| hd |

NRC Publications Archive
Archives des publications du CNRC

Software for a small research computer
Kerr, Jan

For the publisher’s version, please access the DOI link below./ Pour consulter la version de I'éditeur, utilisez le lien
DOl ci-dessous.

Publisher’s version / Version de I'éditeur:
https://doi.org/10.4224/21274734
Report (National Research Council of Canada. Radio and Electrical Engineering

Division : ERB), 1967-10

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=1893388e-be8a-4e13-925d-ba4d08803e8k
https://publications-cnrc.canada.ca/fra/voir/objet/?id=1893388e-be8a-4e13-925d-ba4d08803e8b

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’accés a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la
premiére page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

 Ld

National Research Conseil national de C d
Council Canada recherches Canada ana a

Ser C’)

QC1 ’
N21

ERB no.

776

ERB-776 &

UNCLASSIFIED

NATIONAL RESEARCH CounciL. oF CANADA

RADIO AND ELECTRICAL ENGINEERING DIVISION

SOFTWARE FOR A SMALL RESEARCH COMPUTER

IAN KERR

ANALYZ=p

OTTAWA

OCTOBER 1967

ABSTRACT

This paper is written to describe a software
system for a small digital computer used for
research purposes.

AR L .

CONTENTS

Introduction . o « « s+ o o « o+ ¢ o o o o o o o
Hardware System Components
Software System Components « «

Software System Application . . . « . . .

Bibliography . . « « « s « ¢ a o o ¢ ¢ o o«
Acknowledgment . . + - « s & s s o o 0o e
Appendix N

FIGURES

1. Software organization

2. Program development

SOFTWARE FOR A SMALL RESEARCH COMPUTER

- Ian Kerr -

INTRODUCTION

The role of computers in today's complex world is one of ever increasing
importance.Computers are now being assigned to tasks which a few years ago
they were incapable of performing. These advances are the fruits of research
into ways of improving both the computers themselves, and the programs which
direct their activities.

The Data Systems Section of the Radio and Electrical Engineering Division
of the National Research Council is conducting research into both hardware and
software aspects of digital computers. The work is directed towards a better
understanding of systems aspects of small computers, with particular application
to scientific research. One area which is receiving particular attention is that
associated with man-machine communications problems.

This paper describes some of the systems software which has been developed

specifically to aid man-machine interaction, both during the development of
programs and during their operation and evaluation,

HARDWARE SYSTEM COMPONENTS

The hardware currently available to the user includes the following items:
1. A general purpose digital computer.

2. Digital magnetic tape recorders. These units can be used either for input/output
functions, or as external storage devices for the temporary storage of programs
or intermediate results.

3. Teletype machines. These units can either prepare printed page or punched
paper tape output, or provide keyboard or punched paper tape input. The units
are slow, operating at about 10 characters per second.

4. High speed paper tape punch and reader. This unit can prepare punched paper
tape output at the rate of 110 characters per second, or read punched paper
tape at 300 characters per second.

5. Cathode-ray tube display unit and light pen. Under program control, this unit
can display on what resembles a 21-inch television picture tube, characters,

straight and curved line segments, and points to make up any desired picture.
The light pen is a photo-sensitive device which resembles a pen. When
pointed at a displayed picture element it interrupts the computer allowing the
program to determine at which picture element the human operator was pointing
the light pen.

6. Auxiliary keyboard. This keyboard, situated close to the display, can be used
used in conjunction with the display as an input to the computer,

7. Analog-to-digital and digital-to-analog converters. These units allow the
computer to measure analog quantities and to produce analog signals. They
are useful for controlling experiments by computer as the experiment is in
progress.

SOFTWARE SYSTEM COMPONENTS

The software system used is shown in Fig. 1. Its aim is to facilitate the
development of a working program. Anyone who has tried his hand at programming
will appreciate how difficult and time-consuming a task it can be to remove all the
logical errors from a program, or to modify a program already working. Speeding
up this process allows the research oriented programmer to be more concerned
with the concepts and implications of his program than with debugging it,

In the diagram, the blocks indicate system programs, the solid lines indicate
data flow within the memory and the dashed lines indicate data flow external to
the computer (usually on paper tape).

Input-Output System

The actual programming required to read from or write on a peripheral device
depends to a large extent upon which device it is. For example, magnetic tape
units must read or write complete blocks of characters at a time; they cannot deal
with single characters. Paper tape readers and punches, on the other hand, read
or punch single characters. To keep programs independent of devices and to avoid
unnecessary duplication, the Input-Output system handles input and output functions
for most programs. It consists of a handler for each device and an I/0 driver.

Any program wishing to read from or write on a peripheral device transfers
control to the I/O driver and supplies it with the device number to use, the
address of where the output data are stored or where the input data are to be
stored, how many words are to be transferred, and whether an input or output
function is desired. The driver then decides which handler to use, supplies it
with most of the same information, and then branches to it, The handler is
responsible for issuing the necessary commands to the device to cause it to

DEFINE PROBLEM
AND DRAW FLOW |«
CHART

FORTRAN ASSEMBLY
EASILY CODED
CODE IN CODE IN
FORTRAN ASSEMBLY
COMPILE ASSEMBLE

ERROR

MESSAGES
?

ERROR
MESSAGES
?

SERIOUS
?

TRY
PROGRAM

MODIFICATION

NEEDED EXTENSIVE

SLIGHT

GET TAPE OF CORREGT PROGRAM
PROSRAM IN usmlg gggﬁeeme
DESIRED FORMAT AlDS

Fig. 1 Software organization

operate, to effect the data transfer, and to warn the operator of any malfunction
of the device. When finished, the handler branches back to the driver, which in
turn branches back to the program from which the original branch occurred.

Fortran Compiler

Fortran is most suitable for writing programs to solve mathematical problems.
It bears no resemblance to the machine language of the computer, and so cannot be
loaded into memory without first being translated. The Fortran compiler performs
this translation. The result of this translation is called a relocatable object pro-
gram, It contains the instruction sequence necessary for the computer to solve
the original problem. It is called relocatable because it can be loaded into any area
of memory by the relocatable loader program to be described later.

Assembler

The function of the Assembler program is to translate assembly language
source programs into relocatable object programs. Assembly language is a
convenient means of representing a machine language program. Mnemonics are
used to represent each instruction, and symbols are used to identify addressed
locations where necessary. There is almost a one-for-one correspondence
between the source program and the instructions as they appear in core when
the relocatable object program is loaded by the relocatable loader. The relocat-
able object program produced by the assembler is in the same format as that
produced by the Fortran compiler; in fact, the loader cannot tell them apart.

Relocatable Loader

The relocatable loader has two functions. The first is to load into the area of
memory specified by the operator a relocatable object program or load module,
and the second is to establish linkages between a main program and its sub-
programs. A relocatable object program contains the instructions which make
up the program and also a set of commands to the relocatable loader. The purpose
of these commands is to describe the address field of each instruction. Those
instructions which refer to other instructions or data locations within the same
program have relative address fields. When the program is loaded into a section
of memory other than that for which it was written, the starting address must be
added to each instruction with a relative address field. Those instructions with
absolute address fields are not modified (they refer to fixed locations in memory,
are instructions with no address field, or are constants). A third possibility
for the address field is that it be external. This is the case when an instruction
in one program refers to the start of a subprogram. The loader must keep a

table of all such external references as the program is loaded. Later, when
the subprograms are loaded and their starting addresses are known, the loader
must go back and fill in the address field of each external reference instruction,

If the operator decides to have the loader store a load-module, then the
relocatable loader must also store a table with the program. The function of
the table is to list all instructions within the program with relative address fields.
This makes it possible to tell after loading which instructions are location dependent.
(This will be explained in more detail later.)

Absolute Dump

The function of the absolute dump is to produce an absolute object tape of a
section of memory specified by the operator. Each location is dumped without
modification, and there is no indication on the tape whether the instructions have
relative address fields or not. Thus, such a program can only be loaded back
into the same area of memory from which it came. The format of the absolute
object program tape is different from that of the relocatable object tape, and it
must be loaded by the absolute loader. Absolute object tapes represent a con-
venient way to keep a permanent record of such things as the system software
programs. These tapes can be loaded by a fairly short and simple loader program.

Absolute Loader

The absolute loader loads into memory absolute object programs as produced
by the absolute dump. The loader stores the program back into exactly the same
locations from which it was originally dumped.

Load~Module Dump

The function of the load-module dump program is to dump onto paper tape a
complete load module as loaded by the relocatable loader and modified by the
programmer in the process of debugging. As the program is dumped, the reloca-
tion table which is part of the load module is examined to determine the address
field type for each instruction. The starting address of the program is subtracted
from those instructions with relative addresses, before dumping. The relocation
table is included on tape with the program so that the load module loader can relocate
the load module, on loading, to any part of memory. The main program and sub-
programs are dumped together as if they were one. The format of the load-module
tape is different from those of the relocatable and absolute object tapes, and it must be
loaded with the load-module loader.

Load-Module Loader

The function of the load-module loader is to load into memory load-module
tapes dumped by the load-module dump program. The operator indicates to the
loader the starting address where the program is to be loaded, and whether or not
the relocation table is to be stored with the program. As the program is being
loaded, the loader checks the relocation table (which is on the tape with the pro-
gram) to determine the address field type of each instruction, and adds the starting
address (as previously specified by the operator) to those which have relative addresses.

Debugging Aids

The following programs are included in the software system to facilitate the
programmer' s task of correcting a program. They require that the program
to be corrected be in memory. They make extensive use of the powerful input/output
facilities of the cathode-ray tube display and light-pen combination.

DAMM (Display And Modify Memory)

This program causes sixteen consecutive memory locations and their corres-
ponding addresses to be displayed on the CRT. Using a keyboard to select the
desired function and the light pen to indicate the word to be modified, the operator
can alter any displayed memory location as he pleases. He can also select
different sections of memory to be displayed. An additional feature allows the
operator to transfer control to any other program in memory. Thus, after modi-
fying a program with DAMM, the user can cause the program to be executed
immediately to test his modification without halting the computer.

DAMM also allows the operator to make changes to the program section of
a load module in memory without having to worry about the accompanying relocation
table. It continuously updates the table as the operator makes changes to the
program. The CRT display, keyboard, and light pen are used to make the changes.

DMWM (Display Memory With Mnemonics)

This program displays a section of memory in a fashion similar to DAMM;
however, the mnemonic code for each displayed instruction is also displayed,
making it easier for the operator to interpret the instructions. Using the keyboard,
the operator can select different areas of memory for display. He can also cause
the computer to branch to DAMM to modify, if desired, one of the locations just
inspected by DMWM. DMWM, also at the option of the operator, can cause the
displayed section of memory and its mnemonic equivalent to be the output to any
other desired device. Thus a permanent record of a corrected program can be

obtained by using the paper tape punch, or the teletype machine, as the
output device.

DBUG

This program allows software execution of a user program, either one
instruction at a time, or sequentially. All registers and pertinent memory
locations are displayed. Software equivalents of halt switches, and a memory
protect system are also provided. It is not necessary, therefore, to halt the
computer while executing a program one instruction at a time, allowing external
interrupts to have free access to the machine. DBUG uses the CRT display as
its primary input-output and control device.

Service Programs

Two other programs that are part of the software system facilitate making
modifications to source programs on paper tape. One allows the operator to choose
the format of both input and output from a number of possibilities. This facility can
be used for copying paper tapes, copying from paper tape to magnetic tape, and so
on. The other program is designed to make a paper tape look like a deck of cards;
that is, to make it easy to insert and delete lines from a source language tape.

Software Protection Feature

A hardware feature of this computer (and of most others) is that each
word has an additional bit over the 24, called the protect bit. If this bit is
turned on (is 1, not 0), it indicates a protected location. At the operator's
console is a switch which selects either the protected mode or the unprotected
mode for the computer. If the computer is in the protected mode, then protected
instructions can be executed normally, but unprotected instructions can only
operate on other unprotected locations. If an unprotected instruction attempts
to store in or branch to a protected location, an interrupt occurs. If the computer
is in the unprotected mode, then there is no distinction between protected and
unprotected locations. A protect bit can be set or reset under program control
only if the computer is operating in the unprotected mode.

When programs which do not yet function properly are being tested, it fre-
quently happens that they accidentally modify the contents of large areas of
memory, destroying any programs there. To provide for rapid recovery from
such accidental erasure of memory, the entire software system is stored on one
roll of paper tape in the absolute format. The computer is normally operated in
the protected mode with nearly all locations unprotected. Only a very small pro-
gram, called the bootstrap loader, is protected. This short program can load
the system software tape from the high-speed tape reader and thus restore the

system quickly. I the bootstrap loader is protected and every other location

is not, and the computer is operating in the protected mode, this loader can never
be accidentally destroyed. If it should be accidentally erased by the operator
forgetting to place the computer in the protected mode, the operator would then
have to enter the bootstrap loader manually from the console.

SOFTWARE SYSTEM APPLICATION

The application of the software system to development of a program can be
illustrated by showing the steps involved in the transformation of an idea into
a working program. These steps are illustrated in Fig. 2.

The programmer first converts his ideas into a flow-chart depicting the
logical organization of the program. This is the most difficult part of the
process; it requires that the programmer decide on a set of simple operations
that will accomplish the purpose of the program.

Once the flow-chart has been drawn, the programmer must decide which is
the language most suitable for its coding. If the program involves many mathe-
matical operations, then Fortran would be the logical choice. If, on the other
hand, the program involves data manipulation, control of peripheral devices, or
similar operations, then it would be most easily coded in Assembly language.

In either event, once coded, it must be converted to a form suitable for use by
one of the computer's input devices. With the present system, this involves
punching the source program on paper tape. The source program is then trans-
lated by either the Assembler or Compiler (depending on the coding of the source
program). During this process, language errors are detected by the translating
program and listed on the CRT display. The programmer then immediately
corrects the source tape with the aid of one of the service programs, and the
translation process is repeated. When all such errors have been removed, a
relocatable object program is obtained.

The relocatable object program is loaded by the relocatable loader into a
section of memory not occupied by any of the software system components., Any
subprograms required by the main program are also loaded at this time, and the
linkages between them are established automatically by the loader program,
Generally, the programmer will choose to have the relocation table stored with
the program (to result in a load module).

The next step is to try executing the program to determine if it performs
as was originally intended by its author. If it does, then the programmer is
finished provided that a relocatable object version of the program was his goal;
if he prefers to have a load module on tape, then he can obtain one by using the

FORTRAN SOURCE ASSEMBLY SOURCE
PRO%RAM PROﬁRAM
v 4
1/0 SYSTEM 1/0 SYSTEM
) |
FORTRAN
ASSEMBLER
COMPILER
y
I/0 SYSTEM 170 SYSTEM
T T
e i
RELOCATABLE
OBJECT PROGRAM
¥
170 SYSTEM
RELOCATABLE |, _ HUMAN
LOADER CONTROL
OR
DEBUGGING | HUMAN
AIDS CONTROL
CORRECTED _ CORRECTED
PROGRAM LOAD MODULE
ABSOLUTE | HumanN _ | LOAD MODULE
DUMP CONTROL DUMP
] |
I |
ABSOLUTE RELOCATABLE
OBJECT rROGRAM LOAD MODULE
I
¥ R
ABSOLUTE | _ HumaN _ [LOAD MODULE
LOADER CONTROL LOADER
OR
Fig. 2 Program development

load-module dump. If, as more usually happens, the program does not function
as expected owing to some oversight of the programmer, then he must try to
determine the reason. Quite often, the necessary modifications to the object
program are of a minor nature and can easily be made to the load module in
memory with the aid of the debugging programs. Once a correct load module
exists in core, use of the load-module dump will produce a tape of the same
thing. The load-module tape is now the finished version of the program; it can
be loaded anywhere in memory with the load-module loader, when required. If
the modifications required to correct the program are extensive, then it is
usually easiest to modify the source tape directly,using the service aids, and
begin again at the translation stage.

The software system, as described in this paper, has proved to be a useful
tool to speed the development of programs.,

Additional software is currently undergoing trial operation in the system.
An executive program which runs continuously is used to initiate each program
in the software package described above. Each of the system programs branches
back to the executive, instead of halting, each time a job is finished. The func-
tion to be performed is indicated to the executive by the operator through the CRT
display and light-pen combination.

The executive package also makes use of a permanently enabled hardware
interrupt which returns control to the executive at any time by pressing a button.
This allows recovery from various forms of failure such as an attempt to execute
an instruction with an illegal op-code.

When the system operates under executive control, other users may cause
their programs to be executed as a result of interrupt requests and so a form of
multiprogramming with many simultaneous users is possible. This method has
been used to allow on-line checkout of new peripheral equipment without disturbing
normal program development.

BIBLIOGRAPHY

1. Ivan Flores. Computer Software. Prentice-Hall, 1965

ACKNOWLEDGMENT

The author has described the existing software system for the Data Systems
Section research computer. He wishes to acknowledge that members of the Data
Systems Section contributed programs and supervised the development of this
system, and that this report includes many contributions from other members of
the group.

APPENDIX

GLOSSARY OF COMPUTER TERMINOLOGY

Absolute object program - machine language program which can only be loaded
into specific locations of memory, usually those from which it came.

Address - unique number assigned to represent a word or location in memory.

Assembler - program to translate a machine language source program in
mnemonic form into a relocatable object program.

Bit - binary digit. Can be either 0 or 1.

Compiler - program to translate a Fortran source program into a relocatable
object program.

CRT - cathode-ray tube. Similar to a television picture tube,
Debug ~remove the errors from a program.

Executive program - program to control the operation of the computer and
software system.

Flow chart - diagram consisting of blocks interconnected with arrows showing
the simple steps of a program and the order in which they are performed.

Hardware - the computer and its associated peripheral devices.

Instruction - number stored in the memory which describes a simple operation
to be performed by the computer.

Language - mode of expression used by humans in writing a program.
Light pen - pen-shaped device sensitive to light.

Loader - program which can read object programs from a peripheral device and
store them in memory.

Load module - complete object program together with table listing those instruc-
tions with relative address fields (i.e., those which would have to be modified
if the program were relocated elsewhere in memory).

- 10 -

Machine language - instructions which the computer can understand.

Object program - result of a source program being translated into machine
language — may be in memory, punched on paper tape, etc.

Operating system - complicated set of programs to control automatically all
operations of a large digital computer.

Peripheral device - piece of equipment connected to, but not an integral part
of, the computer. Usually used for input or output functions. May also be an
external storage unit.,

Program - accumulation of machine language instructions or higher language
statements which describe to the computer how to solve a particular problem
or perform a certain task,

Register ~ temporary storage device capable of storing one word or less.

Relocatable object program - machine language program which can be loaded
into any area of memory.

Software - accumulation of programs which control a computer.

Source program - program before translation into machine language.

Sub-program - program which performs a certain task, and is called by a main
program each time performance of that task is required.

Teletype machine - A typewriter-like device which can be operated electronically.

Time-sharing - Simultaneous use (or apparently so) of one computer by more
than one person or program.

Word - One addressable location of memory capable of storing a fixed number
of bits. Can be used to store an instruction or data.

