |
piece. If the “Start” input is not set, then the other case,
shown in Figure 22, will be executed and the current
(local variable) values of these three components will be
used for the remainder of the subprogram’s execution.

Figure 22 Start button - False
case

54



[iextNumber

[scon]
P vee |

Figure 23 Main functions — Manual motor control — Part 3 - False case

If the input “Next” is false, then there is not much for this subprogram to do. The current
value of the ‘next data file’ counter is sent as an output, and the value of the main
programs ‘“MotorReady” light, obtained from the reference input, is maintained as
“True”.

55



NextNumber

=
H 1 0:0:0°0:0:( 0 . T A B
:ﬁ: S T

=

Home|

In case of manual movement, re-zero
Data recording started on

[%oh, %Y %B %ed %H: %M: %S

H h‘ :
lues of :x‘x: -EEE [pwite-only ~] DataRate| [write o header fine to the data fis
Every time thru loop, include loop m B [b—
ounter in supphied file name L

[1000' Continuous Samples ¥

=
"]
[

Figure 24 Main functions — Manual motor control — Part 3 - True case

When the “Next” control has been selected to request another insertion and data
collection, the case box will switch to the more complex “True” state. The reference to
the “MotorReady” light is used to extinguish the light, since the motor is about to move.

Another sequence structure is used to ensure that several parts of the program are all
complete before the following operations can be started. In the first frame of this
internal sequence the number attached to the template file name will be increased by one.
The old, current, number will be appended to the file name and the new name will be
merged with the folder path. This complete file location is used to open a new data file.
This file will be opened “write only”, and will replace any existing file of the same name.

Finally in this first fame of the sub-sequence the data acquisition hardware is activated
and set to sense analogue voltage input.

When execution of the subprogram passes to the second frame of the sub-sequence, the

motor will execute a move back to the home or zero location. If the motor is already at
this location, the motor will do nothing.

56



A “header” line is written as the first line in the force data file. It contains a message
about the date and time the file was created.

Finally this frame will use the data sampling “Rate” input value to define the data
collection rate for the analogue force (voltage) input. Since the input value is provided as
integer values of seconds, the subprogram must divide by 1000 to obtain a sampling rate
in milliseconds.

57



O

I | = “Locallnserting]
12+ T
! | G 5
5 =5 | I8,
E% | =& WFChart (strict) 0 iy

Figure 25 Main functions — Manual motor control — Part 4

The reference to the distance, speed, and dwell array is passed down to another
subprogram. The cluster of ‘jab’ switch values is also provided to this new subprogram,
and the reference to the “Inserting” light in the main program is passed through so that
this new subprogram can control it. It will only be “True” while the motor and needle are
executing the motions defined in the array. It will be “False” when the needle starts to
withdraw.

The data collection loop can make use of this ‘needle insertion’ information, so the
Boolean value of the indicator is extracted. One value of analogue force/voltage will be
collected for each time this loop executes, and it will execute at the sampling rate defined
in the previous sequence frame. At least ten (0 to 9) samples will be collected into the
data file. Each line in the file will be written with a time stamp obtained from the
computer, a sample number starting from zero (0), the value of the analogue input, and
finally an “end of line”” character combination.

As analogue data is obtained from the sensor, it is also used to update the chart in the
main display via this chart’s provided ‘reference’ value and ‘value property’.

Data collection, i.e. the data acquisition loop, will continue beyond the minimum ten
samples if there is no measurement error, and if the state of the “Locallnserting” signal

58



remains “True”. Typically there will be hundreds of data samples collected as the motor
executes the complex motion sequence requested by the operator.

59



Eaulhaber serial resource name out,

rror out

&)

; W)

Close the
icurrent data
fiie

2 &

O N I e o e

Do OO0 00000 O0

Figure 26 Main functions — Manual motor control — Part S

After the data collection loop terminates, the sub-sequence also terminates by shutting
down the data acquisition hardware and closing the data file. Errors from either of these
operations would be displayed.

The final frame in the main subprogram sequence will illuminate the “MotorReady” light

since the motor is correctly located back at the home position and is ready for another
data collection cycle.

60



)istgsieed Arrai In,

=< Arr (strict) |

o i @ o J( = (= )=} I o J = B = oY = i = J{ ]

aulhaber serial resource name in

)
= Im_l

aulhaber serial error in

i

DabCluster

——

For each line in
array, move
at speed, then
dwell

nsertin

i- (] B i

15 =% Bool (strict)

il 1] g

v Value "
iy

Figure 27 Main sub-functions — Move Sequence — Part 1

B =& Bool (strict) 5
b vahe

To move the needle through its defined motion sequence, the software will start the
function in Figure 27. As the needle insertion motion has not started, the software will
make sure that these indicators (the local light and the one referenced from the front
panel) are extinguished.

In the second panel the logic will illuminate (turn “On”) these indicators to identify that
an insertion motion is running. A ‘for’ loop will process each line of the motion array,
and this loop is assigned a count of five (5) to match the number of lines in the array.

Inside the ‘for’ loop is a sequence to support each part of the
line of motion values. In the first panel of this sequence the
software will extract the 0, 1, and 2 values from the array,
which correspond to the distance, the speed, and the dwell
time. The cluster of ‘Jab’ option switches has been passed
down to this function, and it be used to define which type of
motion to use. When the ‘jab’ option is “False”, the standard
constant motion is used. The needle will move over the
defined distance at the defined speed. When the ‘jab’ option is
“True”, as shown in Figure 28, the software will use the same
distance and base speed, but instead call a function to
implement an alternative motion.

Figure 28 Fast jab
motion option

61



0000000000000 00000000000
authaber serial resource name out
popoooDoog
Retract back to home
{(nararey)|
=2
L_Homef
=
o
[132)
|1000I
el afinl=ls] ]
[ L ~‘l
p !
't_ h =0 Bool (strict)
- Value
b > = E = W o = W w lw s W s w W W n l w s W e

Figure 29 Main sub-functions — Move Sequence — Part 2

To complete the motion sequence function, the dwell time obtained from the array is
used, in the second sequence frame of the ‘for’ loop, to wait the specified time. The array
provided dwell times in seconds, so this must be converted to milliseconds before it can
be used by the built-in LabView timer function.

The internal sequence and the ‘for’ loop are now complete, i.e. each line of the array has
been processed.

One of the final actions of the function is to extinguish the “Inserting” indicators as the
needle has completed its sequence and is about to withdraw.

The second final action of this function is to call a motor function to return the needle and
motor to the home position.

62



W[False ~pf

T e detepeed [

“aulhaber serial resource name in
|

»
{178} !

H > ['f [
sé';’d " l (o o4

sé'l'r‘o’d md
1omd Ci m
VISA Discart

aulhaber serial error in

dk

pemEp

LCnd
Send cmd to set d cmd to set Send cmd to notify Send cmd to halt if
eed for motion distance to_move when at position limit switch hit

b
i

Figure 30 Main sub-functions — Move a Distance at Speed - Part 1

A constant needle motion will result from a call to the function diagrammed in Figure 30.
If either the distance input is zero or the speed input is less than or equal to zero, then
there will not be any motion. The large case box which encompasses the whole function
will switch to the “True” option (not shown), and the function will simply return.

The “False” option shown in the figure is the general case where the motor will move.
The input distance must be converted to the number of motor (encoder) pulses, since this
is the only distance that the motor controller will understand. Similarly, the needle speed
must be converted to RPM. These values are sent to the motor as commands.

Also sent to the motor is a command to request a notification to the software when the
final position is reached, i.e. to verify that the motion has been completed correctly.

The software will also include in every motion the command to halt if any limit switch is
activated. This provides some safety during needle motions.

63



d[False v

- MEreor HaB

wait time in miliseconds i ¥

B’ est time plus 25% i .

EIZED - Il existing move (
‘Seriai-character 3

aulhaber serial resource name out

Read the 'p’ char
at end of movement

A"
Ju]

VISA Discard Events

Send cmd to move M o \

VISA Disable Evenl

Figure 31 Main sub-functions — Move a Distance at Speed — Part 2

Before the command to start moving is sent, the software will estimate how long the
motion should take (plus 25%) and define this as a timeout to wait for the ‘at position’
notification.

The motion is started and the timeout is set. If there has been any communication error
then the code will simply pass this error through. Without any previous error, the code
will perform a ‘read with timeout’ looking for the single character (plus carriage return
and line feed) notification.

After the characters arrive, or after the timeout, the code will turn off the checking for
timeout events. The function will simply complete if there was no timeout. A timeout,
or previous, error will execute the case shown in the figure. First the code will
temporarily force a ‘no error’ value so that it can issue a command to disable the motor.
Once the motor has been disabled, the code will force a ‘yes error’ condition that will be
passed back to the main program.

64



aulhaber serial resource name in

aulhaber serial error in

asu
= [
-
= p=

Figure 32 Main sub-functions — Fast Jab move — Part 1 — Less than 10 mm

A call to move with a ‘jab’ motion may not have any effect. Like the standard, constant
motion function, a zero value or less for speed will cause to motor to do nothing.
Different from the previous function is a check of zero or negative distance values. An
extra check on the value of the distance will cause small movements to behave as if the
‘jab’ option had not been selected.

65



&

e dist is 1/10 of i
Pz | ST I
@*] 657 @ 1 =R

B>—‘:E b speed is 1.5x >
equested spaed
& | > -
| sk onvert dettato | ! konvert 2delta to
| = T
b % et )
_!lDﬂ"’
onvert to RPM (1

auhaber serial error 1
"

=1 _—

[ =

o - ~N,
T .‘Sendajndtnhdlf
For mation

. o

e | i~ ne
cmd to notify | cmd to set fSend cmd to move |
m at - istance 2deato | b———————r

Figure 33 Main sub-functions — Fast Jab move— Part 1 — Greater than 10 mm

To implement a ‘jab’ insertion motion, the code must calculate two sub-movements. One
is one tenth of the desired distance, i.e. the total desired motion will be implemented as
roughly ten ‘jab’ motions. The second sub-movement is equal to twice this one tenth or
‘delta’ distance. A ‘jab’ will consist of a forward move of this ‘twice delta’ distance,
followed by a withdrawal of a single ‘delta’ distance. Eight of these dual motions,
followed by a final forward ‘twice delta’ movement, will complete the distance.

The code will also modify the speed of the motion. In general the ‘jab’ motions will be at
1.5 times the speed defined by the user in the array. There is a limit, based in the
system’s mechanical components. If the new speed exceeds the value it will be reduced
to the limit to prevent damage to the hardware of the test bed.

Note: A version of this ‘jab’ sequence function was also implemented as a series of calls
to the standard, constant motion, LabView function. Software overhead made this method
too slow, with annoying delays between each of the sub-movements.

Motion speed is sent to the motor controller via a command. The motor is also told to
halt movement if a limit switch is triggered.

The code will start the loop of eight small insertion/withdrawal motions. A request for
notification at the end of each sub-move is made as a check of valid operation.

66



tMFalse vbf

2

) — T —

Cmd
end cmd to notfy |  [5end cmd to set E"d cmd to move ]
at position idistance 2deita to

Figure 34 Main sub-functions — Fast Jab move— Part 2

Figure 34 provides the remainder of the code for the ‘eight times’ loop. After moving
‘twice delta’ forward, the code will wait for the notification. A timeout error will
propagate forward and cancel all other operations. If there is no timeout the code will
issue the commands to withdraw ‘one delta’, with timeout checking. The entire ‘for’
loop will repeat until all 8 cycles are complete.

When the ‘eight times’ loop is done, there is still one more ‘twice delta’ forward move to
complete the desired distance.

67



S
1lad [

ead the 'p'

| o) e
wsed g =
3 0 mlpl
har cmd to set Endcmdtomwn[ cha
lat end of an at pasitio ance 2deka to 2t end of
knoveme

Figure 35 Main sub-functions — Fast Jab move— Part 3

The last “twice delta” forward motion is executed to complete the fast jab function. Code
will still check for timeout on the last forward sub-motion. As the function is now
complete, any error conditions will be passed back up to the main program.

68



Enable Termination Char (T) lterm. char is ine feed|]
| ¥ }

. LimitSw
timeout {5 sec) 10]

DriveEnabled

19200

COML |v :
Ej re-enable motor if
) previously disabled Ig_iﬂ

=

==

Send
#{ Cmd

Get | ......
Statuz

[Flush transfrec buffers]

Check status. If limit
already set, we are
already at home

[Set serial line to 19200 baud, send 1st cmd to Fauthaber |

Figure 36 Motor functions — Initialize motor communication — Part 1

All needle motions are executed by the motor controller in the test bed. This electronics
is connected to the computer and software via an RS-232 communication connection.
Before any commands can be sent, this communication line must be set to the correct port

and communication speed.

Communication buffers are flushed to remove any unexpected characters. Commands
can now be sent to the motor controller. Since the motor may be disabled from a

previous error, the motor is re-enabled. Then the current motor status is

requested.

69



Default speed
is 200 revjmin

Set the max acceleration
to 0.312 rev/secjsec

WISA resource name out|

[Send cmd to set speed|

5P200 AC0.312
=
Send cend
Cmd Cmd

EH‘ISHvi
170

Error out|

Figure 37 Motor functions — Initialize motor communication — Part 2

To complete the motor initialization, the code will define default values for motions

speeds and acceleration.

Any error condition from any part of this function will be passed back to the calling
program, so the error return can be used to indicate a communication failure.

70



aulhaber serial resource name in|
J i

Faulhaber serial error in|

1#SA

Lt

[Close all open Files |

Figure 38 Motor functions — Stop motor

To stop the motor, the code will simply disable it, close down the communication
channel, and display any new or existing error message.

71



0000000000000 0000000

Append CR to cmd

Delay to allow
; = cmd to be
WISA resaurce name in| § received WISA resource name out|

kil

10

error out|
I =
[send cmd as supplied| = o=
s lsRssNsNsNaHsisls Toooonon

Figure 39 Motor functions — Send command

A key motor function is to send a command to the controller. When a command string is
supplied it will have a carriage return appended and the modified string is communicated
over the serial line connection to the controller. The function concludes with a short
delay so that multiple commands sent one after the other will not overlap and confuse the
controller’s software.

The function is implemented as a sequence so that the delay will happen after the

command is sent. Otherwise, the delay would start at the same time as the string was
being appended.

2



Read status,
check 3 bits of

the return
value

authaber serial resource name in

abled

aulhaber serial resource name out|
758 (s
be
R &5

—
Send
Cmd

Send cmd to ask
For status

Figure 40 Motor functions — Get Status

This motor function will send a command to ask for the basic motor status. The reply
will be a string of eight (8) characters, followed by a carriage return. The reply string
will consist of characters which will either be a “0” or a “1”. Three of these characters
(bit numbers 3, 4 and 6) are extracted and compared to a character “1” to obtain a
Boolean value that is passed back to the calling program. See the command reference
documentation supplied with the motor controller for the description of all the remaining
status bits.

73



Read position,
convert to a
ulhaber serial resource name in| number value

r::I
aulhaber serial error in|
=1 ]
Send @-abc\
Cmd ! R
Send cmd to ask S.Is:: 2;g§£§3d
for curr, position no. bytes

Figure 41 Motor functions — Get position

Another useful motor function is to ask for the current position of the motor with respect
to its current home location. The reply will be a string of number characters with sign,
where the string length may be short or long depending upon the distance value. A
LabView function is used to convert this character string into a number value that can be

passed back to the calling program. Note that the number is always an integer number of
encoder pulses away from home position.

74



[sHeflisHofeRs]

|delay for
lsome time to
atow motor
lto hit fimit

I = the speed use
[Check status. IF imit ot ot
lalready set, we are ring the Start moving to "Home",

sequence iy e m the 'stop on fimit Make the motion
{ready at home Tl set as ‘home" happen
T @
i -y —> ]
s

g, | fondy L |

[Cmd to postion backwards =He=R-H-H-N-H-d~

ST

Figure 42 Motor functions — Find home peosition — Part 1

Whenever the motor and needle insertion system is started, i.e. the application software is
started, it is very important to insure that the motor is in a known, safe position. This
function will perform the checking and the motor motions. If there is an existing motor
error then the function will do nothing.

First the code will request the status of the motor, looking for the current value of the
limit switch(s). If at least one limit switch is “On” then the code will execute the “True”
option of the inside case or decision structure (not shown) and this can proceed to the
logic to move off the switch again (see Figure 44). If no limit switch is currently active,
i.e. the “False” case shown in the diagram, then the code will start a long movement in
the direction towards the home’ limit switch. Motions will be slow, and the controller
will be asked to halt as soon as the home switch is activated.

75



e - “T[No Error_~b|

. 'E-l
T MEror YR
pToooog fn o Ba Bl o Bu o N s MR W B o W Bl e W s = = e =« W F = ] = §
¢ L83 [Force OKin
delay for ! o] status so we [/
some time to : ¢ cansend [
allow motor H disable cmd ||
to hit limit
Check status. If b
|| |position set, we are {7
| |now at hame E:

Get
Status

i

SHANsHeN [(wHsls = u

Figure 43 Motor functions — Find home position — Part 2

The motor will have already started the search for home position in the code shown in
part 1 of this function diagram. The motor will now be moving. In the remainder of the
“False” case shown for the decision box the code will be waiting for the limit status
signal to turn on. Since this may take some time, i.e. the motor may be very far from the
home limit switch, the code will delay and loop several times waiting for this switch to be
activated.

If a limit switch is not activated after the code waits for the several time delays, then an
error status will be set for the motor. This will cause the error handling case box to
restore a ‘not error’ motor status, issue a command to disable the motor, and force an
error status once again.

When the status message indicates that the limit switch has been activated, the code will
break out of the loop and simply bypass the error handling case box.

76



Force OKin
Istatus so we ||
i e ve Forward bit by bit unth we Fal Then mave  bit Farther away from
H el off the limit switch again the imit switch so motion overshoot
i : Il not cause it to hit
f
7 aNo Error BT
f still on the bimit N—
itch then error Faise ~ |
| E 48 |
P
HH= =
Foews = e
|

jaleHeHeHvEeEeRolsleHslxd=HeHeHe=Naa)eKeiinleledolsN-NelsNeilokssHskaN]

0 b 8 o

Figure 44 Motor functions — Find home position — Part 3

Now that the motor is on top of the ‘home’ limit switch, or if it was already on top of a
limit switch when the function was started, it is necessary to move it off the switch. A
loop of up to six (6) attempts will try small movements away from the home limit switch
until the status indicates that the limit switch turns “Off”. Once the status bit is off, it is
necessary to move the system a bit farther away. Since the mechanical system may
overshoot as it moves towards home position, it is necessary to have some distance so
that the overshoot does not trigger this limit switch again.

If the code cannot move the motor off the limit switch, then perhaps the software was
started on top of the limit switch close to the sample holder, not the close to the motor.
All attempts to move the system off the switch would actually drive it further on to the
wrong limit switch. In this case the loop count would be exceeded and the code will set a
motor error status in the case statement instead of the extra “move farther away”
command.

g



~ay from
yvershaot 7

authaber serial resource name out|

Faulhaber serial error out

i
=

| [pefine this location as
the 'home' position

fisEeRoN=| o s Wl leli= il =00

wss A L e

e

Figure 45 Motor functions — Find home position — Part 4

When all the function movements are completed, and if there is no error status, then the
code will issue the command to set the current position as the home position. If there was
a motor error, the case option box will select an option which does not issue the “Home”
command.

78



iconvert time to
imifiseconds, add

alculate no, of alculate time to 20%
reys e (min

convi

authaber serial resource name in : i
= 1 [Check for already
;F ]

‘authaber error in

] 56":‘

kX |
Lz = TS Get pasition to [Send cmd to notify
lspeed For mation estimate time to zero postion when at position

Figure 46 Motor functions — Go to home position — Part 1

Send cmd to move

After an insertion motion, or after a manual motor movement, it is necessary to issue a
command to reposition the motor back to the home location. This motion is done at a
medium speed since the motor is assumed to be in a safe condition when this function is

called.

For very short moves, i.e. when the system is already very close to the ‘zero’ position,
then the code will not check for the notification character. In this case the ‘in position’
character would arrive so quickly that the code would miss it. For longer moves back to
home, the travel time is estimated, a percentage is added, and the motion is set to notify

when completed.

79



iSh fpeacl p

Figure 47 Motor functions — Go to home position — Part 2

For long movements back to home position, the code will wait for the notification
character. The estimated travel time is used for a timeout value. If the timeout expires,
the code will force the motor to be disabled, and set an error motor status. If the code
does not timeout, i.e. because the notification character arrives, or if the movement was
short, the code will return and allow the motor controller to complete its final positioning
of the motor at the zero location.

80









