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Abstract

A displacement-based evaluation approach is presented based on interactions of axial,
shear, and flexure mechanisms to estimate lateral deformation and load capacities of
typical reinforced concrete columns. The developed model is based on a modification
and simplification of a relatively more complex approach known as the axial-shear-
flexure interaction (ASFI) method, which is able to predict the full load-deformation
response of reinforced concrete columns subjected to axial, flexure and shear forces.
Two potential shear cracks are considered in the analysis: the primary shear crack,
which is calculated in the strain field, and the secondary shear crack which is
determined in the stress field. Plastic hinge length of the beam is defined and computed
using the primary shear crack angle. Lateral load-deformation relations are obtained
using this method for fifty-six typical rectangular reinforced concrete columns and the
results were compared with the test data: consistent correlation and agreement were
achieved. This paper describes the formulation, implementation and verification of the
modified approach. A future attempt is to modify the ASFI method for response
estimation of reinforced concrete columns in fire under axial load and lateral
deformation induced by the thermal expansion.
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Maximum aggregate size

Width of the section

Effective depth of the section

Cover concrete from the centre of the main compressive bars (first layer)
Modulus of elasticity of the main reinforcement steel (in axial direction)
Modulus of elasticity of the shear reinforcement steel (in transverse direction)
Concrete compressive strength from the cylinder tests

Concrete principal tensile stress in axial-shear model

Concrete principal compression stress in axial-shear model
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Average crack spacing in the axial direction, x-direction

Average crack spacing in the transverse direction, y-direction
Average crack spacing, perpendicular to the cracks

Total shear force of the column

Shear crack width

Distance from the inflection point of the column to an arbitrary section along
the column

compression softening factor
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Concrete principal compression strain in axial-shear model

Concrete peak compressive strain

Centroidal strain of the flexure section in the axial-flexure model
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Primary shear crack angle

Secondary shear crack angle
Shear reinforcement ratio in y (transverse) direction
Main reinforcement ratio in x direction

Total applied axial stress

Axial stress in axial-flexure model

Axial stress in axial-shear model

Total normal stress in y direction, perpendicular to the longitudinal axis of the
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Total normal stress in z direction, perpendicular to the longitudinal axis of the
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Total shear stress

Shear stress in axial-flexure model

shear stress transferred by aggregate interlock across the crack surface
Shear stress in axial-shear model

Curvature at the flexure section (in axial-flexure model) varied along the
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Introduction

Evaluation and estimation of ductility and ultimate lateral deformation capacity of
reinforced concrete columns have always been challenging for design engineers and
researchers. Design of reinforced concrete columns under lateral loads requires a
minimum ductility for the elements. The more ductile a column is designed, the higher
lateral deformation is sustained by the column. The lateral deformations are the results
of the applied lateral loads such as earthquake, winds, and the floor thermal expansion
in fire. Figure 1 shows an example of the column’s lateral deformations in fire due to the
thermal expansion. Figure 1a illustrates shear failure of a column on the 6" floor of the
US Military Personnel Records Centre building due to the fire that occurred in 1973
(Bailey 2004), and Figure 1b demonstrates how the thermal expansion induces lateral
deformation to the columns.

Residual
Displacement

w
df'
T
4 ¥

Figure 1a) Shear failure of a column in Figure 1b) A building frame exposed to fire
fire, Military Personnel Records
Centre building in the USA

Figure 1. Lateral deformation of columns in fire due to the structural thermal expansions.

Although the response of reinforced concrete columns under lateral loads has been
studied for many years, a remaining challenge has been the development of a reliable
methodology for estimating the ultimate deformation capacity of columns. In fire, studies
are limited to columns under axial loads only. There is a lack of research on
performance columns in fire under lateral deformation. This report explores the lateral
deformation response of columns at ambient temperature. A future extension of this
study is to include the effect of fire on the lateral column response.

Studies by different researchers, such as Elwood and Moehle (2005), Park et al.
(1982),.Lynn et al. (1996), show that lateral deformation capacity of the columns are
significantly dependent not only on their axial and moment capacity but mostly on their



shear capacity. Mostafaei and Kabeyasawa (2007) developed a displacement-based
analytical method for modeling the load-deformation response of reinforced concrete
columns under axial and lateral loads. The model was developed to include the effects
of shear deformations in sectional analyses through a method called Axial-Shear-
Flexure Interaction (ASFI). The main deformation component of the interaction was the
axial deformation, which was extracted from an axial-flexure model and manipulated
into an axial-shear model. In this method, the flexure mechanism was modeled by
applying traditional section analysis techniques, and the shear behavior was modeled
based on the Modified Compression Field Theory (MCFT), (Vecchio and Collins 1986).
One of the assumptions of the ASFI method was that when the compression stress of
the cover concrete, at the post peak, drops to about 30% of its compression strength, it
reaches an ultimate deformation capacity state. The study suggested further
investigation on this and simplification of the method for use in practice.

Later, the shear model of the ASFI method was simplified and a method called the
Uniaxial-Shear-Flexure Model (USFM) was developed (Mostafaei and Vecchio 2008).
Unlike the original ASFI method where fiber elements were used to model the column’s
section, in the USFM method, only one compression stress block was employed to
simulate the cross section concrete stress distribution. In both the ASFI and the USFM
methods a compression softening factor was applied to the concrete element in
compression which was determined according to the tensile strain of the concrete of the
shear element. Later, further simplifications were made in the USFM models by defining
three general failure criteria for reinforced concrete columns (Mostafaei et al. 2009-a).
The three main failures, for typical reinforced concrete columns in buildings, are
tension-shear failure across cracks, loss of concrete compression strength, and
compression-shear failure, for both shear- and flexure-dominated members. In this
method, for simplicity, the compression softening factor was not applied in the section
analysis. However, the method had some limitations for columns with very low applied
shear stress. This is the condition at which most of the shear deformation occurs in the
plastic hinge. Later, Mostafaei et al. (2009-b) modified the approach to include a plastic
hinge length and the distribution of the shear strain along the column. This was needed
to improve the deformation response of the columns with very low applied shear stress.

This report presents the latest modifications of the ASFI and the USFM methods. These
include estimation of the shear cracks in both stress and strain fields. For simplicity, no
compression softening factor is employed in the section analysis. The tensile strain of
concrete is determined according to the shear strain, concrete strain in x direction and



the principal compression stress. This will eliminate the iterations used in the previous
USFM method for the tensile stress of concrete of the shear element. One of the main
assumptions in this method is that strain in the transverse bars yields at the ultimate
stage.

A future modification is to employ the ASFI method for response prediction of reinforced
concrete columns in fire and after fire exposure. This includes post-fire seismic capacity
and thermal lateral deformation capacity of the reinforced concrete columns.

Methodology of the Axial-Shear-Shear-Flexure Interaction

The main concept and methodology of the axial-shear-flexure interaction (ASFIl) method
are based on the axial deformation interaction between the two models: a flexure model
based on traditional uniaxial section analysis principles, and a shear model based on a
biaxial shear element approach.

Figure 2 illustrates the interactions between shear and flexure deformations/cracks. The
figure shows how the flexure deformation results in an increase in the centroidal strain,
which in turn enlarges the shear crack and deformation. The centroidal strain in the
flexure mechanism, &, of the axial-flexure model, is composed of the pure axial strain,
&xar, due to only the applied axial load, and flexural-axial strain, s, due to the flexure
deformation/crack. On the other hand, centroidal strain in shear mechanism, &, of the
axial-shear model, is composed of the pure axial strain, s, due to only the applied
axial load, and shear-axial strain, gy, due to the shear deformation/crack. The
compatibility condition requires identical axial deformation due to the applied axial load
for the two mechanisms; thus, &xa = &xar = &xas. T herefore, the total column’s axial
deformation, &, is defined as.

8}( = gxa + gxs + gxf (1)

To obtain & in Eq. (1), &s must be extracted from & and added to .. The total lateral
drift of a column, v, is defined as the sum of shear strain, ys, and the flexural drift ratio, y
between the two sections.

10
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Figure 2. Effect of flexural deformation on shear crack widening in a reinforced concrete column.
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The pullout effect is ignored in this study. Equilibrium of the shear and axial stresses
from the axial-flexure model, zrand oy, and from the axial-shear model, zs and os,
respectively, must be satisfied simultaneously through the analysis. That is,

o,=0,=0, (3)
P 4)

where oy = axial stress in the axial-flexure mechanism; oys = axial stress in the axial-
shear mechanism; oy = applied axial stress; 7r = shear stress in the axial-flexure
mechanism; z; = shear stress in the axial-shear mechanism, and r = applied shear
stress. Stresses in axes perpendicular to the longitudinal axis of the column (i.e., the
clamping stresses o, and o) are ignored by assuming equilibrium between the
confinement pressure and the hoops stresses.

c,=0,=0 5
Figure 3 illustrates the ASFI method for a reinforced concrete column with two end

sections, including the equilibrium and compatibility conditions.

11
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Figure 3. Axial-shear-flexure interactions in ASFI method.

The same assumption as that in the USFM is made here for the average concrete
compression strain. Figure 4 shows a reinforced concrete column of moderate height,
fixed against rotation and translation at the bottom and free at the top, subjected to in-
plane lateral load and axial load. Given its pattern along the column (see Figure 4-a),
the concrete principal compression strain for a shear element between the two sections,
&, may be determined based on average values of the concrete uniaxial compression
strains corresponding to the resultant forces of the concrete stress blocks.

g, =05, +¢&,,) (6)

For the column in Figure 4, the compression strain obtained from the above equation is
set equal to the average principal compression strain of the element between the two
sections jand i+1.

12
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Figure 4. A reinforced concrete column subjected to shear and axial loads; a) Concrete principal

compression stress pattern, b) Cross section, and c) Stress blocks and strains at two adjacent
sections.

The shear mechanism is modeled according to the Modified Compression Field Theory
(MCFT), (Vecchio and Collins 1986).

Ultimate States and Failures

There are three ultimate states defined for a reinforced concrete column under axial and
shear load: shear failure at the crack (Mode 1 Failure); failure due to loss of
compression strength (Mode 2 Failure), and shear-compression failure (Mode 3
Failure). Mode 3 could result in lateral load degradation. However, larger lateral
deformation capacity can be observed mainly for ductile columns.

The three failure modes are described for a typical column, such as the one shown in
Fig. 3, with a flexure section at one end, a section at the inflection point and a shear
model between the two sections.

- Mode 1 - Shear failure at the crack

This is a failure that occurs at the shear crack due to loss of concrete shear strength at
the crack. Mode 1 failure, which is typically the governing case for columns with low
transverse reinforcement ratios, occurs when (Mostafaei et al. 2009-a):

13



M
= ﬁ 27+ fsyyp y COt 0. @

where zris shear stress due to flexure mechanism; M is the end-moment of the column;
dis the effective depth of the section, b is the width of the section; L;, is the length of the
column from the inflection point to the end section; 6. is the crack angle, f,  is the yield

stress of transverse reinforcement, p_ is the reinforcement ratio in the y (transverse)

direction, and 7; is the shear stress transferred by aggregate interlock across the crack
surface, determined by Walraven'’s equation, Eq. (8).

0.184/ f/
. < —2{{ (MPa, mm) ()
031+
a, + 16
1

with w=s,¢,, and s, = —
om ¢ sm6’6+cosa9€’

s N

X y

where fis the concrete compressive strength; w is the average crack width; ¢, is the
concrete tensile strain in shear element; s, and s are the average crack spacings in

the x- and y-directions, respectively, and ag; is the maximum aggregate size. In this
study, s, and s are the same as the maximum reinforcement spacing in the x- and y-

directions, respectively.

- Mode 2 - Loss of compression strength

Columns under high shear force, such as short columns, if not failing via Mode 1, may
lose compression strength, f,, due to shear deformation, which results in loss of shear
strength. Mode 2, takes place when (Mostafaei et al. 2009-a):

T, = M > (-fcl _fcz) 9)
bdL, (tan6.+1/tan6,)

where f;; and fo are the tensile stress and compression stress in the concrete according
to the shear model.

14



- Mode 3 - Concrete post-peak state

Although Mode 3 is considered a failure mode, since concrete is at the post peak,
columns with high lateral reinforcement likely sustain larger lateral deformation not with
a significant load reduction. In this case, the columns normally fail in Modes 1 or 2 after
experiencing Mode 3. The level of lateral deformation capacity is dependent on the level
of the column’s confinement and the level of the damage caused to the confinement as
the result of a cycling loading.

Mode 3 occurs wheneg, =¢..

In this approach, the concrete compression softening factor was employed only within
the MCFT-based shear model. This is because at the compression block of the flexure
section, crack angle is nearly zero.

Shear Cracks

For this study, two shear cracks are considered in the analysis: primary shear crack, 6.,
and the secondary shear crack, ... The failure modes described in the previous section
must be checked for both of these two cracks.

- Primary shear crack, 6.,

This is the shear crack of the shear model which is calculated in the strain field.

gx _82

tan’ 6. = (10)

£, —&

It is assumed that strain of lateral reinforcement, ¢, , is at the yield strain. In other words,

when the hoops’ strain reaches yielding of the bars, the failure occurs. This assumption
was made based on the observation in experimental studies (Ousalem et al. 2003). This
assumption eases the analysis by avoiding the iteration process.

- Secondary shear crack, 6.,

The secondary shear crack is determined in the stress filed using the following
equation:

15



tang, = Ya=Jo) (11)

(fcl _fcx)

where f, =-p, f,, (Since hoops are considered yielded); /., =o, — p . E, £, ; Esxis the

modulus of elasticity of the main reinforcement steel; psx is the reinforcement ratio in the

331!
1+4,/500¢,

Collins 1986), where ¢, is the tensile strain of concrete, determined from the principal

x-direction (main bars), and tensile concrete stress is f,, = (Vecchio and

strains relation.

Vs
(7)2
& =—"——+¢, (12)
(&, -¢,)
The secondary shear crack becomes almost constant when both longitudinal and
transverse bars yield. However, it changes when average axial deformation of the
column reduces to zero or even a negative value, which results in a compression
failure.

In general, the primary shear crack represents the crack at the plastic zones, and the
secondary crack represents the overall response of the column at the inflection point.

Analytical Steps

Using the described approach, an analytical procedure is constructed to estimate the
ultimate deformation of a reinforced concrete column subjected to both axial and lateral
loads.

The step-by-step calculation using the new method is provided here for a column
specimen (Specimen CB060C) tested by Amitsu et al. 1991 at the pre-peak state.

1. Assume an initial value for the concrete compression strain of the flexure section. ¢_;

for example, ¢, =-0.002618

2. Employ a section analysis for the end section of the column and determine the

centroidal strain of the section, ¢, in Fig. 3 (Mostafaei et al. 2009).

16



¢, =-0.001502

3. Determine the axial strain at the inflection point with zero moment, ¢, in Fig. 3. This

is the axial deformation of the column when it is subjected only to axial load.
g, =-0.00062

xa ?

4. Compute the average concrete principal compression strain, ¢, , and average axial
strain, ¢, for the shear model.

g t+e,
&y =—° 5 (13)
g, =2 % _ 000162
2
o st &y (14)
2
Egt &y
£, =—2 " =-0.00106
2
5. It is considered that at the ultimate failure stage, hoops are yielded, therefore:
£, =0.002
6. Determine @00
tand, = |27%2 — 039
&, =&
7. Determine shear strain:
7.1. Maximum shear strain:
= 2a8) (1)
‘ tan g,
= 2. =8) _ o008
‘ tan &

Cc

17



7.2. Average shear strain for the entire column

_ (2h/tan®) <

s—ave — s = /s
L

(16)

_ min(2x278/0.39)
}/S*HVE 646

0.0028 = 0.006 > 7,

Therefore, Voeae =75 =0.0028

8. Determine the tensile strain:

Ay (00028,

g =—2 e = 2 ~0.00106 = 0.0025
(c,—¢,) (~0.00106+0.00162,)

Note: shear deformation, ys, is determined based on the primary shear crack angle.

9. Determine the secondary crack angle:

and, [(fu = 1) _ \/ (L06—(=3.23)) _ 1 4ou
(f,—f.)  V(1.06—(=25.29))

033)f 0334463

fa= =1.06MPa
' 144/500s, 1+4,/500(0.0025)

where

10. Calculate compression softening factor and concrete compression stress:

p=—1- 7)

1 1
ﬁ = = =
0.8-034%1 08034 2002
¢ ~0.002

c

0.81

18



Based on the strain stress relation of concrete

fo= ﬂf,,(ﬁ—(i)z) (18)
£ &

P p

2(-0.0016) (—0.0016)2) _38MPa
—-0.0022 —-0.0022

£, =0.81x50.9(

12. Check for failure employing the two shear crack angles of 6.and 6.,.

- Check for Mode 1 — Sheatr failure at the crack

0.18/f/  0.18/463

24w 031+ 24(0.11)
a, +16 10+16

=2.99MPa

i

0.31+

where the maximum aggregate size is assumed as ag=10mm,; the crack spacing S,=42
mm, and therefore, the crack width is w= ¢,S, =0.0025x42 =0.11mm

Hence:

M 1.72x10%

T, = = =7.66MPa
bdL, (278)(250)(646/2)

7, = % =7.66MPa<1t,+ f, p, cotf, = 2.99+0.0078 x 414(1/(0.39)) = 11.2MPa

in

7, = M e6MPa<z, + Py, COLO,. = 2.99+0.0078 x 414(1/(0.404)) = 11.0MPa

bdL

in

Both above conditions are fine. Mode 1 is not a failure mode for this specimen until this
stage.

- Check for Mode 2 — Loss of compression strength

This failure mode also needs to be checked at both shear cracks:
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7, - M _geempa<—Ja=Sa) Q06238 55,

bdL, (tan@ +1/tané.) (0.39+1/0.39)
T, = M _ 7.66MPa < (o = o) __(106=(38) _ 13..6MPa
bdL,, (tand,_ +1/tand,.) (0.404+1/0.404)

Therefore, Mode 2 of failure did not occur.

- Mode 3 — Concrete post-peak state

Since ¢, =-0.0016 > ¢/ =-0.002 ,Mode 3 also is not a failure mode. For columns with

failure Mode 3, the analysis can be continued until one of the other two failure modes
occur or the lateral load drops significantly (for instance to 70% of the maximum load).

13. Determine the ultimate lateral deformation using Eq. (2), when:

Flexural lateral deformation is calculated using the same approach employed in the
original ASFI method (Mostafaei, 2006), however, the plastic zone length is determined
according to the primary shear crack angle and limited by the column’s geometries.

1 Lin

o
7, :L—m:L—_([xMx, (19)

m

Plastic hinge is determined based on the shear crack angle by:
L,=h/2tan8,)<(0.5L, and 0.5h) (20)

L, =278/(2(0.39)) <(0.5(646/2) and 0.5(278)) =139mm

1 Lin
=—=— | xédx =0.0024
yf Lin L 0 M

in

Hence,

For the sake of comparison, lateral deformations are determined for the column for two
cases:

- Lateral deformation due only to section analysis.
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and ¥ =7r = 0.0024

- Lateral deformation due to both flexure and shear analysis

and y =y, +y, = 0.0024 +0.0028 = 0.0052

14. Finally, the ultimate lateral load capacity is obtained by
V, =7,bd[L, (L, —d")] (1)
V, =7.66(278)(250)[323/(323-28)] =582 kN

where his the depth of the section, and d is the cover concrete. Shear force in Eq. (21)
has been increased for consideration of the support confinement effect. This is typically
because column’s specimens are built with relatively rigid supports which provide
confinement to the columns at the plastic hinge zones. Such an effect is considered by
determining an effective column length as: (L, —d’) . Further studies are required to

define and determine the effective length considering the confinement effect. In this
study, all the analysis were carried out according to the above effective length.

Furthermore, other possible failure modes such as buckling of the compression bars,
bond failure, failure of the cover concrete, and rupture of tensile bars must be checked
for the columns. In this study, these modes were not checked in the analysis of the
column specimens

Model Verification

The analytical process described in this report was implemented for 55 typical
reinforced concrete columns with normal strength concrete and square cross sections.
The column specimens were selected from 17 individual test reports published by
various authors in different countries around the world as listed in Table 1. A macro was
created using Excel to carry out an analysis for all the column specimens in one run.
Comparisons between the experimental data and analytical results are plotted in
Figures 5 to 59 indicating a consistently acceptable fit for most of the cases. The results
particularly show reasonable predictions for the ultimate deformation capacity of the
columns.
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Conclusions

The Uniaxial-Shear-Flexure Model, which is a simplified method of the Axial-Shear-
Flexure Interaction Approach, was modified to include a secondary shear crack. The
new analytical procedure does not require an iteration process for the shear model.
Plastic hinge length is determined according to a shear crack angle at the zone. The
most important factors in determining the lateral deformation capacity of the columns
was the amount of transverse reinforcement, and most importantly, the column
confinement factor. For simplicity, no compression softening was applied to the
concrete compression block of the section analysis. However, such an assumption
seems not to have significant effects on the columns response. Only one stress block is
representing the compressive concrete in the section analysis. Should the model be
implemented using a computer programming, a fiber model could be implemented for a
better concrete stress distribution on the cross section. The failure modes defined for
this method are checked during the analysis for two possible shear cracks: a primary
shear crack which is determined in the strain field and a secondary shear crack which is
obtained in the stress field. The ultimate deformation and load capacity results, obtained
by the modified approach, were verified against experimental data, and a consistent fit
between the analytical and experimental results, for a series of reinforced concrete
columns, were obtained.
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Table 1. Material property of the test specimens.

b h 2Lin Sh pg Pw fsyx fsyy fc P
Specimen Type
mm mm mm mm % % MPa MPa MPa kN

CB060C! DC 278 278 646 52 4.12 0.78 413.9 441.2 46.3 2632
No. 1022 DC 250 250 750 32 0.75 1.19 322.7 392.9 20.6 429
0A2? DC 180 180 450 64 3.28 0.22 249.2 340.4 31.8 191
0A5® DC 180 180 450 64 3.28 0.22 249.2 340.4 33.1 477
NC-2* DE 457 457 2743 103 1.94 1.08 453.7 439.2 39.3 1690
NC-4* DE 457 457 2743 103 1.94 0.61 616.4 439.2 39.9 2580
No. 1-1° DC 305 305 914 203 2.45 0.18 413.7 461.9 29.9 288
1981, No. 3° DE 400 400 3200 100 1.51 1.70 320.0 427.0 23.6 1435
1981, No. 4% DE 400 400 3200 90 1.51 1.31 280.0 427.0 25.0 840
DIN3’ C 242 242 1250 40 2.72 0.78 486.0 461.0 37.6 661
DIN6’ C 242 242 1250 40 2.72 0.78 486.0 461.0 37.6 1321
L1D60® C 600 600 2400 100 1.64 1.33 524.0 388.0 39.2 8000
L1N60® C 600 600 2400 100 1.64 1.33 524.0 388.0 39.2 8000
L1D6B? C 560 560 2400 100 1.88 1.42 524.0 388.0 322 6000
C5-00N? C 203 203 1220 76 1.93 0.92 502.2 572.3 37.9 0
C5-008° C 203 203 1220 76 1.93 0.92 502.2 572.3 37.9 0
C5-20N° C 203 203 1220 76 1.93 0.92 406.8 586.1 48.3 285
C5-208° C 203 203 1220 76 1.93 0.92 406.8 586.1 48.3 285
C5-40N° C 203 203 1220 76 1.93 0.92 502.2 572.3 38.1 569
C5-408° C 203 203 1220 76 1.93 0.92 502.2 572.3 38.1 569
C1-11° C 400 400 2800 50 2.14 0.63 459.5 497.0 24.9 450
C1-21° C 400 400 2800 50 2.14 0.63 459.5 497.0 26.7 675
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C1-3"
Cc2-1"°
c2-21°
C2-31
C3-1"°
32"
C3-3"

L1 11

L211

L3"
2D16RS™
4D13RS"
CA025C"
CA060C"
U114

U314

Ug'
U614
U714
1986, No.
1986, No.
1986, No.
1986, No.
1990, No.

1990, No.

115

215

315

415

216

DC

DC

DC

DC

DE

DE

DE

DE

DE

DE

400

400

400

400

400

400

400

400

400

400

200

200

200

200

350

350

350

350

350

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

200

200

200

200

350

350

350

350

350

400

400

400

400

400

400

2800

2800

2800

2800

2800

2800

2800

3200

3200

3200

800

800

600

600

2000

2000

2000

2000

2000

3200

3200

3200

3200

3200

3200

50
52
52
52
54
54
54

100

100

100
50
50
70
70

150
75
50
65
65
85
78
91
94
80

80

26

2.14

2.14

2.14

2.14

2.14

2.14

2.14

1.42

1.42

1.42

2.01

2.65

2.36

2.36

3.21

3.21

3.21

3.21

3.21

1.51

1.51

1.51

1.51

1.57

1.57

0.63

0.91

0.91

0.91

0.59

0.59

0.59

0.32

0.32

0.32

0.57

0.57

1.21

1.21

0.30

0.60

0.90

0.85

0.85

0.45

0.64

0.42

0.30

1.06

1.06

459.5

459.5

459.5

459.5

459.5

459.5

459.5

325.0

325.0

325.0

315.9

315.9

426.1

426.1

470.0

470.0

470.0

425.0

425.0

364.0

360.0

364.0

255.0

333.0

333.0

497.0

497.0

497.0

497.0

497.0

497.0

497.0

362.0

362.0

362.0

368.9

369.8

361.6

361.6

430.0

430.0

438.0

437.0

437.0

446.0

446.0

446.0

446.0

474.0

474.0

26.1

25.3

27.1

26.8

26.4

27.5

26.9

24.8

24.8

24.8

32.0

29.9

26.3

26.3

43.6

34.8

320

37.3

39.0

46.5

44.0

44.0

40.0

25.6

25.6

900

450

675

900

450

675

900

157

157

157

183

183

265

636

600

600

600

600

744

2112

2112

1920

819

819



1990, No. 3¢
1990, No. 4'¢
1990, No. 5'
1990, No. 6'¢
1990, No. 7'¢
1990, No. 8'¢
1986, No. 7"

1986, No. 87

DE

DE

DE

DE

400

400

550

550

550

550

400

400

400

400

550

550

550

550

400

400

3200

3200

3300

3300

3300

3300

3200

3200

80

80

110

110

90

90

117

92

1.57

1.57

1.25

1.25

1.25

1.25

1.51

1.51

1.41

1.41

0.75

1.12

0.91

1.37

1.01

1.28

333.0

333.0

325.0

325.0

325.0

325.0

466.0

466.0

474.0

474.0

511.0

511.0

511.0

511.0

440.0

440.0

25.6

25.6

320

320

32.1

32.1

28.3

40.1

819

819

968

968

2913

2913

1041

2502

Footnotes: DC= double curvature, or with two fixed ends, SC=single curvature, or cantilever, b=width of the section, h= Depth

of the section, L;,= length of the column from the inflection point to the end section, Sy= hoop spacing, p,=longitudinal

reinforcement ratio, p,,= transverse reinforcement ratio, fy,,= longitudinal reinforcement yield stress, f,,= transverse

reinforcement yield stress, f .= concrete compression strength , P=axial load, Failure mode 1: shear failure at crack e, < €’,

Failure mode 2: loss of compression strength €, < €’., and Failure mode 3: shear-compression failure €, = €’, Test results by:
' Amitsu et al. (1991), *Arakawa et al. (1982), *Arakawa et al. (1989), *Azizinamini et al. (1988), *Bett et al. (1985), Ghee et al.

(1981), "Kono and Watanabe (2002), *Kono et al. (2003), “Matamoros et al. (1999), '°Mo and Wang (2000), 'Ohno and
Nishioka (1984), '*Ohue et al. (1985), *Ono et al. (1989), **Saatcioglu and Ozcebe (1989), *Soesianawati et al. (1986),

!%Tanaka and Park (1990), "Zahn et al. (1986)
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Figure 20. Matamoros et al. 1999, C5-00S.
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Figure 21. Matamoros et al. 1999, C5-20N.
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Figure 22. Matamoros et al. 1999, C5-20S.
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Figure 23. Matamoros et al. 1999, C5-40N.
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Figure 24. Matamoros et al. 1999, C5-40S.
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Figure 25. Mo and Wang 2000, C1-1.
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Figure 26. Mo and Wang 2000, C1-2.
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Figure 27. Mo and Wang 2000, C1-3.
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Figure 28. Mo and Wang 2000, C2-1.
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Figure 29. Mo and Wang 2000, C2-2.
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Figure 30. Mo and Wang 2000, C2-3.
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Figure 31. Mo and Wang 2000, C3-1.
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Figure 32. Mo and Wang 2000, C3-2.
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Figure 33. Mo and Wang 2000, C3-3.
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Figure 34. Ohno and Nishioka 1984, L1.
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Figure 35. Ohno and Nishioka 1984, L2.
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Figure 36. Ohno and Nishioka 1984, L3.
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Figure 37. Ohue et al. 1985, 2D16RS.
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Figure 38. Ohue et al. 1985, 4D13RS.
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Figure 39. Ono et al. 1989, CA025C.

Ono et al. 1989, CA060C

a0

a
o

180 A

100 +

505

02 -0.01 I]

0.01

0.0z

0.

03

Drift Ratio

Ono et al. 1988, CADBDC
© Shear Failure At Crack
A Concrete at Comp. Peak
¥ Shear Compression Failure

= = = Shear and Flexure Response

Flexure Response

Figure 40. Ono et al. 1989, CA060C.
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Figure 41. Saatcioglu and Ozcebe 1989, U1.
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Figure 42. Saatcioglu and Ozcebe 1989, U3.
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Figure 43. Saatcioglu and Ozcebe 1989, U4.
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Figure 44. Saatcioglu and Ozcebe 1989, U6.
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Figure 45. Saatcioglu and Ozcebe 1989, U7.

Soesianawati et al. 1986, No. 1

25 Soesianawatl et al. 1986, MNo.
200 (o] 1Shear Failure At Crack
150 ,_ﬁ?: A Concrete at Comp. Peak
180 I ’; ¥ Shear Compression Failure
0 A = == Shear and Flexure Response
! L j Flexure Response
1 -0.05 £ qJ 0.05 0|1
100 4
-150
-200
250
Drift Ratio

Figure 46. Soesianawati et al. 1986, No. 1.
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Figure 47. Soesianawati et al. 1986, No. 2.
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Figure 48. Soesianawati et al. 1986, No. 3.
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Figure 50. Tanaka and Park 1990, No. 1.
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Figure 51. Tanaka and Park 1990, No. 2.
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Figure 52. Tanaka and Park 1990, No. 3.

51



Lateral Load (kN}

Lateral Load (kN}

Tanaka and Park 1990, No. 4

A
o

—

150 .

100
|

|
50 A

K
)
I
I
I
I
T D_"' I @

-0.05 1] 0.0s 0.1
-a0 |

-100

140

Drift Ratio

Tanaka and Park 1990, MNo. 4
© Shear Failure At Crack
A Concrete at Comp. Peak
X Shear Compression Failure

= = = Shear and Flexure Response

Flexure Response

Figure 53. Tanaka and Park 1990, No. 4.
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Figure 54. Tanaka and Park 1990, No. 5.
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Figure 57. Tanaka and Park 1990, No. 6.
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Figure 56. Tanaka and Park 1990, No. 7.
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Figure 57. Tanaka and Park 1990, No. 8.

Zahn et al. 1986, No. 7

200 -
150 4
100 A d

50+

0
=)

-0.05 0.05

= —

-50
-100
=150
-200

20
L=

Drift Ratio

Zahn et al. 1886, Mo. 7
© Shear Failure At Crack
A Concrete at Comp. Peak
¥ Shear Compression Failure

= = = Shear and Flexure Response

Flexure Response

Figure 58. Zahn et al. 1986, No. 7.
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Figure 59. Zahn et al. 1986, No. 8
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