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Abstract

This final project report1 is a Type I: Modelling variability into a testable model project.
The main themes of the course revolve around the concepts of variability (in this project
variability is associated with the variation of an algorithm in time i.e. evolutionary vari-
ability and with variability in definitions of concepts), traceability and verification. Hence
these concepts form the core focus of this project, with more emphasis being placed on the
creation of a traceable, testable domain model. In particular, two questions posed during
the offering of this course are: i) “Can tests be used to document how family members are
different?”, and ii) “How can features and their dependencies be properly documented?”

1Submitted to Professor Jean-Pierre Corriveau in partial fulfillment of the requirements of the computer
science course COMP 5104 - Object Oriented Software Engineering and to the National Research Council
as an internal technical report.



Contents

List of Figures 3

List of Tables 4

Nomenclature 6

1 Introduction 7

2 Project 8
2.1 Project Conceptualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Project Domain Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Project Constraints and Coverage . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Domain 11
3.1 Family Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Hartigan’s Leader Algorithm . . . . . . . . . . . . . . . . . . . . . . 12

4 System Family Engineering Domain Models 14
4.1 Textual Domain Representation . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Visual Domain Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2.1 Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 Use Case Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Textual Domain Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.1 Features and Parameters . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4 Changes to Feature Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.1 Feature Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Derived Tests (from Feature Contracts) . . . . . . . . . . . . . . . . . . . . 26
4.6 Derived Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Implementation 30
5.1 Threshold Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 UCM Component Mapping: Abstract → Concrete . . . . . . . . . . . . . . 32
5.3 Design decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Dynamic “Code-based” Unit Tests . . . . . . . . . . . . . . . . . . . . . . . 35

6 Project Post-mortem 37
6.1 Possible Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Acknowledgements 41

1



Modelling Variability in the Leader Algorithm Family

Bibliography 42

8 Appendix 44
8.1 Test case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.2 Test case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.3 Test case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.4 Test case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.5 Test case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.6 Test case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.7 Test case 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.8 Test case 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.9 Test case 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.10 Test case 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.11 Test case 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.12 Test case 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Index 54

Barton, A.J. December 20, 2004 2/54



List of Figures

2.1 Relationship of Project Goals to Project Work Products . . . . . . . . . . . 9

4.1 Conceptualization of Clustering Process . . . . . . . . . . . . . . . . . . . . 15
4.2 Use Case (UC) for Leader Algorithm Family . . . . . . . . . . . . . . . . . 16
4.3 Use Case Map (UCM) for Leader Algorithm Family . . . . . . . . . . . . . 17

5.1 Abstract representation of a data matrix in primary memory. . . . . . . . . 33
5.2 One variant of sorting incomplete data objects (X = C

⋃
I) . . . . . . . . . 34

5.3 O(2n) range sort for incomplete data objects . . . . . . . . . . . . . . . . . 34
5.4 Variants of indexing schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3



List of Tables

3.1 Family Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Feature and Feature Value Identifiers . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Parameter and Parameter Value Identifiers . . . . . . . . . . . . . . . . . . 19
4.3 Interaction Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Member–Feature Relationships. . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 Three possible modified distances ([19]p.1947) . . . . . . . . . . . . . . . . 31
5.2 Mapping of abstract preprocessing component to concrete components . . . 32
5.3 Mapping of abstract algorithm component to concrete components . . . . . 32
5.4 Mapping of abstract postprocessing component to concrete components . . 32

4



List of Algorithms

1 Hartigan’s Leader Algorithm (Translation) . . . . . . . . . . . . . . . . . . . 13

5



Nomenclature

Td A dissimilarity (or distance) threshold

Ts A similarity threshold (See §5.1)

X The original (possibly huge) data set

O(g(n)) = {f(n) : ∃c, n0 > 0, s.t. 0 ≤ f(n) ≤ c · g(n), ∀n ≥ n0}

6



Chapter 1

Introduction

The Method of Multiple Working Hypotheses – T.C. Chamberlin 1890 1

T
here are many things in this world that are not certainly known or understood by
humans. It is best, therefore, to consider multiple competing (variable) hypotheses2

in order to attempt to understand3 the inherent complexity in the world around us and
to be able to disseminate that knowledge (communicate these hypothesis for others). In
particular, it is assumed that the larger the variability in the set of hypotheses under
consideration, then the higher the likelihood one of them may very accurately describe the
complex world.

In the field of software engineering, one software system is usually built for a particular
domain in order to help domain experts (users) understand some aspects of their domain.
It has been proposed that it might be better to consider all possible systems (a family)
that could be built for a particular domain, instead of only one system at a time (classical
approach). This concept, called system family engineering, attempts to more explicitly ex-
plicate (“clearly explain” would be another variation of this word combination) the tradeoffs
between design (implementation) alternatives, individually known as family members.

Further, the classical testing approach focuses on the consideration of one software
system at a time (called the system under test). However, a competing approach considers
testing from the point of view of a whole family of software systems and at the much more
abstract and user centered domain modelling level. This approach leads to objective tests
that are directly derived from a model of the whole family of systems.

1Thomas C. Chamberlin (1843-1928) wrote about the method of multiple working hypotheses in [4].
2Multiple hypotheses could also be called a family of hypotheses.
3Objectivity is chosen over subjectivity (or intuition) whenever possible in this project.
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Chapter 2

Project

T
he family of algorithms that will be investigated, as the domain under consideration, are
related to clustering data. That is, the Leader Algorithm originally proposed by John

A. Hartigan in [10] along with variants that Dr. Julio Valdés proposed will be investigated.
A fortran implementation of the original algorithm is available in [10] and a variant was
made available by Dr. Julio Valdés in ANSI C. This project proposal is a research topic in
its domain, as well as being a research topic for the purposes of the course.

Definition 1 (Program Family) In 1976 David L. Parnas [12] wrote that:
We consider a set of programs to constitute a family, whenever it is worthwhile to study pro-
grams from the set by first studying the common properties of the set and then determining
the special properties of the individual family members.

2.1 Project Conceptualization

The project aims to investigate how abstract models of a domain (in this case Testable
Feature Contracts) can lead, via a structured and systematic approach to abstract tests.
See Fig-2.1 for a visual representation of the project goals (i.e. i) Testable Domain Models
and ii) Derived Tests) and their relationship to the project work products (e.g. Feature
Contracts are intended to be a testable domain model because, for example, dynamic tests
can be derived from them in a systematic way).

2.2 Project Domain Scope

This project will require the implementation of Hartigan’s Leader Algorithm and variants,
in the American National Standards Institute (ANSI) C Standard, which has been adopted
as an international standard (ISO/IEC 9899:1990) [16]. Even though this course is a course
in object oriented software engineering, the focus is on the essence of object orientation (as
revealed during one lecture by Professor Corriveau when questioned by the author), and so
the implementation language of ANSI C was deemed to be appropriate.

The aforementioned implementation work, and the building of testable models lie within
the scope of this project. However, it is recognized that the implementation work will
not be for credit towards the course objectives, but, none-the-less, it is considered as a
possibly useful contribution for the ongoing research in the Integrated Reasoning Group of
the Institute for Information Technology of the National Research Council Canada.

8
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Code Integration* 
Unit/Regression Testing* 
Test Cases* 
Usability Testing 

 
*Included in project work

Use Case 
(Group of 

Scenarios)

Use Case Map

Testable 
Domain Model Derived Tests

Figure 2.1: Relationship of Project Goals to Project Work Products

In addition, it is recognized that there are certainly other clustering algorithms that
could be considered. They are, however, variants of a more general, and much larger
family, which would involve too much time (than the duration of the course) to investigate
and document thoroughly. For example, other clustering algorithms include: i) kmeans, ii)
SOM, iii) TaxMap, iv) Hierarchical divisive, v) Hierarchical agglomerative, etc. of which
one possible taxonomy (concept hierarchy variant) of these methods is given in ([14] p.201).

Only a small subset of the Leader Algorithm Family will be considered. In particular,
i) parallel or distributed [2] variants of the leader algorithm will not be considered, as no
currently known implementation exists that could be modelled, and ii) at most two distance
(no similarity) functions will be implemented, as the investigation of an appropriate function
is left to the scientific investigation of the particular data set and its associated application
domain properties. That is, the data may come from very many possible domains, but only
a simulated data set domain will be considered, as an algorithm variant works the same on
any given data set domain; so, considering data domain variants is also outside the scope of
this project. In particular, data sets could be i) biological, genetic (cDNA microarray data
[20]), or proteomic (mass spectrometry data), or ii) in another domain entirely, such as in
astronomy for grouping similar galaxies [17]. Therefore, deriving all possible tests from the
domain model for a family member, would require knowing about the data set used, which
would require knowing something about the domain. This is completely outside the scope
of this project, and so a data set that the author is familiar with will be used. That is,
an artificially constructed data set will be used for conformance-directed and fault-directed
testing.

Nonfunctional features could be considered in terms of, for example, performance, be-
cause the different family members (variants) will potentially have different computational
complexity. However, nonfunctional features will not be considered in this project.
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2.3 Project Constraints and Coverage

For this project, time was a large constraint, because implementation and then modelling
work needed to be performed. Indeed, a large body of material was covered in the course
from many sources, of which [3] and [6] are the main references; while no material was
directly used from the presented works of [11] and [9]. For example, [8] covers material
related to i) Objects and UML, ii) basic concepts of real-time systems and safety-critical
systems, iii) rapid object-oriented process for embedded systems, iv) requirements analysis
for real-time systems, v) structural and behavioral object analysis, vi) architectural, mech-
anistic and detailed design, vii) advanced real-time object modelling including threads and
schedulability, dynamic modelling and real-time frameworks.

In addition, the classical papers ([7] and [12]) were obtained and read; in order to
understand the original motivations for structured programming and programming families.

Template metaprogramming [6] was not used, because, i) it is a C++ specific program-
ming language construct and this project has the constraint that it should be ANSI C, ii)
if it was used, it may be very difficult to debug the code if it turned out that testing the
generated code revealed problems, and iii) the code should not be dependant on a partic-
ular compiler, that is, the code should be able to compile under Red Hat/GNU Linux, MS
Windows or other OS.

Barton, A.J. December 20, 2004 10/54



Chapter 3

Domain

C
lustering (the grouping of similar objects ([10] p.1)) could be considered part of Ex-
ploratory Data Analysis (more recently known as the Knowledge Discovery and Data

Mining Process), where the clusters are considered to be the knowledge (concepts) that
are being discovered or revealed. The data to be clustered is partitioned by the clustering
algorithm yielding a family of clusters (concepts), where each object lies in just one member
of the partition. Other definitions of a cluster may be given. For example, one object may
belong to multiple clusters (have multiple –partially or wholly– related concepts associated
with it), as in the field of Soft-Computing. However, for the purposes of this report, only one
specific family of partition clustering algorithms (single concept per object) is considered;
namely, the Leader Algorithm Family.

It is suggested in the field of Cognitive Science, in particular ([13] p.3), that

...the various views of concepts can be partly understood in terms of two fun-
damental questions: (1) Is there a single or unitary description for all members
of the class? and (2) Are the properties specified in a unitary description true
of all members of the class? The classical view says yes to both questions; the
probabilistic view says yes to the first but no to the second; and the exemplar
view says no the first question, thereby making the second one irrelevant.

Definition 2 (Domain) ([6] p.34) states that a domain is an area of knowledge

• Scoped to maximize the satisfaction of the requirements of its stakeholders

• Includes a set of concepts and terminology understood by practitioners in that area

• Includes the knowledge of how to build software systems (or parts of software systems)
in that area

Definition 3 (Knowledge Discovery and Data Mining) The nontrivial process of
identifying valid, novel, potentially useful, and ultimately understandable patterns in data.
(Fayyad, Piatesky-Shapiro, Smith 1996)

Definition 4 (Data Mining) Data Mining is the analysis of huge data sets. ([1] p.219)

Definition 5 (Soft Computing) A set of computational disciplines which in contradis-
tinction with classical techniques, make emphasis in tolerating imprecision, uncertainty and
working with partial truth notions (Zadeh 1994)

11
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Definition 6 (Object) The classical software engineering ([6] p.9) definition for objects:
an object has an identity, state, and behaviour. (This is a reference to Grady Booch). In
particular, something related to an object oriented programming language construct.
But in machine learning a class (or concept/category/cluster) means the class to which an
object (or case/data row/instance) belongs.

3.1 Family Members

The algorithm variants in the Leader Algorithm Family are listed in Table-3.1, of which only
the first variant will be described with pseudo-code. The other variants will be described
in terms of the additional features they offer for the researcher (user of the algorithm) in
order to focus on the differences and not replicate the similarities. A table of mappings
between members and features was created (Table-4.4) but tables for feature-feature and
feature-parameter relationships were not, as that is the intention of the feature contracts
section §4.4.1.

№ Name Brief Description See Also

A1 Hartigan’s Translation of algorithm in [10] §3.1.1

A2 Extension 1 Sort and then run A1 Table-4.4

A3 Extension 2 A1 and search reverse Table-4.4

A4 Extension 3 Sort and then run A3 Table-4.4

A5 Extension 4 A1 and search best Table-4.4

A6 Extension 5 Sort and then run A5 Table-4.4

A7 Extension 6 Integrate A3 and A5 Table-4.4

A8 Extension 7 Sort and then run A7 Table-4.4

A9 Extension 8 A1 and supervised Table-4.4

A10 Extension 9 Sort and then run A9 Table-4.4

A11 Extension 10 Integrate A7 and A9 Table-4.4

A12 Extension 11 Sort and then run A11 Table-4.4

Table 3.1: Leader Algorithm Family Members.

3.1.1 Hartigan’s Leader Algorithm

The Leader Algorithm, as originally described ([10] p.74), begins with some motivation for
this particular quick partition algorithm:

It is desired to construct a partition of a set of M cases, a division of the
cases into a number of disjoint sets or clusters. It is assumed that a rule for
computing the distance D between any pair of objects, and a threshold T are
given. The algorithm constructs a partition of the cases (a number of clusters
of cases) and a leading case for each cluster, such that every case in a cluster
is within a distance T of the leading case. The threshold T is thus a measure
of the diameter of each cluster. The clusters are numbered 1, 2, 3, ...,K. Case I
lies in cluster P (I)[1 6 P (I) 6 K]. The leading case associated with cluster J
is denoted by L(J). The algorithm makes one pass through the cases, assigning

Barton, A.J. December 20, 2004 12/54
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each case to the first cluster whose leader is close enough and making a new
cluster, and a new leader, for cases that are not close to any existing leaders.

The algorithmic description of the algorithm ([10] p.75) is:

Step 1. Begin with case I = 1. Let the number of clusters be K = 1, classify the first case
into the first cluster, P (1) = 1, and define L(1) = 1 to be the leading case of the first
cluster.

Step 2. Increase I by 1. If I > M , stop. If I ≤M , begin working with the cluster J = 1.
Step 3. If D(I, J) > T , go to Step 4. If D(I, J) ≤ T , case I is assigned to cluster J ,

P (I) = J). Return to Step 2.
Step 4. Increase J to J +1. If J ≤ K, return to Step 3. If J > K, a new cluster is created,

with K increased by 1. Set P (I) = K, L(K) = I, and return to Step 2. ✷

However, for the purposes of i) clarity, and ii) demonstration of description variability
(i.e. a description of the same algorithm can be variable), a translation of the Leader
Algorithm using modern terminology was performed (e.g. removing goto statements).
In addition, the original algorithm used the terminology D(i, j)1, but it is believed that
D(i, L(j))2, may be more clear, and so the translation described in A1 uses this change of
terminology.

Algorithm 1 Hartigan’s Leader Algorithm (Translation)

Input: Data X, number of cases M , distance threshold Td

Algorithm Negative Properties [20]: i) the first data object always defines a cluster and
therefore, appears as a leader ii) the partition formed is not invariant under a permutation
of the data objects iii) the algorithm is biased, as the first clusters tend to be larger than
the later ones since they get first chance at “absorbing” each object

1: k ⇐ 1 ✄ The current number of clusters

2: P (1)⇐ 1 ✄ Classify the first case into the first cluster

3: L(1)⇐ 1 ✄ Define the leading case of the first cluster

4: for i⇐ 2 to i ≤M by i⇐ i + 1 do ✄ For every case but the first in the data set

5: P (i)⇐ −1 ✄ Case i is not assigned to a cluster yet

6: for j ⇐ 1 to j ≤ k by j ⇐ j + 1 do ✄ For each currently known cluster

7: if D(i, L(j)) ≤ Td then ✄ Current case is within the threshold

8: P (i)⇐ j ✄ Case i is assigned to cluster j
9: break for

10: end if
11: end for
12: if P (i) = −1 then ✄ Case i isn’t close enough to one of the existing leaders

13: k ⇐ k + 1 ✄ Create a new cluster

14: P (i)⇐ k ✄ Classify case i to the new cluster

15: L(k)⇐ i ✄ Define the leader of the new cluster

16: end if
17: end for

1meaning that case i is measured in terms of distance to cluster j
2meaning that case i and case L(j) are measured in terms of distance to each other, where L(j) is the

leader for cluster j
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Chapter 4

System Family Engineering

Domain Models

T
he selected domain may be modelled (abstracted) in very many different ways. For
example, if domain terminology, notation and theory exist then they may be modelled

directly in their native textual or visual form. But for software engineering purposes,
particular types of models are built with the view to implementing and testing software on a
computer. But the software that is being built is usually written in one or more languages,
which themselves are abstractions of the underlying assembly code, which is related to
machine code, which may be executed in some manner by a processor (e.g. multi-tasking or
parallel execution of the instructions) or by a set of processors with, for example, shared-
distributed memory. In spite of all of these issues, the system family engineering domain
models that will be built are being built with the intention of deriving tests from the models
directly.

Definition 7 (Domain Engineering) ([6] p.20-21) Domain Engineering is the activity
of collecting, organizing, and storing past experience in building systems or parts of systems
in a particular domain in the form of reusable assets (i.e., reusable work products), as
well as providing an adequate means for reusing these assets (i.e., retrieval, qualification,
dissemination, adaptation, assembly, and so on) when building new systems. It encompasses
Domain Analysis, Domain Design, and Domain Implementation. Conventional software
engineering (or single-system engineering) concentrates on satisfying the requirements for
a single system, whereas Domain Engineering concentrates on providing reusable solutions
for a family of systems.

Definition 8 (Product Line vs. System Family) From ([6] p.31) The terms product
line and system family are closely related, but have different meanings. A system family
denotes a set of systems sharing enough common properties to be built from a common set
of assets. A product line is a set of systems scoped to satisfy a given market. A product
line need not be a system family, although that is how its greatest benefits can be achieved.
Likewise, a system family need not constitute a product line if the member systems differ too
much in terms of market target, that is, a system family could serve as a basis for several
product lines. Historically, the term product line is a younger term than system family.
A domain encapsulates the knowledge needed to build the systems of a system family or
product line. More precisely, system families and product lines constitute two different
scoping strategies for domains.

14



Modelling Variability in the Leader Algorithm Family

4.1 Textual Domain Representation

All family members (See Table-3.1), when applied to the original data set X, must:

• reduce X by selecting a set of representative objects1, as typified in Fig-4.1. It could
also be thought of that the “leader” is reducing the variability in the data. That is,
trying to get to the core of the data set, rather than all of the minor perturbations.

• satisfy a mathematical property, as exemplified in (4.1).

• contend with the problem of incompleteness (missing data).

• contend with the problem of data type heterogeneity. For an example of using het-
erogeneous time series data, see [18].

{(∀j ∈ [1, |X|])(∃i ∈ [1, |L|])s(~li, ~xj) ≥ Ts} = L(X,Ts) ⊆ X (4.1)

Leader Object

Leader Set

Original Set (X)

Data Representation Transformation Process

Figure 4.1: Conceptualization of Clustering Process

4.2 Visual Domain Models

4.2.1 Use Case

The way in which the Leader Algorithm System will be used is shown in Fig-4.2. In
particular, one motivation of the system is to reduce the size of the data set when given to
another system, and yet retain the core structure of the original data.

The focus of the project is testable feature contracts and their associated derived tests,
so this use case was not elaborated further.

Definition 9 (Use Case) http://www.foruse.com/articles/structurestyle2.pdf states:
Jacobsons original definition [Jacobson et al.,1992]: A use case is a specific way of using

the system by using some part of the functionality. [A use case] constitutes a complete course
of interaction that takes place between an actor and the system.

1cases and objects are used interchangeably
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Researcher

Leader 
System

Visualization System

<<gives results to>>

<<gives results to>>

<<uses>>

Rough Set System

Figure 4.2: Use Case (UC) for Leader Algorithm Family

The specification of sequences of actions, including variant sequences and error se-
quences, that a system, subsystem, or class can perform by interacting with outside actors
[Rumbaugh et al, 1999: 488].

[Fowler, 1997: 43]: A use case is a typical interaction between a user and a computer
system [that] captures some user-visible function [and] achieves a discrete goal for the
user.

Use cases ... are, of course, only one of many potential ways of modelling tasks, ranging
from, on the one end of the spectrum, rigorous and highly structured approaches that are of
greatest interest to researchers and academics, to, on the other end, informal movie-style
storyboards and free-form scenarios.

From www.alike.com/html/main_html/glossary.html: A methodology used in system
analysis to identify, clarify, and organize system requirements. The use case is made up
of a set of possible sequences of interactions between systems and users in a particular
environment and related to a particular goal. It consists of a group of elements (for example,
classes and interfaces) that can be used together in a way that will have an effect larger than
the sum of the separate elements combined. The use case should contain all system activities
that have significance to the users.

4.2.2 Use Case Maps

The use case map in Fig-4.3 represents the responsibilities within the Leader Algorithm
System that was implemented. The UCM also maps the responsibilities onto abstract con-
ceptual components. For example, in Fig-4.3 the Object Presentation Order responsibility
is mapped onto an abstract component called Preprocessing, which in turn may be mapped
onto a concrete component or components in a particular family member2.

The mapping from abstract components to concrete components is described in §5, along
with other details of the project implementation work.

Definition 10 (Use Case Map - UCM) http://www.usecasemaps.org states: Use case
maps can help you describe and understand emergent behaviour of complex and dynamic
systems.

2The mapping from abstract component to concrete component may or may not be done in different
ways for different family members.
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Preprocessing

Algorithm

Postprocessing

Object Presentation Order

Leader Set Search Order

Leader Selection

Output Report

Figure 4.3: Use Case Map (UCM) for Leader Algorithm Family

4.3 Textual Domain Model

Domain models may be represented visually or textually. Visual domain representations,
as in the previous section, take advantage of natural human visual understanding, and so
may possibly be favoured over textual representations in certain circumstances. However,
textual representations may be favoured due to their ability to describe structured languages
— natural [e.g. Inuktitut, which is the major language of the Circumpolar region stretching
from Alaska to Greenland and the main language for Nunavut3], artificial [Tengwar, which
was invented by J.R.R. Tolkien], or computer [Prolog, for programming in logic].

Definition 11 (Testable Feature Contracts) Testable feature contracts are a textual
feature model of a domain, from which tests (hopefully) can be directly derived. Feature
contracts address feature coupling through explicit recording of feature interactions and be-
havioral dependencies between features. Summarized from course

4.3.1 Features and Parameters

How were the features in Table-4.1 and parameters in Table-4.2 of this domain chosen?
Based on a perceived notion of what was directly related to the leader algorithm family,
implying that the features may not completely cover the domain being modelled. How could
the features be proved to cover the domain? No known answer exists, unless, possibly, if
the domain is formally defined via, for example, axioms. What would happen if we have
a domain, but were missing a feature? It depends on what feature was missing. If enough
other information existed in the model, then the missing feature could be derived from the
other information, then possibly a tool could be built to help in this regard. However, in the
general case, the missing feature will become apparent to someone with appropriate domain
knowledge and then the correction will be made. Such latent changes incur potentially high
cost. One advantage of feature contracts could be to try and find such missing features via
the structured derivation of tests, forcing the model builder to more thoroughly consider
the domain and ask the “right” questions of the “right” experts. What if we had a feature
that wasn’t really a part of the domain? This should be found as long as the domain was

3Information obtained from the National Research Council Canada’s Interactive Information Group’s
web site http://iit-iti.nrc-cnrc.gc.ca/projects-projets/uqausiit e.html
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clearly understood and bounded, or the domain could be enlarged or shrunken to include
or exclude that feature.

№ Feature [Value] Name Additional Information

F1 Object Presentation Order
F1V1 DataSetOrder Original File Order
F1V2 ObjectCompletenessOrder

F2 Leader Set Search Order
F2V1 Forward i← 1 upto i = N by 1
F2V2 Reverse i← N downto i = 1 by 1

F3 Leader Selection (for i-th Object)
F3V1 First Select First Encountered
F3V2 Best Select Closest Distance Encountered
F3V3 FirstMostComplete

F3V4 BestMostComplete

F4 j-th Leader Set’s Members
F4V1 MayBeHeterogeneous Unsupervised Clustering
F4V2 MustBeHomogeneous Supervised Clustering

F5 Leader (Prototype) Reporting
F5V1 Original As determined by algorithm
F5V2 ClassMajority Ties broken randomly

F6 Output
F6V1 HumanReadable

F6V2 MachineParsable

Table 4.1: Feature and Feature Value Identifiers. F1V2 means feature value 2 of feature 1. Or put

another way, the 2nd possible variant of the feature.

Definition 12 (Parameter) From the Ring Election thesis p47: a parameter defines a
meaningful attribute input to the system. Contrary to a feature, we view a parameter not as
a functional unit, but as a datum (e.g. length or weight). A feature may have parameters
associated with it. These parameters may fully or only partially define a feature.

The possible binary interactions are listed in Table-4.3 and the mapping of features onto
family members is list in Table-4.4.
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№ Parameter [Value] Name Additional Information

P1 ThresholdType See §5.1
P1V1 DistanceThreshold Td (used for DistanceFunction)
P1V2 DissimilarityThreshold (used for DissimilarityFunction)
P1V3 SimilarityThreshold Ts (used for SimilarityFunction)

P2 FunctionType See §5.1
P2V1 DistanceFunction

P2V2 DissimilarityFunction

P2V3 SimilarityFunction

P3 SortType
P3V1 StableSort Input order preserving sort
P3V2 UnstableSort Ties may be ordered in any way

P4 DataUsage
P4V1 OneCopyOfData Only one copy of the data exists
P4V2 MultipleCopiesOfData There may be multiple copies of the data

P5 MemoryUsage
P5V1 PrimaryMemory All data is loaded
P5V2 ExternalMemory Not all data loaded

P6 DistributionType
P6V1 UniformRandom f(x,A,B) = 1

B−A

P6V2 Gaussian f(x, µ, σ) = e−(x−µ)2/(2σ2)

σ
√

2π
(Also called Normal)

P6V3 Poisson p(x, λ) = e−λλx

x! for x = 0, 1, 2, · · ·

P7 SoftwareSystem
P7V1 VisualizationSystem See [19]
P7V2 RoughSetSystem See [19]

P8 Computer
P8V1 Sequential

P8V2 Distributed See [2]
P8V3 Parallel See [2]

Table 4.2: Parameter and Parameter Value Identifiers. P1V2 means parameter value 2 of parameter

1. Or put another way, the 2nd possible variant of the parameter.
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№ Interaction Description

X0 applicable (e.g. not applicable ✗0)

X1 is equivalent to

X2 requires

X3 has

X4 must be before

X5 is the parent of

X6 with

Table 4.3: Possible binary relations (interactions) that may occur. Not all are used in modelling
this domain, the table certainly does not contain all possible relations, and no higher order (e.g.
tertiary etc.) relations are proposed. The negation of the relation may be used ✗1. In general
ℜ(F1, F2V2) means that F1 is related to F2V2 in the manner specified by the traceability code ℜ. In
particular, ✗3 would mean does not have and X4,5 would mean the conjunction of two interactions;
in this case, must be before –and– is the parent of.

№ A1➙A2➙A3➙A4➙A5➙A6➙A7➙A8➙A9➙A10➙A11➙A12 

F1

F1V1 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3

F1V2 X3 X3 X3 X3 X3 X3

F2

F2V1 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3

F2V2 X3 X3 X3 X3 X3 X3

F3

F3V1 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3

F3V2 X3 X3 X3 X3 X3 X3

F3V3

F3V4

F4

F4V1 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3

F4V2 X3 X3 X3 X3

F5 ✗0 ✗0 ✗0 ✗0 ✗0 ✗0 ✗0 ✗0 ✗0 ✗0 ✗0 ✗0

F5V1

F5V2

F6 ✗0 ✗0 ✗0 ✗0 ✗0 ✗0 ✗0 ✗0 ✗0 ✗0 ✗0 ✗0

F6V1

F6V2

Table 4.4: Member–Feature Relationships. For example, X3(A1,F1V1) means algorithm A1 has
the feature variant F1V1. The table has been designed based on ideas from John Tukey 1977. (For
example, the most important data and relationships should clearly stand out in a visualization.)
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4.4 Changes to Feature Contracts

Changes (semantic/syntactic/presentation) were made to the feature contracts proposed in
the course in order to simplify the applicability for the Leader Algorithm Family domain.

C1 Overall, tried to make section names like attributes of a feature that can be referenced.
For example, a feature contract could be thought of like an interface.

C2 Removed superfluous textual strings (e.g. Interaction and Behaviour) because the
meaning of a section (such as Variants) implies that it is an interaction or a behav-
iour. This assumes that the reader understands what a section means.

C3 In Variation section, removed < type >∈. Old idea was F1.type and it has been
replaced by the ability to refer to a variant of a feature by using Variant. For
example, the current variant of Feature 1, may be referred to as F1.Variant from
another feature such as F2 and as Variant from within F1. The additional notation
of This.Variant is not needed because the feature that the reader is currently reading
is always assumed to be This. Consequently, the syntax is simplified, and Variant

is thought of like an attribute of a feature that is instantiated with a value. Further,
consistency is introduced because we don’t have many different aliases for what boils
down to referring to a variant. This requires less cognitive stress on the reader as
fewer things need to be explicitly remembered.

C4 Removed Contract section, as it is superfluous because this information can be
determined within the Mapping section (by a tool, if needed).

C5 Renamed Mapping section to Interactions section in order to make it more clear
that other features interact with this feature in the mentioned ways. Constraints

is another possible word, but was rejected due to the fact that data interactions may
occur. For example, see F3.Interactions section.

C6 Each section is thought of as being an ordered operation (like the production rules in
an expert system). For example, the accumulation += operation in F5.Interactions

C7 Added a Description section to describe the feature in natural language.
C8 Moved old Description section to be contained within the Composition section.
C9 Added details to Responsibilities section.

C10 Feature and parameter names must be unique. Avoids parameter-feature confusion.
C11 Composition can be conditional. See, for example, F1.
C12 Added ability to specify a set of responsibilities via set notation in conjunction with

a template for a responsibility name. See, for example, F3.Documentation for
leader algX Y().

C13 Overall, tried to remove obfuscating syntax, and allow broader understanding of the
intention of a contract without having a reader remember the meaning of particular
symbols. For example, the syntax of Pascal versus C.

C14 Removed use of Null. Instead used None. This is to move more towards a domain,
and away from a computer language, because it is trivial for a computer scientist to
understand Null, but not necessarily for a domain expert. This, of course, assumes
that domain experts may read these feature contracts.

C15 Changed Parameters notation to be consistent with the set notation used.
C16 Renamed Variation to Variants.
C17 Added separating lines around the identifier and name of the feature so that the

feature can be seen easily in a document.
C18 Lined names of items up, and separated them from content of items. This allows one

to scan quickly for a particular item, such as Variants.
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4.4.1 Feature Contracts

One of the course goals is to investigate how to document both feature interactions4 and
behavioral dependencies5. For example, Feature–Feature, Feature–Parameter and other
configuration rules (combination rules) are described within the feature contracts.

When writing a particular feature contract, the Interactions section was interpreted
as being all of those things in other features that constrain, or are used by, this feature.
In particular, the converse way of interpreting this section was not used. That is, the
Interactions section does not document those things in this feature that are used by
other features. For example, when constructing Fi, it may be constrained to a particular
variant, say Variantk because Fj has a variant within a set of possibilities.

The following feature contracts are a model for the project implementation work on
the Leader Algorithm Family. In addition, some generalization was performed in order to
conceive of possible variants that were not implemented.

F1: Object Presentation Order

Description: The objects may be presented to the main body of the leader algorithm in
many different ways. For example, they may be presented in the order
that they are read from a file, or they may be sorted using any total or-
dering relation (which may be comprised of a partial order in conjunction
with, for example, the data set order) over the objects.

Variants: {DataSetOrder, ObjectCompletenessOrder}
Interactions: None

Parameters: Parameters={SortType,DataUsage,MemoryUsage}
Variant ∈ {ObjectCompletenessOrder} ⇒

Parameters={StableSort,OneCopyOfData,PrimaryMemory}
Variant ∈ {DataSetOrder} ⇒

Parameters=None

Documentation: sortMatrixf() create a new, reordered data matrix
[Matrixf] original matrix of floating point numbers (See Fig-5.1)
[MatrixfOut] sorted version of the input matrix (Share same data, just
different pointers)
[IndexPointers] sorted pointers to data objects (See Fig-5.4)
[IndexMap] identity map or mapping from index of [IndexPointers]

to index of original data objects
[Bins] bin i contains i missing values (See Fig-5.3)

Composition: Composition={[Matrixf],[IndexMap]}
Variant /∈ {DataSetOrder} ⇒

Composition+={[MatrixfOut],[IndexPointers],[Bins]}
Responsibilities: sortMatrixf() {

create [MatrixfOut], [IndexPointers], [Bins]

}

4Feature interactions pertain to how the selection of a variant for a feature constrains the selection of a
variant for another feature. [From course]

5Behavioral dependencies pertain to how a service offered by a feature depends on a service of another
feature. [From course]
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F2: Leader Set Search Order

Description: The currently grown set of leaders (there are k of them) may be searched
in many different ways when object i’s membership to a leader needs to
be determined.

Variants: {Forward,Reverse}
Interactions: F3.Variant ∈ {Best,BestMostComplete} ⇒

Variant={Forward}
F3.Variant ∈ {BestMostComplete} ⇒

Interactions={F1.[Bins]}
Parameters: None

Documentation: [start] first leader index to consider
[stop] last leader index to consider
comparisonFcn() tests if there are more leaders to consider
iterationFcn() increment or decrement an iteration variable

Composition: Composition={[start], [stop]}
Responsibilities: comparisonFcn(){

}
iterationFcn(){
}
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F3: Leader Selection (for i-th Object)

Description: There are many ways to chose a leader to represent an object. The case
of choosing multiple leaders for an object is not considered, therefore,
exactly one leader will be chosen for object i. For all variants, if no
leader in the current leader set exists that is close enough to object i,
then object i will be promoted to becoming a leader, and hence selected
as the leader for object i.

Variants: {First,Best,FirstMostComplete,BestMostComplete6}
Interactions: Interactions = {F1.[IndexMap]}

Variant ∈ {BestMostComplete} ⇒
Interactions += {F1.[Bins]}

F4.Variant ∈ {MustBeHomogeneous} ⇒
Interactions += {F1.[IndexMap].[ClassInfo]}

Parameters: {DistanceThreshold,DistanceFunction}
Documentation: [k] cardinality of the leader set at any given point in time

[P] object to leader mapping. (P [i] = j, case i is assigned to cluster j)
has size exactly equal to the number of objects
[L] the leader set. (L[j] = i, cluster j is represented by object i) has size
exactly equal to [k] with elements being objects from the input data set
The [IndexPointers] are (polymorphically) represented as a [Matrixf].
This frees the implementation of this feature from having to know about
the existence of F1, and therefore reduces feature coupling.
leader algX Y() where
{(X,Y )} = {(1, hartigan), (3, ext2), (5, ext4), · · · , (11, ext10)}

Composition: Composition={[k],[P],[L]}
Responsibilities: leader algX Y(){

See Table-4.4 for details

}

6This has not been implemented due to time constraints of the project. This variant considers all objects
in bin j before bin j +1. For example, if leader L1 has 2 missing values and another leader L2 has no missing
values, and if L1 was “closer” than L2 to object i, then L2 should still be selected even though it is not the
first encountered because it has fewer missing values... making it the “better” choice.
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F4: j-th Leader Set’s Members

Description: An object’s class may be used as additional information when considering
adding it to the membership of a particular leader’s members. In partic-
ular, the classes of all of the member objects belonging to a leader may
be heterogeneous (i.e. the class information is ignored) or the object’s
classes must be homogeneous.

Variants: {MayBeHeterogeneous,MustBeHomogeneous}
Interactions: {F1.[IndexMap].[ClassInfo]}
Parameters: None

Documentation: leader algX Y() contains implementation
Composition: Composition={}

Responsibilities: leader algX Y() where

{(X,Y )} = {(1, hartigan), (2, ext1), (3, ext2), · · · , (12, ext11)}

F5: Leader (Prototype) Reporting

Description: The leader representative may be reported as being the same as what
was originally selected, or if the data contains class information and the
object members of a leader have heterogeneous classes, then the most
abundant class may be chosen as a better representative of the set.

Variants: {Original, ClassMajority}
Interactions: Interactions={F1.[IndexMap]}

F4.Variant ∈ {MustBeHomogeneous} ⇒
Interactions += {F1.[IndexMap].[ClassInfo]}

Parameters: None

Documentation: utility() contains implementation
Composition: Composition={}

Responsibilities: utility() {
}
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F6: Output

Description: The output from the Leader Algorithm System may be intended to be read
by a human or parsed by another computer program with the purpose of
further analyzing the original input data set.

Variants: {HumanReadable, MachineParsable}
Interactions: Interactions={F5.utility()}
Parameters: None

Documentation: createHumanReadableReportForASCII() text-based report
createHumanReadableReportForLaTeX() LATEX-based report
createMachineReadableReportForOptions() system options database
createMachineReadableReportForData() leader database

Composition: Composition={}
Responsibilities: createHumanReadableReportForASCII() {

uses F5.utility()

}
createHumanReadableReportForLaTeX() {

uses F5.utility()

}
createMachineReadableReportForOptions() {
}
createMachineReadableReportForData() {
}

4.5 Derived Tests (from Feature Contracts)

Now that documenting feature interactions and behavioral dependencies has been attempted
via feature contracts7, the following tests may be derived. In particular, static tests may be
derived from feature interactions, while dynamic tests may be derived from the behavioral
dependencies. The intention is to systematically derive as many kinds of tests as possible,
in such a way that the resulting set of tests are fully traceable (i.e. Each test can be justified
because of such and such a reason).

Definition 13 (Algorithm) Prof. Nussbaum (Carleton) taught in COMP3804 that:
An algorithm is a well defined computational procedure that takes some value, or set of val-
ues as input and produces some value, or set of values, as output. An algorithm is correct
if for every input sequence the algorithm: i) halts, and ii) produces a correct output. An
incorrect algorithm may: i) never halt, or ii) may halt and produce an incorrect answer.
And another variant of the definition is from the field of Cognitive Science ([15] p.5):
Information processes that transform symbolic input structures into symbolic outputs can
be defined in terms of syntactic structures of the inputs and outputs. Such information
processes analyze the syntactic structures of inputs and build syntactically structured out-
puts. Such information processes are also called algorithms. (p.6) An algorithm is defined
completely in terms of processes that operate on a representation. The processes do not op-
erate on the domain being represented. They are not even defined in terms of the meaning

7This is one of the course goals.
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of the representation, which is carried separately by the semantic mapping from the rep-
resentation to the domain. An algorithm is a -formal- procedure or system, because it is
defined in terms of the form of the representation rather than its meaning. It is purely a
matter of manipulating patterns in the representation.

Definition 14 (Test) ([3] p.1112) states that a test could be (1) An activity in which a
system or a component is executed under specified conditions, the results are observed or
recorded, and an evaluation is made of some aspect of the system or component. (2) To
conduct an activity as in (1). (3) A set of one or more test cases. (4) A set of one or more
test procedures. (5) A set of one or more test cases and procedures [IEEE 610].

Definition 15 (Test case) ([3] p.1113) states that a test case is a set of inputs, execution
conditions, and expected results developed for a particular objective. A representation or
implementation that defines a pretest state of the IUT (Implementation Under Test —in
this paper called a family member—) and its environment, test inputs or conditions, and
the expected result.
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4.6 Derived Tests

Tests of feature contracts were derived from the point of view a compiler error report. Only
tests need to be written; tests should say what to test rather than how. No testcases need
to be written, but some are included in the appendix. Examples of each kind of test are
provided when applied to the Leader Algorithm feature contracts. Syntax checks are not
included. For example, not closing a { or forgetting an = or ∈.

1. Ambiguous (feature and parameter) reference for: Name.
If F1’s Variants is:
> Variant={DataSetOrder}
and if F6’s Parameters is:
> Parameters={DataSetOrder}
Then the following should be reported:
> Ambiguous (feature and parameter) reference for: {DataSetOrder}.

2. Invalid feature variant referenced: Name.
If F2’s Interactions is:
> F3.Variant ∈ {Bests,BestMostComplete} ⇒
Then the following should be reported:
> Invalid feature variant referenced: Bests.
Similar kinds of errors could also be specified for:
> Invalid responsibility referenced: Name.
> Invalid data referenced: Name.

3. Reference before definition for: Name.
If F2’s Interactions is:
> F3.Variant ∈ {Best,BestMostComplete} ⇒ Variant+={Forward}
Then the following should be reported:
> Reference before definition for: Variant+=.
Because it should be Variant=.

4. Expression can never be true: Name.
If F2’s Interactions is:
> F3.Variant ∈ {Best,BestMostComplete} ⇒ Variant={Forward}
and If F3’s Interactions is:
> F4.Variant ∈ {MayBeHeterogeneous} ⇒ Variant={First}
> F4.Variant ∈ {MustBeHomogeneous} ⇒ Variant={FirstMostComplete}
Then the following should be reported:
> Expression can never be true: F3.Variant ∈ {Best,BestMostComplete}.

5. No documentation exists for: Name.
A list of data and responsibilities can be made, and then the Documentation section
can be checked to ensure that all items are documented.
Similar kinds of errors could also be specified for:
Not used outside documentation section: Name.
Responsibility not used anywhere other than definition: Name.
Data not used anywhere other than definition: Name.
Parameter not used anywhere other than definition: Name.
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6. Invalid variant combination.
Leader = {F1, F2, F3, F4, F5, F6}

> Leader1 = {ObjectCompletenessOrder,Reverse,Best,
MayBeHeterogeneous,ClassMajority,HumanReadable}

This is only only combination that was found to be illegal, because Reverse should be
Forward. However, this is not quite true, because it is not an error to search Reverse

because when combined with Best, all of the leader set needs to be considered. This
condition was only put into the feature contract so that a feature combination could
be demonstrated that was not valid.

There is not enough time to discuss in depth about pre- and post- conditions for the
tests; nor for domain specific tests (See §5.4). A small list will merely be mentioned:

1. cardinality of k must always equal size of the leader set [L].

2. class information read from the data file must be in range < 1..NumClasses>, where
NumClasses is data domain specific, but none-the-less, assumed to be contiguous.

3. in terms of vectors, the size of an int must always be less than or equal to the size
of a vector element. This is because an int is written to the bytes of an element. A
different implementation is possible. For example, a mapping index for an element
could be made such that it would allow constant time access to a vector of elements
of non-uniform size (See §6.1).

4. the test code assumes that the class information is the last column in the data matrix.
inputs->classIndex = size_matrixf_cols(inputs->data);

But it could be possible to add this information to the data matrix itself, thereby
increasing flexibility for the user.

5. the count function used in the implementation of sort matrixf() must return an
int value ∈ [0..size matrixf cols([Matrixf])]

6. there may not be enough memory

7. a file may not be openable, or writable

The appendix has a test case suite that demonstrates some of the differences between
family members in the Leader Algorithm Family.
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Chapter 5

Implementation

T
he implementation strategy was iterative. In particular, Hartigan’s algorithm was im-
plemented first, and then additional features were added. This time dependance is

illustrated in the heading of Table-4.4. The process (iterative, tightly integrated, small wa-
terfalls, semi-automated testing) is illustrated as follows: i) consider one feature that was
not in Hartigan’s algorithm, ii) extend Hartigan’s algorithm to incorporate this feature, iii)
test the extension, iv) make a second extension by adding a preprocessing sort wrapper, v)
test these extensions, vi) integrate these extensions into a larger algorithm that incorporates
all features up until this point, and vii) then move on to the next feature.

5.1 Threshold Function

The only threshold function that is currently acceptable is a DistanceFunction. However,
this is easily extended to support a SimilarityFunction by the addition of a parameter
that specifies the comparison relation to use with respect to the threshold. As the focus of
the project is not on the implementation of different DistanceFunction’s, but on the imple-
mentation of the algorithm, it is left to the DistanceFunction implementation to transform
itself into a SimilarityFunction. For example, one possible similarity function that could
be used is a non-linear transformation of a modified Euclidean distance (s = 1/(1+d), where
s is a similarity and d a distance), accepting missing values (See [19], but originally from [5]).
In particular, given two vectors ←−x =< x1, · · · , xn >,←−y =< y1, · · · , yn >∈ R

n, defined by a
set of variables (i.e. attributes) A = {A1, · · · , An}, let Ac ⊆ A be the subset of attributes s.t.
xi 6= X and yi 6= X. The corresponding distance function is de = (1/card(Ac))

∑
Ac

(xi − yi)
2.

This is a normalized distance and therefore, independent of the number of attributes. Con-
sequently, no imputation of missing values to the data set is performed. See Table-5.1 for
possible distance functions.
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Name Distance

Euclidean
�

Ac
(xi−yi)2

card(Ac)

Clark

�
Ac

(xi−yi)
2

(xi+yi)
2

card(Ac)

Canberra

�
Ac

|xi−yi|

(xi+yi)

card(Ac)

Others... ...

Table 5.1: Three possible modified distances ([19]p.1947)
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5.2 UCM Component Mapping: Abstract → Concrete

The use case map (UCM) in Fig-4.3 contains abstract components wrapping the responsi-
bilities. These components are implemented as concrete entities in the code. The mapping
from abstract component to concrete component for each of the abstract components are
listed in Table-5.2 for the Preprocessing abstract component, Table-5.3 for the Algorithm
abstract component, and Table-5.4 for the Postprocessing abstract component.

matrix io.h matrixf read matrixf(FILE *f)

matrix sort.h void sort matrixf(matrixf m, matrixf* outM, vectori* outIndices)

leader utils.h void swapDataAndSortedData(leader alg in t* inputs)

Table 5.2: Mapping of abstract preprocessing component to concrete components

leader utils.h void initSearchParms(leader alg in t* inputs, leader alg out t* outputs)

leader.h void leader alg1 hartigan(leader alg in t* inputs, leader alg out t* outputs)

leader.h void leader alg2 ext1(leader alg in t* inputs, leader alg out t* outputs)

leader.h void leader alg3 ext2(leader alg in t* inputs, leader alg out t* outputs)

leader.h void leader alg4 ext3(leader alg in t* inputs, leader alg out t* outputs)

leader.h void leader alg5 ext4(leader alg in t* inputs, leader alg out t* outputs)

leader.h void leader alg6 ext5(leader alg in t* inputs, leader alg out t* outputs)

leader.h void leader alg7 ext6(leader alg in t* inputs, leader alg out t* outputs)

leader.h void leader alg8 ext7(leader alg in t* inputs, leader alg out t* outputs)

leader.h void leader alg9 ext8(leader alg in t* inputs, leader alg out t* outputs)

leader.h void leader alg10 ext9(leader alg in t* inputs, leader alg out t* outputs)

leader.h void leader alg11 ext10(leader alg in t* inputs, leader alg out t* outputs)

leader.h void leader alg12 ext11(leader alg in t* inputs, leader alg out t* outputs)

Table 5.3: Mapping of abstract algorithm component to concrete components

leader io.h void write leader reports(

leader alg in t* inputs, leader alg out t* outputs, leader report t* rep)

Table 5.4: Mapping of abstract postprocessing component to concrete components

Barton, A.J. December 20, 2004 32/54



Modelling Variability in the Leader Algorithm Family

5.3 Design decisions

DD1 2004-OCT-05 A discussion between the author and Dr. Valdés revolved around
how sorting could be done efficiently. One possibility, which involves determining the
number of missing values per data object and either appending to a completeness list
or inserting into another list of varying incompleteness, is diagrammed in Fig-5.2. A
second feasible implementation, which was selected because it is faster, is range sort,
which is diagrammed in Fig-5.3.

DD2 2004-NOV-19 When outputting the leader algorithm report, because we may have
sorted the data, we need to keep track of the original case numbers. To do this, an
extra attribute on a data object has been added, namely a case identification number
(indexed from 1). For example, the i-th case in the input data file will result in the
construction of a data object containing all of the data from that case in addition to a
case identifier equal to the value i. The design tradeoff is that a little bit more memory
(sizeof(int)×numCases) will be used, versus a lot more computation to try to reverse
map the case identifier for a particular data object in the sorted matrix. For example,
one possible implementation might be via pointer equality, as the data objects don’t
move in memory. However, this would require looking through the whole array multiple
times. This design decision has ramifications because the additional data object’s case
identification attribute can’t be used by i) a similarity or dissimilarity function, and
ii) a data object completeness determination function.

DD3 2004-NOV-24 Upon further reflection, the idea of putting an additional attribute into
a case when the data is read into memory is not the best way; it is better to remove the
coupling between the indices and the data. The visual representation (shown in Fig-
5.4) helped clarify and crystalize this concept into a more efficient implementation that
allows i) use of the sorted data in algorithms that only know about the original data
(See, for example, leader_alg4_ext3()) and ii) use of the indices by the reporting
methods (See leader_io.c). Therefore, this deeper understanding has changed the
previous design decision because the justification for the additional complexity for the
similarity functions or data object completeness functions is not warranted.

Contiguous Memory

Pointers 
to vectorf

matrixf

0

1

2

3

...

3 numRows numCols missingVal

numCols val val val val val ...

numCols val val val val val ...

numCols val val val val val ...

Figure 5.1: Abstract representation of a data matrix in primary memory.
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1 2 3 4 ... k

Data in Memory

1 object 6 object 8

object i

Count 
Function

2

3 object 1 object 3

4 object 2

5

6 object 5

7

8 object 7

... object 4 object 9

k

Count

object i

0

Figure 5.3: Time efficient, O(2n), and space efficient, O(sizeof(int∗) × (n + k)), range sort of
incomplete data objects using pointers.
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Original 
Order
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Data in Memory

? 2 3 ? ... k

Data in Memory

...
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Order
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7
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6

5
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Figure 5.4: Data in primary memory indexed in two different ways: i) by secondary storage (data
file) order, and ii) by incompleteness relation (count of missing values) order. Pointers are needed
so that a matrixf can be constructed and given to a leader algorithm for either type of data. For
example, if the original data is sorted before the algorithm is executed then a mapping between the
original order and the sorted order is needed. The indices are how such a mapping is recorded.
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5.4 Dynamic “Code-based” Unit Tests

These tests were written -during- the iterative construction of the code, and so were not
explicitly planned, but were an integrated, dynamic part of a robust (and creative) devel-
opment process employed in a style similar to the x-treme manifesto, whereby small unit
tests are written before the code. This is in contradistinction to tests derived from features,
hence the separation from those more formally (feature model based) derived tests. In other
words, these tests are directly based on the code, and are related very specifically to code
development activity rather than to the much higher level of the domain modelling based
testing activity.

UT1 2004-NOV-07 Implementing the sort function was intellectually stimulating.
UT2 2004-NOV-12 It was interesting that during the construction of the translation of

Hartigan’s algorithm (See §3.1.1), line 4, which correctly reads, i⇐ 2, was incorrectly
translated to read i⇐ 1, but this error was found during iterative testing while building
the implementation, and so now the translation –may– be correct.

UT3 2004-NOV-19 When running an algorithm that did nothing, the expectation was
that no leaders should have been formed, but which was not the case, as some leaders
were being reported with some of them having values of 0, but others having values
of 19,216 (a completely random value), both of which should not have occurred. Both
of these errors (non-zero value and more than zero leaders) were curious, and so it
was proposed that calloc (when dynamically allocating a vector allocate_vector)
was not initializing the memory to zeros. This was proved false when the P vector
was investigated, as it had all zeros. Therefore, it was proposed that possibly the
algorithm was implemented incorrectly for updating k, but this was proved false by
the fact that the algorithm worked correctly on a previous test. Then the interaction
between successive calls to the algorithm (passed as a function pointer argument to
runOneLeader) revealed that info was not being initialized correctly. In particular,
void construct_leader_t(leader_t* info) did not initialize k to zero, but this was
not originally performed, because it was assumed that k would be initialized inside the
algorithm e.b. info->k = 1; inside leader_alg1_hartigan. So, in hindsight, this
test was probably flawed, in that an algorithm that does nothing should never actually
be executed, but on-the-other-hand the code is now a little bit more robust.

UT4 2004-NOV-24 It is important to use prefix notation when decrementing or increment-
ing a integer variable in a return statement (e.g. return --i;).

UT5 2004-NOV-25 It was discovered that the number of columns was not being written
to the data file correctly after implementation of DD3.
In particular, in the matrix_io_runTestSuite() the matrix_io_test_01() exhibited
this failure. In order to fix this problem, it was noted that the code for implementing
DD2 still existed, and so it was decided that all code related to that decision should
be deleted because that code may have been buggy. After the code was deleted,
matrix_io_test_01() then had the expected output. The bug was probably a minus
1 that should not have existed, but there was no reason to spend time to try to
track it down due to the change in design decision, and hence, lack of corresponding
justification.

UT6 2004-NOV-26 The output report does not contain the correct indices, which was
discovered when running leader_testSuite.c while trying to complete the imple-
mentation of DD3.
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For example, L[2] |1| >3< [ 2] is clearly incorrect, because the selected >3< does
not appear in the leader set, which only consists of the index 2. It was found that
in createHumanReadableReportForASCII() the line which was previously written as
algOutputtedIndex = ((vectori)rep->leaderSets[ii])[jj]; should actually be
referenced through the index map i.e. inputs->data_sorted_map[...]. The offend-
ing line now correctly reads L[2] |1| >3< [ 3].

UT7 2004-NOV-26 An access violation was occurring within leader_testSuite.c. It
turns out that destroy_leader_alg_in_t()was implemented incorrectly. There were
two problems: i) deallocate_matrixf_andData(inputs->data); was called before
deallocate_matrixf_andData(inputs->data_sorted);, which should have been the
other way around, and ii) when deallocating the sorted data, the call should not have
been to the _andDat() variant, but to the _butNotData() variant.
These problems were found because the leader test suite tries more than one leader
algorithm, and the particular algorithm that exhibited this problem was the extension
that added the sorting capabilities. That is, the interaction between the sorting feature,
and the leader algorithm were problematic.

UT8 2004-NOV-26 The output from leader_alg5_ext4() for the oneLeader case was
incorrect. That is, P[1]=1 but P[2]=2, P[3]=2 and P[4]=2 and only one leader was
expected. It was found that the implementation was incorrect. In particular, the line
outputs->P[i] = j; should have been outputs->P[i] = bestDistanceIndex;

UT9 2004-NOV-28 inputs->distanceFcn(i,j,inputs) should have been implemented
as inputs->distanceFcn(i,outputs->L[j],inputs). This was discovered while writ-
ing the code for leader_alg9_ext8() and not from a particular test (although a test
can be written for this case). In particular, the conceptual mistake was discovered
when get_class_for_object_from_matrixf()was written for the homogeneous case,
mainly due to the fact that the only distance function that has been implemented up
until this point, is the constant distance function (i.e. a distance function that always
returns the same value). This decision was made in order to focus the testing on those
things that have been explicitly implemented because it is not necessary to test some-
thing that hasn’t been implemented, as that test will always fail. However, it is now
the correct moment in time for these tests to be implemented.

UT10 2004-DEC-15 When modifying the output in leader_io.c to be more informative,
it was found that the vector outputs->L had an incorrect size, but that k was correct.
This meant that memory was potentially being accessed when it should not. This was
corrected in leader alg1 hartigan() and the other relevant leader algorithms.
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Project Post-mortem

O
bservations of important aspects were recorded throughout the project life cycle. For
example, how easy was it to model the project domain? Were any changes to feature

contracts performed? Were Use Case Maps applicable? If so, how? Maybe they would
be more helpful in a larger domain where communication between people would be an
important issue.�

A feature contract can be thought of as being a structured entity, where a feature
contract specific language may be constructed. This application specific1 language could be
parsed (as mentioned in the course) and tools could be created to support multiple kinds
of views of feature contract relationships. For example, similar to the idea of a Logical
View or Component View in Rose Real Time, a Feature Contract View could be graphed.
In particular, possible views could be i) Feature Contract Interaction View, ii) Feature
Contract Responsibility View, iii) Feature Contract Data Flow View, etc. It may also be
interesting to combine the view idea with the feature contract idea and allow one to switch
from one view to the other, while building the contracts. This way, relationships that are
not obvious in one view, may be completely trivial in another possible view.�

The notation X3(A1,F1V1) –meaning algorithm A1 has the feature variant F1V1–
and ✗3(A1,F1V1) –meaning algorithm A1 does not have the feature variant F1V1– is easily
extendible to partial has relationships. For example, X3

75%(A1,F1V1), could mean that 75%
of the time, algorithm A1 has the feature variant F1V1. This could be useful, perhaps, when
dealing with randomized algorithms, although it was not explicitly used in this project.�

Writing code was beneficial in understanding the details of the selected domain even
though it was known to not be towards course credit. The reason is that the concepts
in the domain were understandable, but the details were essential in properly understand-
ing i) possible derivations —new extensions—, and ii) feature modelling both in terms of
constructing feature contracts and feature combination rules.

✁
Manipulating feature contracts is tedious and error prone, and gets worse with the

number of contracts created (scalability problem). It would be nice if a tool to help refactor
them existed because this would allow the easy modification of those parts of a feature
contract that have already been formalized (e.g. this could be considered a knowledge man-
agement problem possibly with some similar aspects as in the field of case based reasoning
where cases could potentially be thought of as contracts?). Some questions to consider
would be: i) what kinds of things can be refactored? just names of things, or actual con-

1Application specific meaning that it is not a general programming language, but specific to the feature
contract domain
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tract patterns?, and ii) if tests have been derived from feature contracts, then how would
a refactoring of a contract(s) affect the tests? e.g. feature contracts could potentially be
traced (via an imagined tool) to tests and then a change in the feature contract may yield
recognizable (or at least potentially predictable?) changes that would need to be performed
in the tests by the modifier (user of the tool).�

If a large number of feature contracts exists, then determining if there are similar
contracts would be useful. That is, feature contracts could be clustered together (after
they have been created) in order to see if any duplicate contracts (or near duplicate) exist
which could then be either i) merged and/or deleted, or ii) used to determine those family
members that are very dissimilar. The latter could potentially be useful for the purpose
of the discovery of conceptually similar algorithms, which could potentially lead to the
focussing of dynamic testing onto those family members that are very dissimilar to each
other w.r.t. some measure of dissimilarity defined over the testable feature contracts. The
goal would be to leverage scarce testing resources to the fullest, when considering the family
of systems as a whole. That is, the overall, rather cyclic, idea is that the testable feature
contracts created that define the family of Leader Algorithms, could be given to a specific
Leader Algorithm (or in general, could be given to each variant in turn, and the conceptual
classes could be compared, or even more generally, to a clustering algorithm, not necessarily
one of the Leader Algorithm Family Members) to be clustered, and hence the contracts,
which were created to conceptually help understand the algorithm, could be analysed using
the algorithm to help conceptually understand the contracts.

�
Report writing, model building, implementation (including refactoring) and test

writing were not all completed in sequential order. The development process was more like
a multi-tasking operating system where each task has a time slice (of varying length) and is
executed in random order. The code improvement process (otherwise known as refactoring)
was related to i) simple logical consistency (e.g. moving code blocks in order to locate them
faster), and ii) complex restructuring for the sake of introducing new design constructs. For
example, the addition of the row identifiers first required changing some code to be more
general, and then the subsequent deletion and introduction of a different concept (indices)
into the code.�

The feature and parameter tables (Table-4.1 and Table-4.2), along with figures Fig-
5.3 and Fig-5.4 were found to be quite useful in the construction of the code.

�
The UCMs were not found to be helpful in the construction of the code, as having

the features listed was more helpful; this may be due to the small size of the project (by
small, it is meant less than 100,000 lines of code... large could be on the order of millions
of lines of code), and the fact that the contents of the feature contracts were completely
understood without the feature contracts being explicitly written. However, when trying
to communicate these ideas to another person, the UCMs were found to be more helpful.

�
The feature contracts also weren’t found to be helpful in the construction of the

code, as simply having the features listed was found to be more helpful (i.e. Table-4.1). In
fact, the feature contracts were created after the code was implemented. This may be due
to the fact that many variants were being attempted to be implemented, and so it was just
too complicated to try to write the contracts out in full before the implementation. In fact,
what was done, was a kind of short feature contract where the feature list was annotated
with the parameters and feature interactions at a very coarse level (kind of like a scrap
paper approach). This may have proved sufficient in this case, because the whole project
was limited to one person and so communication between people was not an issue until the
final report, when what was done needed to be communicated with the professor; then, was
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when feature contracts seemed much more useful.
✁

The problem with using codes (№) is that if a number is mistyped, then the syntactic
mistake may be hard to detect, unless a careful semantic review of the usage is performed.
For example, Table-3.1 had an algorithm specified as running A2, when in fact it ran A3.
However, this type of semantic error is somewhat alleviated through the use of LATEX as the
document preparation system, because of its ability for i) cross-referencing and ii) importing
files (For example, the appendix test cases).

�
It is not clear when a member belongs to the family of leader algorithms or doesn’t.

For example, extensions of Hartigan’s algorithm lead to more and more complex variants
that creep away from the original intention of the algorithm (i.e. being very fast). At
what point in this lineage, does a variant become a new algorithm? This question is still
unanswered in this project.

�
One leader algorithm could have been implemented that wraps all other leader

algorithms. That is, instead of implementing the sort functionality as a separate algorithm
every time, a function pointer could be passed to this wrapper algorithm. For the modelling,
this doesn’t change the fact that there still exist different family members. It only means
that the code can represent more variants per line of code, and so this implementation was
not pursued for this project. In addition, i) having such a variant exist, means that runtime
checking would need to be performed in contradistinction with compile time checking, and
ii) the code is more explicit about what exists, as the algorithm can directly be called,
rather than having to document (correctly) that this variant may be passed as a parameter,
but not that variant.

6.1 Possible Future Work

The following items were not completed before the project deadline.

• 2004-NOV-19 Additional testing: Generate many configuration files to test all
of the leader algorithms. I.e. “Test Generation” from a specification for a generator.
This could be considered family testing because we are testing all family members,
or it could be considered member testing in the context of a particular data domain.
Or one could call it science if a data domain was chosen that was from a specific
application domain. For example, biology (e.g. cDNA microarray data, or proteomic
mass spectrometry data, etc.). This requires writing code for the parameters to be
read from a configuration file, and then generating the configuration files. As the
focus of the course is not on implementation, this was eliminated from consideration.

• 2004-NOV-28 Write test case for UT9.

• 2004-NOV-28 Write test and test case for distance function.

• 2004-DEC-15 Additional feature: Object i should form a new cluster if it is
incomparable with all currently grown leaders. This new feature should be straight-
forward to implement, but was not performed for this course due the fact that it is
oriented towards a DistanceFunction implementation, rather than a family member.

• 2004-DEC-15 Additional feature: The maximum number of leaders allowable
could be specified for the algorithm, which would have to override the threshold value
given to the algorithm. One way to implement this, is for the algorithm to stop
processing if this number is reached.
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• 2004-DEC-16 Additional variation: The [Matrixf] could be generalized to a
matrix of any type of data. This generalization will be pursued outside the scope of
the course.
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Chapter 8

Appendix

The following input data:

4 3 -9999.99

1.1 1.2 1

2.1 -9999.99 1

3.1 3.2 2

4.1 4.2 2

was used for the following test cases, by calling leader_runTestSuite(), which in turn
generated LATEX formatted output that could be directly included in this project report; in
order to report the results as accurately, and efficiently, as possible.

8.1 Test case 1

A Create only one leader set.

Report for output/05-lea-alg01-oneLeader

Leaders(T=1.500000) k=1 |L|=1 min{|L[i]|}=4 max{|L[i]|}=4

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |4| >1< [ 1 2 3 4]

--- For per object analysis

P[1]=1

P[2]=1

P[3]=1

P[4]=1

B Create leader sets s.t. all objects will be a leader.

Report for output/05-lea-alg01-nLeaders

Leaders(T=1.400000) k=4 |L|=4 min{|L[i]|}=1 max{|L[i]|}=1

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j
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---

L[1] |1| >1< [ 1]

L[2] |1| >2< [ 2]

L[3] |1| >3< [ 3]

L[4] |1| >4< [ 4]

--- For per object analysis

P[1]=1

P[2]=2

P[3]=3

P[4]=4

8.2 Test case 2

A Create only one leader set.

Report for output/05-lea-alg02-oneLeader

Leaders(T=1.500000) k=1 |L|=1 min{|L[i]|}=4 max{|L[i]|}=4

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |4| >1< [ 1 3 4 2]

--- For per object analysis

P[1]=1

P[3]=1

P[4]=1

P[2]=1

B Create leader sets s.t. all objects will be a leader.

Report for output/05-lea-alg02-nLeaders

Leaders(T=1.400000) k=4 |L|=4 min{|L[i]|}=1 max{|L[i]|}=1

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |1| >1< [ 1]

L[2] |1| >3< [ 3]

L[3] |1| >4< [ 4]

L[4] |1| >2< [ 2]

--- For per object analysis

P[1]=1

P[3]=2

P[4]=3

P[2]=4
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8.3 Test case 3

A Create only one leader set.

Report for output/05-lea-alg03-oneLeader

Leaders(T=1.500000) k=1 |L|=1 min{|L[i]|}=4 max{|L[i]|}=4

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |4| >1< [ 1 2 3 4]

--- For per object analysis

P[1]=1

P[2]=1

P[3]=1

P[4]=1

B Create leader sets s.t. all objects will be a leader.

Report for output/05-lea-alg03-nLeaders

Leaders(T=1.400000) k=4 |L|=4 min{|L[i]|}=1 max{|L[i]|}=1

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |1| >1< [ 1]

L[2] |1| >2< [ 2]

L[3] |1| >3< [ 3]

L[4] |1| >4< [ 4]

--- For per object analysis

P[1]=1

P[2]=2

P[3]=3

P[4]=4

8.4 Test case 4

A Create only one leader set.

Report for output/05-lea-alg04-oneLeader

Leaders(T=1.500000) k=1 |L|=1 min{|L[i]|}=4 max{|L[i]|}=4

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |4| >1< [ 1 3 4 2]

--- For per object analysis
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P[1]=1

P[3]=1

P[4]=1

P[2]=1

B Create leader sets s.t. all objects will be a leader.

Report for output/05-lea-alg04-nLeaders

Leaders(T=1.400000) k=4 |L|=4 min{|L[i]|}=1 max{|L[i]|}=1

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |1| >1< [ 1]

L[2] |1| >3< [ 3]

L[3] |1| >4< [ 4]

L[4] |1| >2< [ 2]

--- For per object analysis

P[1]=1

P[3]=2

P[4]=3

P[2]=4

8.5 Test case 5

A Create only one leader set.

Report for output/05-lea-alg05-oneLeader

Leaders(T=1.500000) k=1 |L|=1 min{|L[i]|}=4 max{|L[i]|}=4

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |4| >1< [ 1 2 3 4]

--- For per object analysis

P[1]=1

P[2]=1

P[3]=1

P[4]=1

B Create leader sets s.t. all objects will be a leader.

Report for output/05-lea-alg05-nLeaders

Leaders(T=1.400000) k=4 |L|=4 min{|L[i]|}=1 max{|L[i]|}=1

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---
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L[1] |1| >1< [ 1]

L[2] |1| >2< [ 2]

L[3] |1| >3< [ 3]

L[4] |1| >4< [ 4]

--- For per object analysis

P[1]=1

P[2]=2

P[3]=3

P[4]=4

8.6 Test case 6

A Create only one leader set.

Report for output/05-lea-alg06-oneLeader

Leaders(T=1.500000) k=1 |L|=1 min{|L[i]|}=4 max{|L[i]|}=4

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |4| >1< [ 1 3 4 2]

--- For per object analysis

P[1]=1

P[3]=1

P[4]=1

P[2]=1

B Create leader sets s.t. all objects will be a leader.

Report for output/05-lea-alg06-nLeaders

Leaders(T=1.400000) k=4 |L|=4 min{|L[i]|}=1 max{|L[i]|}=1

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |1| >1< [ 1]

L[2] |1| >3< [ 3]

L[3] |1| >4< [ 4]

L[4] |1| >2< [ 2]

--- For per object analysis

P[1]=1

P[3]=2

P[4]=3

P[2]=4
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8.7 Test case 7

A Create only one leader set.

Report for output/05-lea-alg07-oneLeader

Leaders(T=1.500000) k=1 |L|=1 min{|L[i]|}=4 max{|L[i]|}=4

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |4| >1< [ 1 2 3 4]

--- For per object analysis

P[1]=1

P[2]=1

P[3]=1

P[4]=1

B Create leader sets s.t. all objects will be a leader.

Report for output/05-lea-alg07-nLeaders

Leaders(T=1.400000) k=4 |L|=4 min{|L[i]|}=1 max{|L[i]|}=1

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |1| >1< [ 1]

L[2] |1| >2< [ 2]

L[3] |1| >3< [ 3]

L[4] |1| >4< [ 4]

--- For per object analysis

P[1]=1

P[2]=2

P[3]=3

P[4]=4

8.8 Test case 8

A Create only one leader set.

Report for output/05-lea-alg08-oneLeader

Leaders(T=1.500000) k=1 |L|=1 min{|L[i]|}=4 max{|L[i]|}=4

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |4| >1< [ 1 3 4 2]

--- For per object analysis
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P[1]=1

P[3]=1

P[4]=1

P[2]=1

B Create leader sets s.t. all objects will be a leader.

Report for output/05-lea-alg08-nLeaders

Leaders(T=1.400000) k=4 |L|=4 min{|L[i]|}=1 max{|L[i]|}=1

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |1| >1< [ 1]

L[2] |1| >3< [ 3]

L[3] |1| >4< [ 4]

L[4] |1| >2< [ 2]

--- For per object analysis

P[1]=1

P[3]=2

P[4]=3

P[2]=4

8.9 Test case 9

A Create only one leader set.

Report for output/05-lea-alg09-oneLeader

Leaders(T=1.500000) k=2 |L|=2 min{|L[i]|}=2 max{|L[i]|}=2

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |2| >1< [ 1 2]

L[2] |2| >3< [ 3 4]

--- For per object analysis

P[1]=1

P[2]=1

P[3]=2

P[4]=2

B Create leader sets s.t. all objects will be a leader.

Report for output/05-lea-alg09-nLeaders

Leaders(T=1.400000) k=4 |L|=4 min{|L[i]|}=1 max{|L[i]|}=1

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j
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---

L[1] |1| >1< [ 1]

L[2] |1| >2< [ 2]

L[3] |1| >3< [ 3]

L[4] |1| >4< [ 4]

--- For per object analysis

P[1]=1

P[2]=2

P[3]=3

P[4]=4

8.10 Test case 10

A Create only one leader set.

Report for output/05-lea-alg10-oneLeader

Leaders(T=1.500000) k=2 |L|=2 min{|L[i]|}=2 max{|L[i]|}=2

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |2| >1< [ 1 2]

L[2] |2| >3< [ 3 4]

--- For per object analysis

P[1]=1

P[3]=2

P[4]=2

P[2]=1

B Create leader sets s.t. all objects will be a leader.

Report for output/05-lea-alg10-nLeaders

Leaders(T=1.400000) k=4 |L|=4 min{|L[i]|}=1 max{|L[i]|}=1

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |1| >1< [ 1]

L[2] |1| >3< [ 3]

L[3] |1| >4< [ 4]

L[4] |1| >2< [ 2]

--- For per object analysis

P[1]=1

P[3]=2

P[4]=3

P[2]=4
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8.11 Test case 11

A Create only one leader set.

Report for output/05-lea-alg11-oneLeader

Leaders(T=1.500000) k=2 |L|=2 min{|L[i]|}=2 max{|L[i]|}=2

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |2| >1< [ 1 2]

L[2] |2| >3< [ 3 4]

--- For per object analysis

P[1]=1

P[2]=1

P[3]=2

P[4]=2

B Create leader sets s.t. all objects will be a leader.

Report for output/05-lea-alg11-nLeaders

Leaders(T=1.400000) k=4 |L|=4 min{|L[i]|}=1 max{|L[i]|}=1

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |1| >1< [ 1]

L[2] |1| >2< [ 2]

L[3] |1| >3< [ 3]

L[4] |1| >4< [ 4]

--- For per object analysis

P[1]=1

P[2]=2

P[3]=3

P[4]=4

8.12 Test case 12

A Create only one leader set.

Report for output/05-lea-alg12-oneLeader

Leaders(T=1.500000) k=2 |L|=2 min{|L[i]|}=2 max{|L[i]|}=2

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |2| >1< [ 1 2]

L[2] |2| >3< [ 3 4]
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--- For per object analysis

P[1]=1

P[3]=2

P[4]=2

P[2]=1

B Create leader sets s.t. all objects will be a leader.

Report for output/05-lea-alg12-nLeaders

Leaders(T=1.400000) k=4 |L|=4 min{|L[i]|}=1 max{|L[i]|}=1

L[i] |cardinality| >j< [set]

i-th leader set is represented by data object j

---

L[1] |1| >1< [ 1]

L[2] |1| >3< [ 3]

L[3] |1| >4< [ 4]

L[4] |1| >2< [ 2]

--- For per object analysis

P[1]=1

P[3]=2

P[4]=3

P[2]=4
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