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Genome-wide prediction of cis-regulatory
regions using supervised deep learning
methods
Yifeng Li1,2 , Wenqiang Shi1 and Wyeth W. Wasserman1*

Abstract

Background: In the human genome, 98% of DNA sequences are non-protein-coding regions that were previously

disregarded as junk DNA. In fact, non-coding regions host a variety of cis-regulatory regions which precisely control the

expression of genes. Thus, Identifying active cis-regulatory regions in the human genome is critical for understanding

gene regulation and assessing the impact of genetic variation on phenotype. The developments of high-throughput

sequencing and machine learning technologies make it possible to predict cis-regulatory regions genome wide.

Results: Based on rich data resources such as the Encyclopedia of DNA Elements (ENCODE) and the Functional

Annotation of the Mammalian Genome (FANTOM) projects, we introduce DECRES based on supervised deep learning

approaches for the identification of enhancer and promoter regions in the human genome. Due to their ability to

discover patterns in large and complex data, the introduction of deep learning methods enables a significant advance

in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized cell lines, we

identify key experimental features that contribute to the predictive performance. Applying DECRES, we delineate

locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of which 40,000 are supported by

bidirectional transcription data), and 26,000 candidate promoters (0.6% of the genome).

Conclusion: The predicted annotations of cis-regulatory regions will provide broad utility for genome interpretation

from functional genomics to clinical applications. The DECRES model demonstrates potentials of deep learning

technologies when combined with high-throughput sequencing data, and inspires the development of other

advanced neural network models for further improvement of genome annotations.

Keywords: cis-regulatory region, Enhancer, Promoter, Deep learning

Background
In this article, we apply deep supervised analysis methods

to identify the positions of active cis-regulatory regions

(CRRs), including both enhancers and promoters, across

the human genome. CRRs play a crucial role in precise

control of gene expression. Promoters and enhancers act

via complex interactions across time and space in the

nucleus to control when, where and at what magnitude

genes are active. CRRs, through interactions with proteins

such as histones and sequence-specific DNA-binding
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transcription factors (TFs), help specify the formation of

diverse cell types and respond to changing physiological

conditions. While gene expression is ultimately a reflec-

tion of regulation across multiple processes, the key role

of promoters and enhancers has been a central focus of

genome annotation for the past decade. The investment

in generating informative data for the detection of these

regions has been immense, in partmotivated by the antici-

pation that advanced computational approaches would be

able to transform the data into a reliable annotation of the

genome.

Promoters and enhancers were early discoveries during

the molecular characterization of genes. While promot-

ers specify and enable the positioning of RNA polymerase

machinery at transcription initiation sites, enhancers
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modulate the activity of promoters from linearly distal

locations away from transcript initiation sites [1, 2]. The

delineation between the classes has become increasingly

challenging, with some literature suggesting the two cate-

gories are the edges of a continuous spectrum of CRRs [3].

Indeed, it has long been observed that sequences flanking

transcription initiation regions can function as enhancers

(promoter-proximal regions), and in recent years, it has

been observed that there are transcripts initiated at the

edges of active enhancers [4, 5]. For the purpose of this

report, we address the two as distinct classes, but discuss

the relationship between our findings and the continuous

class model.

The use of computational methods to detect the loca-

tions of promoters and enhancers has been a key focus of

bioinformatics for twenty years (see reviews [6, 7]). With

the advances of experimental procedures for profiling the

properties of chromatin and RNA transcripts, a new wave

of methods has arrived. Given the small set of reliable

enhancer annotations, it was appropriate that the first

among these methods used unsupervised learning. For

instance, both ChromHMM [8] and Segway [9] segment

the genome into sequence classes based on ENCODE

project data [10], such as histone modification ChIP-seq

(chromatin immunoprecipitation followed by sequencing

[11]) signals. Such unsupervised methods infer hidden

states based on observed signals, and then associate an

element to each hidden state. The states are subsequently

labelled with biological functions based on enrichment

for known examples. A test of predicted Enhancers for

the K562 leukemia cell line by the Combined method

(unifying ChromHMM and Segway annotations) [12]

using a high-throughput reporter gene assay [13] revealed

that only 26% of predicted enhancers have regulatory

activity [14]. The assessment showed that the predicted

Weak Enhancers, a class associated with lower H3K27ac

and H3K36me3 signals, unexpectedly drove higher gene

expression than the predicted Enhancers. It is evident that

improvements are needed, potentially involving the use of

additional experimental features and alternative machine

learning approaches.

Despite the limited set of precisely annotated active

enhancers, supervised machine learning models have

been attempted to predict enhancer regions. In each case,

a distinct definition of a suitable positive training set of

enhancers was taken. A random-forest method was used

in [15] to classify TF bound regions with a focus on

observed binding patterns, generating sets of two-class

classifiers to distinguish regions based on binding activity

and position relative to promoter regions. A random-

forest based enhancer classification method was devised

in [16] with histone modification ChIP-seq data as fea-

tures, using p300 bound regions as the basis for training.

An AdaBoost-based model was proposed in [17] for the

prediction of enhancers that are defined by p300 bind-

ing sites overlapping with DNase-I hypersensitive sites

and distal to annotated TSS. Chen et al. applied multi-

nomial logistic regression with LASSO regularization

to find key features for the classification of stem cell-

specific functional enhancer regions [18]. Using STARR-

seq data, a new experimental approach for screening

candidate enhancer sequences [19], dinucleotide repeat

motifs (DRMs) were found to be enriched in broadly

active enhancers, leading to a proposition that a small set

of TF binding site motifs and DRMs might be sufficient

for enhancer prediction [20].

New laboratory methods are emerging, providing a

refined resolution of CRR locations. The majority of

human DNA is transcribed, producing diverse types of

RNA. In particular, transcripts generated at the edges

of enhancers, enhancer RNAs (eRNAs), allow for the

experimental readout of active regulatory regions. Global

run-on and sequencing (GRO-seq) protocols [21] mea-

sure the 5’-end of nascent RNAs revealing the divergent

transcriptional signature of both transcriptionally active

promoters and enhancers [5]. Using GRO-seq signals, a

support vector regression model (dReg) was developed

to predict active transcriptional regulatory elements [22].

The cap analysis of gene expression (CAGE) technique

[23] captures the 5’-end of RNA transcripts, enabling a

precise determination of transcript initiation sites. Using

CAGE, the FANTOM5 Consortium has identified an atlas

of transcriptionally active promoters [24] and a permissive

set of 43,011 transcriptionally active enhancers character-

ized by bidirectional eRNAs [4] across hundreds of human

cell types and tissues. These enhancers were validated

with high success rates ranging from 67.4 to 73.9% [4].

Compared to protein-coding RNAs, eRNAs are believed

to degenerate quickly, and only a small number of tis-

sues have been explored with sufficient depth to reveal

eRNAs. While the FANTOM enhancer set is therefore

incomplete, it provides a uniquely large inventory of high-

quality enhancers to use for the training of machine learn-

ing approaches. An ensemble support vector machine

method suggested the potential to distinguish enhancers

based on such data [25].

We have previously proposed and herein present the

use of a deep feature selection (DFS) model for the

supervised prediction of CRRs [26]. Deep learning is a

dramatic advance in the frontier of artificial intelligence

[27–29]. Unlike widely used linear models, deep learning

approaches model complex systems and capture high-

level knowledge from data. Driven by big and rich data,

deep learning has been successfully applied in various

areas such as automatic image annotation and speech

language processing [30]. Bioinformaticians have started

using this powerful tool for next-generation sequencing

data mining, such as predicting the impact of variations
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on exon splicing [31] and the effects of noncoding variants

on chromatin [32], detecting TF binding patterns [33], and

predicting protein secondary structures [34].

Our study stands on three important legs. First, the

precisely annotated FANTOM promoters and enhancers,

which provide the largest experimentally defined collec-

tion of CRRs. Second, the ENCODE project genome-wide

feature data, such as histone modifications, TF binding,

RNA transcripts, chromatin accessibility, and chromatin

interactions. Third, deep learning methods to distinguish

CRRs based on the available data. We unite the three

components to create the DECRES (DEep learning for

identifying Cis-Regulatory ElementS and other applica-

tions) model, with which we identify the most compre-

hensive collection of CRRs across the human genome yet

compiled.

Results

Deep learning accurately distinguishes active enhancers

and promoters from background

We investigated the capacity of deep learning models

to separate enhancers and promoters, and to distinguish

them from other regions and between activity states. We

trained a deep feedforward neural network over our bal-

anced labelled training sets to predict our (unbalanced)

test sets from each well-characterized cell type, repeating

the procedure 100 times. The deep model takes experi-

mentally derived features over genomic regions as inputs

and outputs class labels of these regions with probabili-

ties (see Additional file 1: Table S1 for the total number of

samples of each class and Additional file 1: Table S2 for the

number of available features; see Methods). For narrative

convenience, hereafter we refer to active enhancer, active

promoter, active exon, inactive enhancer, inactive pro-

moter, inactive exon, and unknown (or uncharacterized)

region as A-E, A-P, A-X, I-E, I-P, I-X, and UK, respectively.

Under the assumption that active CRRs are undergoing

transcription, active applies to regions in which CAGE

transcript initiation events are observed in the tissue of

focus, while inactive refers to regions detected in other tis-

sues, but not in the focus tissue. We recorded the mean

class-wise rate (i.e. averaged sensitivities of all classes),

area under the receiver operating characteristic curve

(auROC), and the area under the precision-recall curve

(auPRC) in Fig. 1 and Additional file 1: Figure S1.

There are four aspects of the results that we highlight,

which affirm the capacity of our supervised deep learn-

ing approach to distinguish between classes of CRRs and

background. First, we are able to distinguish between

active enhancers and promoters (A-E versus A-P) (Fig. 1a).

We used A-E and A-P as positive and negative train-

ing classes, respectively. Overall, we found that A-E and

A-P are highly separable. Second, we can distinguish

active and inactive CRRs (either enhancers or promot-

ers). From Fig. 1b and Additional file 1: Figure S1A, it

can be observed that mean auPRCs on GM12878, HelaS3,

HepG2, and K562, which have the largest training sets, are

above 0.95 with small variances for both enhancers and

promoters. In the rest of this paper, we exclude A549 and

MCF7 cell lines in most analyses due to limited data avail-

ability. Third, not unexpectedly, it is difficult to distinguish

between inactive enhancers and promoters (Additional

file 1: Figure S1B). Seven of the mean class-wise rates for

the eight cell types were lower than 0.80. While there are

some indications that a portion of inactive promoters have

some machinery present, it was our expectation that such

regions will largely not exhibit strong transcription fac-

tor binding or appropriate epigenetic signatures to inform

a model. Fourth, we tested the applicability of predicting

A-E and A-P from the super background (BG) class merg-

ing I-E, I-P, A-X, I-X, and UK (Fig. 1c). The results on

six cell types were promising, all exceeded 0.80 auPRC.

If A-E and A-P are merged further to form a super class

(A-E+A-P), higher performance is achieved (Additional

file 1: Figure S1C). All auPRCs on these six cell types

went beyond 0.89 auPRC. Furthermore, we also tested a

a b c

Fig. 1Mean performance and standard deviation of 100 runs using the MLP model on our respectively sampled train-test partitions of eight cell

types. a Classification performances of A-E versus A-P. b Classification performances of A-E versus I-E. c Classification performances of A-E versus A-P

versus BG. MLP: Multilayer Perception, RF: Random Forest, A-E: Active Enhancer, A-P: Active Promoter, A-X: Active Exon, I-E: Inactive Enhancer, I-P:

Inactive Promoter, I-X: Inactive Exon, UK: Unknown or Uncharacterized, BG: I-E+I-P+A-X+I-X+UK
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random forest method, another state-of-the-art classifier,

on our labelled data. Similar performance was obtained on

all six experimental settings. The random forest method

exhibited slightly better performance for A549 and MCF7

datasets, which both have low numbers of enhancers. In

expectation that more annotated enhancers are becoming

available, we will continue using MLP and exploring other

deep learning approaches such as convolutional neural

networks and recurrent neural networks.

DECRES gives higher sensitivity and precision on FANTOM

annotated regions

To assess the relative utility of our supervised deep

method for CRR prediction, we compared it with the

unsupervised ChromHMM and ChromHMM-Segway

Combined methods [8, 12] using FANTOM annotations

on five available cell types as reference. They were com-

pared on unbalanced sets reflecting the true genomic

background. The results are compared in Fig. 2a which

displays radar charts where the larger and more con-

vex the area is, the better the performance. It is intuitive

that supervised approaches are preferred when labelled

training data is sufficient. Furthermore, both unsuper-

vised methods were developed prior to public release

of the FANTOM5 data and are therefore at a disad-

vantage. However, these annotations are widely used by

the community and hence the relative performance of

DECRES to the standard is of interest. Overall, we observe

a

b

Fig. 2 Comparison of the supervised method (DECRES) and unsupervised methods (ChromHMM and Combined) on five FANTOM annotated test

sets in radar charts (a) and significance tests (b). The ENCODE segmentations were downloaded from [66]. We relabelled the annotations of

ChromHMM and Combined. For ChromHMM segmentations, the Tss, TssF, and PromF classes were merged to A-P; the Enh, EnhF, EnhW, EnhWF

classes were merged to A-E; and the rest were denoted by BG. When processing the Combined annotations, TSS and PF were relabelled to A-P; E

and WE were relabelled to A-E; and the rest to BG. The p-values in (b) were obtained from two-tailed Student’s t-test on all cell types. The signs of

statistic values are indicated in brackets
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that DECRES outperforms ChromHMM and Combined

methods which in turn deliver similar performance.

These unsupervised methods consistently have lower

sensitivities for active enhancer detection (p= 5.57E-5

and 9.90E-5 for DECRES versus ChromHMM and Com-

bined respectively, two tailed Student’s t-test; see Fig. 2b)

and lower precision for active promoter detection (p =

7.36E-5 and 2.33E-4 for DECRES versus ChromHMM

and Combined respectively, two tailed Student’s t-test;

see Fig. 2b). Using ChromHMM, the active enhancer

sensitivity ranges from 16.5% to 48.4% (numbers are con-

sistent with the test on ENCODE predicted enhancers

reported in [14]), while our deep model ranges from

69% (K562) to 88.8% (GM12878). Moreover, ChromHMM

achieves a maximum precision of 49.8% for active pro-

moter prediction, while the maximum for DECRES

is of 84.3%.

Evaluation of DECRES performance with independent

experimental data

As the initial evaluation focused on FANTOM eRNA-

based annotation of CRRs, the type of data used to train

our supervised model, we sought to assess performance

on data generated by alternative methods. We identi-

fied two independent collections of laboratory validated

enhancers to further assess the performance of DECRES:

a CRE-seq collection of regions tested in K562 cells [14]

and MPRA (massively parallel reporter assay) collections

tested in K562 andHepG2 cells [35]. In both instances, the

set of regions that fail to direct expression may be falsely

predicted by the assessed methods, but may also reflect

the facts that the experimental procedures only include

a small segment of regulatory DNA and that plasmid-

based assays do not recapitulate chromatin properties.

Given the nature of the data, we anticipate a portion of the

experimental negatives to be bona fide regulatory regions.

In the first independent set, subsets of predicted K562

enhancers and negative regions (as predicted by the Com-

bined ChromHMM and Segway method) were assessed

in the laboratory using CRE-seq [14]. In that study, only

33% of the “Combined” predicted regulatory regions were

found to be positive in the experiment, compared to 7%

for the negative set. Using DECRES trained on all available

active regulatory regions of K562 cells, we therefore vali-

dated ourmethod on 386 regions showing active enhancer

activity in K562 as validated by CRE-seq compared to the

298 control regions (Additional file 1: Table S3). Highly

consistent with the results above, a sensitivity of 65.5%

(254/386) for the experimentally validated regions were

successfully predicted as A-E; the remaining 132 regions

were predicted as background (none were classified as

promoters). For the 812 tested predictions that were inac-

tive in the CRE-seq experiment, DECRES classified 53.3%

(433/812) as positive. For the 298 negative control regions,

DECRES predicted all to be negative (including the 16

that were active in the CRE-seq experiment). Importantly,

as the DECRES scores rise, the quality of the predictions

increase.We drew the histogram of DECRESmembership

scores of 254 and 433 experimentally positive and neg-

ative Combined enhancers that were predicted as A-Es

by DECRES (Additional file 1: Figure S2). The distri-

butions are significantly different (p= 0.014, two-sided

Mann-Whitney rank test).

The second independent collection, in which K562

and HepG2-specific “strong enhancer” (as predicted by

ChromHMM) containing predicted TF binding sites for

cell-selective TFs were tested using a massively parallel

reporter assay (MPRA) [35]. Only 41% of the enhancers

were detected to be significantly expressed (p= 0.05,

two-sidedMann-Whitney rank test). We used DECRES to

predict the classes of the MPRA positive and MPRA neg-

ative enhancers. Our result in Additional file 1: Table S3

shows that 98.4% (120/122) and 97.8% (182/186) of the

MPRA positive enhancers were respectively predicted to

be A-Es by DECRES for K562 and HepG2 cells, while

92.3% (179/194) and 81.3% (217/267) of the MPRA nega-

tive enhancers were still predicted as A-Es for K562 and

HepG2, respectively, but with different distributions of

DECRES scores (p = 4.8E-6 and p = 2.3E-6 for K562 and

HepG2 respectively, two-sided Mann-Whitney rank test)

(Additional file 1: Figure S2). Consistent with the other

independent data, the higher the DECRES scores themore

likely they are to be positive.

Assessing the utility of DNA sequence properties on the

performance of DECRES

Recent studies confirmed that DNA sequence proper-

ties can be useful for the recognition of promoters and

enhancers [3, 5, 25], and the discrimination between

active and inactive regulatory sequences [36, 37] using

string sequence kernels. This builds on the long-

recognized capacity for the inclusion of CpG islands as

features to improve promoter prediction [38]. We sought

to determine if DNA sequence features can be informa-

tive to distinguish between promoters and enhancers,

and between active and inactive classes. We trained the

model with 351 sequence features (originally used in [25])

in multiple scenarios. Results are displayed in Fig. 3 and

Additional file 1: Figure S3. First, a deepmethod restricted

to sequence features for discriminating A-E and A-P

(Fig. 3a) delivered auPRCs from 0.8567 to 0.9370, con-

firming that sequence attributes are indeed informative.

Second, sequence features have a limited utility for distin-

guishing between active and inactive states of enhancers

and promoters, which is logical; while the experi-

mentally derived features could highly separate them

(p = 1.90E-08 and 5.06E-08 for enhancers and promoters

respectively, two-tailed Student’s t-test; see Fig. 3b and
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a b c

Fig. 3 Comparing the mean auPRCs over 100 resampling and retraining on our labelled regions using different feature sets. “Experimental” means

our experimentally derived next generation sequencing feature set. “Sequence” means the set of 351 sequence properties used in [25].

“Experimental+Sequence” means the combination of these two sets. a. Comparison of the three feature sets in A-E versus A-P. b. Comparison of the

three feature sets in A-E versus I-E. c. Comparison of the three feature sets in A-E versus A-P versus BG. The p-values in each legend were obtained

using two-tailed Student’s t-test to compare “Experimental”-based results with “Experimental+Sequence”-based and “Sequence”-based results,

respectively

Additional file 1: Figure S3A). Using sequence features

in the absence of experimental features has a lower

performance in classifying A-E, A-P and BG across all

eight cell types (p = 1.86E-09, two-tailed Student’s t-test;

see Fig. 3c). Finally, better results were not achieved

by combining experimental and sequence features

(p = 2.79E-01, 6.56E-01 and 1.17E-01 in Fig. 3, two-tailed

Student’s t-test).

Key features for DECRES performance

As experimental data can be time consuming and expen-

sive to produce, we sought to determine the minimal set

of features most informative for CRR prediction from

a computational perspective. We used randomized deep

feature selection (randomized DFS or RDFS) and ran-

dom forest (RF) models (see Methods) for two-class

[A-E+A-P (or CRR) versus BG] and three-class (A-E ver-

sus A-P versus BG) classifications on four cell types

(GM12878, HelaS3, HepG2, and K562) which have 72-135

features available.

Figure 4a and Additional file 1: Figure S4A display the

feature importance scores discovered by randomized DFS

and random forest for the three-class classification. The

feature importance scores produced by these methods

should be interpreted differently. Similar to a forward

selection, the feature importance scores from randomized

DFS reflect which features are preferred in the early stage

of the sparse model, while the importance score of a fea-

ture by random forest indicates the role of this feature in

the context of its use with all other features. Thus, using

both methods in this study enables us to gain different

insights into the data. In our experiments, both meth-

ods can capture the most important features as indicated

by importance scores across all four cell lines. For exam-

ple, both methods agree that Pol2, H3K4me1, Taf1, and

H3K27ac are useful for distinguishing active enhancers

and promoters from the background in GM12878 cell

line. In some cases, the different measures complement

each other. For instance, H3K4me2 and H4K20me1 are

marked as key features by the randomized DFS, which

is convincing as indicated by the box plots in Additional

file 1: Figure S4B and Figure S6-S13, but are overlooked

by random forest. Tbp was highlighted by random forest

in GM12878 and HelaS3 cells, but was not picked up by

randomized DFS. Examining the box plots of this feature

in Additional file 1: Figures S6 and S7 reveals that this

feature is discriminative to distinguish active enhancers

and promoters from background, but there is not a dra-

matic difference between active enhancers and promoters.

Important features incorporated into a random forest

model may not be incorporated until a latter stage of the

DFS process. For instance, in K562 cell line, C-Myc was

emphasized by random forest, which is indeed reason-

able as shown in Additional file 1: Figure S12 and was not

selected as an initial feature in the DFS process.

For the development of machine learning methods in

genome annotation, minimizing the number of features

required decreases cost and increases the capacity for

biological interpretation. Figure 4b and Additional file 1:

Figure S5B show the changes of test auPRCs as the num-

bers of selected features increase for the three-class and

two-class classifications, respectively. In both cases, test

auPRCs increase dramatically for the initial features, then

performance plateaus. Comparing the randomized DFS

curves with the random forest curves, we can see that

there is no single optimal curve. A few key features are

sufficient for a good prediction performance. To define

an optimal number of features needed, we fit the curves

in Fig. 4b and Additional file 1: Figure S5B and selected

the intersection point for a line with slope of 0.5 on

the randomized DFS curves (see Methods). Fewer fea-

tures are needed for two-class CRR prediction (6 features)
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a

b

Fig. 4 Feature importance and classification performance in the 3-class (A-E versus A-P versus BG) scenario. a Feature importance discovered by

randomized DFS (RDFS) and random forest (RF) on GM12878. The random forest’s feature importance scores were normalized to [0,1] for better

comparison with randomized DFS. b auPRC versus the number of features incorporated into the RDFS and RF. The annotated points indicate where

a line with slope 0.5 intersects a fitted curve

compared to three-class models intended to distinguish

between A-E, A-P and background (10 features).

The distributions of the top ten features for three-class

predictions (A-E, A-P, and BG) are given in Additional

file 1: Figure S4B. Using the top ten features for each

cell, auPRCs of 0.9022, 0.9156, 0.8651, and 0.8565 were

achieved on GM12878, HelaS3, HepG2, and K562, respec-

tively. Half of these top features are histone modifica-

tions, of which H3K4me1, H3K4me2, H3K4me3, and

H3K27me3 were commonly selected features for the

three-class models, in agreement with existing knowledge

[2, 3, 39, 40]. Among transcription factors (including co-

factors), Taf1 and p300, as well as RNA polymerase II

(Pol2), are frequently selected, which is also consistent

with existing knowledge [41, 42].

Additional file 1: Figure S5C shows box plots of the top

six selected features by randomized DFS for two-class pre-

dictions. Using these features, auPRCs of 0.9561, 0.9627,

0.926, and 0.9555 were obtained on the four cell types,

respectively. For most features, the ranges of values are
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elevated in A-E and A-P relative to the background cat-

egories. Half of the selected features are DNase-seq and

histone modification ChIP-seq data including H3K4me2,

H3K27ac, and H3K27me3. The box plots of these fea-

tures indicate that they distinguish A-E and A-P from

background [2, 39, 40].

The majority of DECRES’s genome-wide predictions are

supported by other methods

We trained 2- and 3-class multilayer perceptron (MLP)

models (see Methods) using all reference (labelled) data

for training, in order to predict CRRs across the entire

genome for six cell types (A549 andMCF7were excluded).

The 2-class model identified 227,332 CRRs (adjacent

regions were merged), which occupy 4.8% of the genome

(Additional file 1: Table S4). A total of 9153 CRRs were

ubiquitously predicted across all six cell types. For the

3-class prediction, we obtained 301,650 A-E regions (6.8%

of the genome) and 26,555 A-P regions (0.6% of the

genome) together with 11,886 ubiquitous A-Es and 3678

ubiquitous A-Ps. The genome-wide predictions for all six

cell types are available in Additional file 2.

Next, we examined the overlap of our predicted CRRs

with the Combined [12] and dReg [22] predictions on

GM12878, HelaS3, and K562. The majority of CRRs

predicted by DECRES overlap with the results from

either Combined or dReg, specifically 86.13%, 76.13%,

and 83.63% for GM12878, HelaS3, and K562, respec-

tively (Fig. 5). A subset (13.87% on GM12878, 23.87%

on HelaS3, and 16.37% on K562) of DECRES predic-

tions do not overlap with predictions from the other

two tools. Notably, a large portion of the Combined pre-

dictions (56.78% on HelaS3, 55.99% on GM12878, and

36.36% on K562) do not overlap with those from the

supervised methods, which is consistent with its low

observed validation rate [14]. Furthermore, DECRES pre-

dictions tend to have a finer resolution for both A-P

and A-E regions (see Additional file 1: Figure S14 for an

example).

We investigated how many among our genome-wide

predictions are supported by the VISTA enhancer set [43].

Despite the fact that the majority of the VISTA enhancers

are extremely conserved across development, we still find

that 37.1% (850/2,293) of experimentally confirmed and

unconfirmed VISTA enhancers overlap with the predicted

A-Es, while merely 4.8% (110/2,293) of these VISTA

enhancers overlap with the predicted A-Ps. Results for

experimentally confirmed VISTA enhancers are similar

(482/1,196= 40.30% and 60/1,196= 5.02% overlap A-Es

and A-Ps, respectively), which suggests that our predicted

active enhancers have real enhancer functions. A propor-

tion of the VISTA enhancers not overlapping our predic-

tions could be active specifically during development or in

other cell types than our focus cell lines.

DECRES extends the FANTOM enhancer atlas

Due to the limited depth of CAGE signals for eRNAs, a

portion of active (or transcribed) enhancers will not have

been detected in the original compilation of the enhancer

atlas. Hence, we sought to identify additional partially

supported enhancers for which eRNA signals were below

the original atlas threshold settings [4]. In the previous

work, a total of 200,171 bidirectionally transcribed (BDT)

loci were detected across the human genome, using CAGE

tags of 808 cell types and tissues. After excluding BDT loci

within exons, a partially supported set of 102,021 BDT

regions remained, of which 43,011 balanced loci (simi-

lar eRNA levels on both sides) constitute the FANTOM

enhancer atlas [4]. In order to investigate whether more

active enhancer candidates can be detected for each of the

six cell types, we trained a MLP on its active atlas regions,

and predicted classes for all 102,021 BDT sites. Among

the 102,021 BDT loci, most were classified as negative

regions in a given cell (Additional file 1: Table S5), while

on average 13,316 were predicted as A-Es and only 834

were predicted as A-Ps per cell type. A substantial num-

ber (6535 on average) of inactive enhancers in the original

enhancer atlas were predicted as active by our model

a b c

Fig. 5 Agreements of the DECRES CRRs with the Combined and dReg CRRs on three cell types (a: GM12878, b: HelaS3, c: K562), respectively. The

TSS, PF, E, and WE segmentations from Combined were relabelled to CRRs. The active transcriptional regulatory elements (TREs) predicted by dReg

were renamed to CRRs
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(Additional file 1: Table S6), consistent with the assump-

tion that BDT data is incomplete for any given sample. On

average 5514 BDT loci excluded by the original atlas, were

predicted as A-Es per cell type. Over the six analyzed cell

types, a total of 38,601 BDT loci were predicted as A-Es

(Additional file 3), of which 16,988 represent an expan-

sion of the original FANTOM enhancer atlas. Note that

21,398 out of 43,011 enhancers from the original FAN-

TOM enhancer atlas are not predicted as active in the six

cells analyzed here, but these regions may be active in the

other 802 cells for which there are inadequate features to

analyze.

Computational validation of DECRES’s prediction using

functional andmotif enrichment analysis

We performed functional enrichment analysis on the

genome-wide predicted A-Es and A-Ps using GREAT [44].

For GM12878 cells, 79% of predicted enhancer regions are

more than 5 kilobase pairs (kbps) away from gene TSSs

(Additional file 1: Figure S15A), while 47% of predicted

promoters are less than 5 kbps to the annotated gene

TSSs (Additional file 1: Figure S15B). Similar statistics

were obtained for the remaining five cell types. Annota-

tion analyses of the GM12878-specific CRRs show that

proximal genes are associated to: immune response from

gene ontology (GO) annotations (Additional file 1: Figure

S15C); B cell signalling pathways from MSigDB Path-

way annotations (Additional file 1: Figure S15D); and

leukemia from disease ontology annotations (Additional

file 1: Figure S15E). Results are consistent with the lym-

phoblastoid lineage of the cells. Next, we performed

functional enrichment analysis on the BDT-supported

predicted enhancers not previously reported in the

FANTOM enhancer atlas (“not in atlas”). Results are

fully consistent with the above analysis (Additional file 1:

Figure S16).

We further carried out motif enrichment analysis

on the predicted cell-specific CRRs and not-in-atlas

enhancers using HOMER [45]. The predicted regions are

enriched for motifs similar to JASPAR binding profiles

[46] (Additional file 1: Figure S15F and Figures S16-S26)

both associated to TFs maintaining general cell processes

and TFs with selective roles in cell-related functions. For

instance, motifs for Jun-, Fos-, and Ets-related factors were

enriched in regions from all six cell types. These TFs

regulate general cellular progresses such as differentia-

tion, proliferation, or apoptosis [47, 48]. Cell-appropriate

TF enrichments were observed for each cell (summa-

rized in Additional file 1: Table S7). For example, RUNX1

and other Runt-related factors, which play crucial roles

in haematopoiesis, are observed in GM12878 (Additional

file 1: Figure S15F and Figure S16) [49]. C/EBP-related fac-

tors that regulate genes involved in immune and inflam-

matory responses are expressed in cervix (Additional

file 1: Figures S17 and S18) [50]. HNF1A, HNF1B, FOXA1,

FOXA2, HNF4A, and HNF4G factors regulate liver-

specific genes (Additional file 1: Figures S19 and S20)

[51, 52]. NFY factors cooperate with GATA1 to mediate

erythroid-specific transcription in K562 (Additional file 1:

Figures S25 and S26) [53].

We performed functional and enrichment analysis on

the A-E and A-P predictions from the Combined method

[12], and report the results in Additional file 1: Figures

S27-S30. Most of the predicted promoters by the Com-

bined method are distal to known gene TSSs, which is

similar to enhancers. For instance on cell line GM12878,

only 22% of the Combined promoters are located less than

5 kbp to the annotated gene TSSs, compared to 47% of the

DECRES promoters. Moreover, functional analysis on the

CRRs predicted by the Combined method returned much

less or zero significant terms for GO biological process,

MSigDB pathway, and disease ontology than the DECRES

predictions. The motif analysis results of both methods

are consistent.

Discussion
Our study brings together a large collection of high-

throughput data from global projects to allow for super-

vised annotation. One key challenge in such analysis is the

depth of validation. In this report, validation is assessed

using existing collections of reliable enhancers, including

CAGE [4], and laboratory validated sets from CRE-seq

[14], and, on a small-scale, transgenic mouse assays [43]),

showing that the supervised approach nears 89% sensi-

tivity. While we compare to multiple laboratory validated

sets retrospectively, a prospective assessment would have

broad value. In light of the recent advances in both big

data analysis methods and genome-scale data generation,

we believe it is opportune to launch a global prospective

assessment, such as enabled within the DREAM Chal-

lenges program [54]. Such a test for annotation of cis-

regulatory regions in the human genome would inspire

the machine learning community to push the perfor-

mance limit of supervised CRR-prediction methods, and

would encourage laboratory biologists to accelerate cell

type-specific data generation.

Enhancers and promoters have both common and dis-

tinct characteristics. In our cross-validations, we show

that A-E and A-P are highly separable (Fig. 1a), while

better performance can be obtained if A-E and A-P are

treated as a single class (Additional file 1: Figure S1C).

Both continuous (merging enhancers and promoters

together) and distinct models (treating enhancers and

promoters separately) have limitations. While a continu-

ous model may overlook functional differences, a distinct

model may overemphasize such differences. A potentially

better prediction model might require two hierarchical

steps. It could first distinguish CRRs from the background
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genome, then assign a continuous score to each candidate

region indicating the likelihood of being an enhancer. Fur-

ther clustering and subtypingmay be necessary. It is worth

mentioning that the CAGE-defined enhancers used in this

study may introduce some bias towards capturing a spe-

cific class of enhancers which exhibit reasonably strong

and detectable transcription. To further investigate the

characteristics of enhancers and improve genome-wide

prediction, enhancers detected by other techniques, such

as GRO-seq, will need to be considered in the future.

Our predicted CRRs take a substantial but small por-

tion of the non-coding regions, previously known as “junk

DNA”. It may be because only six cell types are consid-

ered in this work. Nevertheless, we have already seen that

the non-coding regions exhibit regulatory functionality.

It would be interesting in the next phase to collect data

from a large number of cell types and examine the cover-

age, which will unveil whether regulatory regions have an

oasis pattern. It may also imply that certain fragments of

the non-coding regions play other partially known (such

as suppression, domain boundary, and development) and

unknown roles.

As already advocated in our review [7], two other deep

learning models might be well suited to improve annota-

tions of non-coding regions. One method is convolutional

neural networks (CNNs), which can take into account

the topological properties of features. The other is bidi-

rectional recurrent neural networks (RNNs), which can

consider the information from adjacent regions (i.e. the

context). Such an approach can be potentially applied to

annotate regulatory domains or complexes where exons,

introns, promoters, enhancers, silencers, and insulators

form cohorts for specific functionalities. Bidirectional

RNNs have a smoothing effect, making the predictions

context-dependent. Development of CNN- and RNN-

based models for prediction of enhancers using sequence

information has just emerged [55]. We foresee more

sophisticated deep learning models in the near future

for comprehensive genome annotations. To prevent pre-

dictions from jumping between states, smoothing has

been taken into consideration in a deep neural network

combined with hidden Markov model [56, 57]. Com-

bined with MLPs, CNNs, or RNNs, other newly published

deep feature selection techniques, such as layer-wise rele-

vance propagation [58] and class saliency extraction [59],

might be useful to identify informative signal peaks for

cis-regulatory elements of focus. Furthermore, transfer

learning [60] and multi-task learning [37] techniques

might be useful in the design of deep predictive mod-

els, particularly when the number of learning examples of

one cell type is limited or a region allows several anno-

tations. Assessing the impact of sequence variations in

non-coding regions on gene expression and phenotypes is

of high clinical interest [32, 61], which was one motivation

for the GTEx project [62]. The current predictions using

MLPs and future annotations using CNNs and RNNs can

integrate sequence variations (captured in alignment of

short sequence reads of ChIP-seq and other sequencing

techniques) and RNA-seq gene expression data of a cell

type of interest, so that the impact of genetic variations in

non-coding regions can be prioritized.

Conclusions
Using FANTOM data for training, we show that super-

vised deep learning methods are able to accurately pre-

dict active enhancers and promoters across the human

genome. Models incorporating cell-specific data outper-

form models restricted to universal data (e.g. sequence),

and highlight key experimental features that tend to be

incorporated into predictive models when available. We

explore the relative performance of 2- and 3-class mod-

els that either group or separate enhancers and pro-

moters. Finally, we deliver a comprehensive collection of

annotations, that label 6.8% of the genome as enhancers

and 0.6% as promoters in one or more of six well-

characterized cells.

Accurate annotation of regulatory regions across the

human genome is essential for genome interpretation.

With genome sequencing transitioning to a standard clini-

cal test, the ability to move beyond the analysis of protein-

coding alterations has the potential to expand clinical

diagnostic capacity to explain observed genetic disorders.

By demonstrating the suitability of supervised deep learn-

ing methods to label regulatory regions, we now enter into

a new stage of genome annotation. In the next few years,

we anticipate that characterization of regulatory prop-

erties in specific cell populations will accelerate, using

both chromatin-based and sequencing-based methods.

As demonstrated in this report, deep learning methods

are well suited for the challenge of using the expanded data

for reliable annotation of the genome.

We anticipate that the collection of regulatory region

annotations provided in this study will have broad util-

ity for genome interpretation, and that the demonstra-

tion of the sufficiency of training data and the utility of

deep learning supervisedmethods for CRR prediction will

move the discussion to a highly applied period of high-

quality annotation. Understanding howCRRs interact and

how they link to their target genes is the key to decipher

the cis-regulatory mechanism. We expect that further

development of integrative machine learning methods

[63, 64] is crucial to reconstruct such a gene regulatory

system.

Methods

Data

For the purpose of supervised analysis, we collected fea-

ture data from ENCODE [10] along with the trans-
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criptionally active enhancers and promoters from eight

matched cell types catalogued by the FANTOM effort

[4, 24]. These cell types include A549, GM12878, HelaS3,

HepG2, HMEC, HUVEC, K562, and MCF7. For each cell

type, we defined seven classes of labelled regions, includ-

ing A-E, I-E, A-P, I-P, A-X, I-X, and UK. The libraries of

enhancers and promoters were downloaded from [65]. A-

Es and I-Es were defined as FANTOM enhancers with

TPM>0 (tags per million) and TPM=0, respectively. A-

Ps and I-Ps were randomly selected FANTOM promoters

with TPM>5 and TPM=0, respectively. A-X and I-X were

defined based on exons’ transcription levels measured by

RNA-seq [66]. An exon with peak-max greater than 400

(equal to 0) was defined as A-X (I-X). The UK regions were

sampled from the genome regions excluding all FANTOM

CAGE tags, all exons, andDNaseI open regions. The num-

bers of labelled regions used in this study are listed in

Additional file 1: Table S1. For each cell type, we built

a comprehensive feature set, integrating histone modifi-

cation and TF binding ChIP-seq, DNase-seq, FAIRE-seq,

and ChIA-PET data from the ENCODE project [66, 67].

These features characterize the activities of enhancers

and promoters in cell-specific aspects. Additionally, CpG

islands and phastCons evolutionary conservation scores

were included, because it is well recognized that some

regulatory regions are highly GC-rich and extremely con-

served. For each labelled region, the mean value of feature

signals fall within a bin centered at the region was taken

as the feature value using bwtool [68]. We tried different

bin sizes including 200, 500, 1,000, 2,000, and 4,000 bps.

Since 200 bps worked the best in cross-validation tests,

we used it throughout our analyses. The numbers of fea-

tures used for each cell type and the numbers of common

features between any pair of them are given in Additional

file 1: Table S2. A combined list of features is provided

in Additional file 4. Our labelled data are downloadable

from [69].

Deep learning for classification

Based on the Deep Learning Tutorials [70] and

Theano [71], we implemented a deep learning pack-

age named DECRES (DEep learning for identifying Cis-

Regulatory ElementS and other applications) which is

available at [69]. We applied a supervised deep model –

feedforward neural network (also known as multilayer

perceptrons or MLP) for the detection of regulatory

regions. For each experiment, we conducted a model

search from no hidden layers upto three hidden lay-

ers with maximally 256, 128, and 64 units in the first,

second, and third hidden layers. Initial learning rate,

l2-regularization amount (to control model complex-

ity), and momentum (to stabilize the optimization) were

searched across ranges of values. The maximum num-

ber of allowed iterations was set to 1000. The initial

learning rate could reduce gradually as the number of iter-

ations increases. Using batch-size 100, stochastic gradient

descent was employed to optimize the model param-

eters. Rectified linear unit (ReLU) activation function

[72] was used. When evaluating the classification perfor-

mance of various experiments, we randomly sampled a

balanced training set with maximally 70% of examples

and maximally 3000 examples in each class, the remaining

data were further randomly sampled to generate a corre-

sponding test set with proportion of A-E:A-P:A-X:I-E:I-

P:I-X:UK=1:1:1:2:2:1:10 to mimic the true genome-wide

background among the classes (Same ratio was used in

the comparison with ChromHMM and Combined meth-

ods). A training set was further partitioned into a training

subset for model learning and a validation subset for

early termination. We scaled each feature in the training

subset to [0,1], and applied the same estimated scaling

factors to the validation subset and test set. Class-wise

rate (CWR, i.e. averaged sensitivity and specificity for

two classes, and averaged sensitivities for more than two

classes), area under the receiver operating characteris-

tic curve (auROC), and area under the precision-recall

curve (auPRC) were calculated to measure the classifica-

tion performance. The above procedure was repeated 100

times to determine the means and variations of CWRs,

auROCs, and auPRCs. Random forest [73] was compared

on the same training-test splits in our experiments. Before

predicting regulatory regions in the whole genome, all

labelled A-E samples and 3000 samples in each of the

other classes of a cell type were used to train the network.

Feature selection

Based on our newly devised deep feature selection (DFS)

model [26], we designed the randomized DFS (RDFS),

which is a deep extension of randomized LASSO [74], for

stably selecting subsets of discriminative features.

Addressing the limitations of sparse linear models for

feature selection, DFS is able to model the non-linearity

of the features and select a single subset of features for

multi-class data. The main idea of DFS is to add a one-

to-one linear layer (named feature-selection layer) to the

above described feedforward neural network. For the i-th

input feature xi, the output of the feature-selection layer

becomes wixi. Thus, the parameter of this layer is a vector

w. By shrinking w, some of its elements turn to zeros, such

that the corresponding features do not contribute to the

classification at all. The upper hidden layers of the model

have the capability of modelling non-linear interactions

in the data. The feature selection layer allows to select a

single subset of features for multi-class problem.

The randomized DFS procedure is similar to ran-

dom forest, both implementing the philosophy of the

wisdom of crowds. In randomized DFS, DFS with per-

turbed feature-wise sparsity control parameters runs on
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a training subset which is a randomly sampled portion

(usually 1
2 ) from the entire training set, and selects the top

K features based on feature weights. This random proce-

dure is repeated, say 100, times to generate the empirical

probability of each feature being selected. The empiri-

cal probabilities are used as feature importance. In our

experiment, we used ReLUs as activation functions and

set K=10 in this procedure. We scaled each feature to

[0,1] in the training set, and applied the estimated scal-

ing factors from the training set to the test set. From

the most important to the least important features, we

kept adding features to a MLP to evaluate how many

features are sufficient for the prediction. Randomized

DFS was compared to random forest on the same parti-

tions of training and test sets in this study. The DFS and

randomized DFS models were included in the DECRES

package.

Aiming at trading off the size of feature subset and clas-

sification performance (auPRC), we designed a method

based on curving fitting that was applied in Fig. 4.

Denoting a size of feature subset and corresponding

test auPRC by x and y respectively, we first fit function

y =
2s
π
arctan(kx) where k and s are scale parameters.

Once done, a point can be chosen on the curve given a

proper tangent value (say t) using xt =
1
k

√

2ks−tπ
tπ and

yt =
2s
π
arctan(kxt). Since the values come from different

scales on x and y axes, we qualitatively used t = 0.5.
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