NRC Publications Archive
 Archives des publications du CNRC

Maneuvering model tests of the USCGC Healy (Model 546) in level ice Lau, M.

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

Publisher's version / Version de l'éditeur:
https://doi.org/10.4224/8895022
Laboratory Memorandum (National Research Council of Canada. Institute for Ocean Technology); no. LM-2006-03, 2006

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=113c81a9-556d-4c93-a070-1e60cb5347c3 https://publications-cnrc.canada.ca/fra/voir/objet/?id=113c81a9-556d-4c93-a070-1e60cb5347c3

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.
Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Maneuvering Model Tests of the USCGC Healy (Model 546) in Level Ice

M. Lau

March 2006

DOCUMENTATION PAGE

REPORT NUMBER	NRC REPORT NUMBER	DATE
LM-2006-03		

National Research Council	Conseil national de recherches
Canada	Canada
Institute for Ocean	Institut des technologies
Technology	océaniques

MANOEUVRING MODEL TESTS OF THE USCGC HEALY (MODEL 546) IN LEVEL ICE

LM-2006-03

Michael Lau

March 2006

Abstract

A complete set of resistance, propulsion, and manoeuvring model tests of the USCGC Healy (Model 546) were conducted in 2001 for correlation with the fullscale data collected during the sea trial of the same vessel conducted in the previous year (Frederking et al, 2001). Jones (2005) has reported the results of the resistance and propulsion portions of the model test series. This report, accompanying the fore-mentioned report, documents the result of the manoeuvring tests.

ACKNOWLEDGEMENTS

Dr. Stephen J. Jones and Mr. Corwyn Moores conducted the model tests. Their contributions are gratefully acknowledged.

TABLE OF CONTENTS

Abstract
Acknowledgements ii
LIST OF TABLES iv
LIST OF FIGURES iv
1.0 INTRODUCTION 1
2.0 USCGC HEALY 1
2.1 Model Construction 2
3.0 TEST PLAN 4
4.0 RESULTS 5
4.1 Turning Circle Diameter 5
4.2 Power Level 6
4.3 Full-Scale Sea Trials 6
4.4 Comparison With Full-Scale Data 6
5.0 DISCUSSIONS AND CONCLUSION 8
6.0 REFERENCES 8

APPENDICES

Appendix A: Test log, data statistics and time histories
Appendix B: Ice sheet summary
Appendix C: Turning circle diameter analysis

LIST OF TABLES

Table 1. Characteristics of USCGC Healy 1
Table 2. Particulars of Model 546 2
Table 3. Details of ice sheets used 5
Table 4. Summary of test results 5
Table 5. Summary of manoeuvring runs from the sea trials 6
Table 6. Predictions from model test data (Equation 1) in comparison with selected full-scale data measurements 7
LIST OF FIGURES
Figure 1. Lines plan of USCGC Healy 3
Figure 2. The Healy Model 546 shown in the ice tank 3
Figure 3. The stern arrangement of the Healy Model 546 4
Figure 4. The non-dimensional turning diameter as a function of non- dimensional ice thickness for the sea trial and model test data 7

MANOEUVRING MODEL TESTS OF THE USCGC HEALY (MODEL 546) IN LEVEL ICE

1.0 INTRODUCTION

A complete set of resistance, propulsion, and manoeuvring model tests of the USCGC Healy (Model 546) were conducted in 2001 for correlation with the fullscale data collected during the sea trials of the same vessel conducted in the previous year (Frederking et al, 2001). Jones (2005) and Jones and Lau (2006) have reported the results of the resistance and propulsion portions of the model test series. This report, accompanying the fore-mentioned report, documents the results of the manoeuvring tests.

2.0 USCGC HEALY

The USCGC Healy was launched on November 15, 1997, from Avondale Industries in New Orleans. She was delivered to the US Coast Guard on November 10, 1999, departed New Orleans on January 26, 2000, and proceeded north for extensive full-scale ice trials before arriving in Seattle on August 9, 2000.

The essential details of the Healy are shown in Table 1.

Table 1. Characteristics of USCGC Healy

Length, Overall	$420 \mathrm{ft}(128 \mathrm{~m})$
Beam, Maximum	$82 \mathrm{ft}(25 \mathrm{~m})$
Draft, Full Load	$29 \mathrm{ft} \mathrm{3} \mathrm{in} \mathrm{(8.9} \mathrm{m)} \mathrm{at} \mathrm{delivery}$
Displacement, Full Load	16,000 LT at delivery
Propulsion	Diesel Electric, AC/AC Cycloconverter
Generating Plant Drive Motors	4 Sultzer 12Z AU40S 2 AC Synchronous, 11.2 MW Shaft Horsepower
Propellers	20,000 Max
Fuel Capacity	$1,220,915$ gal. 4,621,000 L
Speed	17 knots @ 147 RPM
Endurance	16,000 NM @ 12.5 knots
Icebreaking Capability	$4.5 \mathrm{ft}(1.4 \mathrm{~m}) @ 3$ knots (continuous) $8 \mathrm{ft} \mathrm{(2.44} \mathrm{m)} \mathrm{Backing} \mathrm{and} \mathrm{Ramming}$
Accommodations	19 Officers, 12 CPO, 54 Enlisted, 35 Scientists, 19 Surge, 2 Visitors

The designed icebreaking capability of the Healy was for continuous icebreaking at 3 knots through $4.5 \mathrm{ft}(1.37 \mathrm{~m})$ of ice of $100 \mathrm{psi}(690 \mathrm{kPa})$ strength. The fullscale trials were designed to test this capability.

2.1 Model Construction

Model 546 was constructed, in accordance with IOT's standard method, at a scale of 1:23.7. This scale was chosen so that we could use an existing set of propellers, namely our R-Class propellers 66L and 66R. The model's principal dimensions were:

Table 2. Particulars of Model 546

Overall length (LOA)	5.40 m
Length between perpendiculars (LBP)	5.10 m
Maximum beam	1.05 m
Depth at midships (D)	0.54 m
Design waterline (DWL)	0.36 m
Draft at even trim	0.37 m
Vertical C. of G. (VCG)	0.416 m
Displacement	1240 kg

A non-removable ice knife and two bossings, also non-removable, were fitted, together with the twin rudders and propellers. The model's lines plan is shown in Figure 1, the model is shown in the ice tank in Figure 2, and the stern arrangement is shown in Figure 3.

The manoeuvring tests were conducted at a friction coefficient of 0.034 , corresponding to the high friction resistance tests conducted during the earlier phase (Jones, 2005). The ice density was maintained constant for two ice sheets (see Table 3, Sheets Healy17 and Healy18) at $867 \pm 1 \mathrm{~kg} / \mathrm{m}^{3}$. For unknown reasons, one ice sheet (Healy16) had a higher density of $916 \mathrm{~kg} / \mathrm{m}^{3}$.

Figure 1. Lines plan of USCGC Healy

Figure 2. The Healy Model 546 shown in the ice tank

Figure 3. The stern arrangement of the Healy Model 546

3.0 TEST PLAN

A total of 8 self-propelled manoeuvring runs were conducted in the three ice sheets. In addition, open water bollard (overload tests carried out at zero speed) and shaft friction tests were conducted. Selected test conditions from the sea trial were duplicated for the manoeuvring tests and the turning diameters were measured. Performance predictions were then made and compared to the fullscale data previously collected. Table 3 shows details of the three ice sheets (given in full scale) that were used for the tests. Table 4 summarizes the test conditions and the results for each run. The first three runs were conducted at a target ice thickness of 75 cm and an ice strength ranging from 483 to 683 kPa . Shaft speed was varied from 9 to 10 to 12 rpm for these runs. The rest of the tests were conducted at a target ice thickness of 100 cm and an ice strength ranging from 417 to 1081 kPa . The rudder angle was kept at 30 degrees, the same as that used in the sea trial. The delivered power was kept at around $30,000 \mathrm{hp}$ for most tests, which was consistent with the delivered power employed during the sea trial.

Table 3. Details of ice sheets used

Name	Date	Thickness $\mathbf{(h)}$	Strength $\left(\boldsymbol{\sigma}_{\mathbf{f}}\right)$	Density	$\mathbf{E / \boldsymbol { \sigma } _ { \mathbf { f } }}$
		$\mathbf{c m}$	$\mathbf{k P a}$	$\mathbf{M g} / \mathbf{m}^{\wedge} \mathbf{3}$	
Healy16	23 Nov 01	74	562	0.916	1938
Healy17	27 Nov 01	100	749	0.866	2156
Healy18	29 Nov 01	97	667	0.868	1256

Table 4. Summary of test results

Run	Shaft rpm	Ice Thickness	Ice Strength	Turning Diameter	Rudder Angle	Power	HP
	rpm	$\mathbf{c m}$	$\mathbf{k P a}$	\mathbf{m}	degree	kW	hp
Healy16-1	12	74.9	519	1321	29.6	22703	30433
Healy16-2	10	74.7	683	1329	29.9	14592	19560
Healy16-3	9	73.7	483	1337	30.4	9291	12455
Healy17-1	12	99.1	1081	1756	30.1	19551	26208
Healy17-3	12	100.7	417	1757	29.9	18546	24860
Healy18-1	12	96.7	621	1738	29.7	2369831767	
Healy18-2	12	97.4	751	1738	29.6	2422832478	
Healy18-3	12	97.6	628	1745	29.8	23630	31676

4.0 RESULTS

The detailed test log, the statistics, and the time histories for each test run are given in Appendix A. The ice sheet details are given in Appendix B.

4.1 Turning Circle Diameter

The channel profile was measured immediately after each test in one-meter intervals along the x-axis of the tank. The diameters corresponding to the inner and the outer channel edges were computed from a set of $x-y$ coordinate pairs based on the least squared method. Details of the channel data are given in Appendix C. The turning diameter for each run is given in Table 4.

4.2 Power Level

The delivered power, $P_{D}=\pi \sum Q_{i} . r p s_{i}$, was computed from the measured torque, Q_{i}, and the shaft's rps, $r p s_{i}$, where the subscript i denotes the port or starboard propulsion, and then scaled up to full-scale. The delivered power is given in Table 4.

4.3 Full-Scale Sea Trials

The sea trial results have been reported in Frederking et al (2001). They are summarized in Table 5 for completeness.

Table 5. Summary of manoeuvring runs from the sea trials

Test	Ice Thickness	Power	Diameter	Dia./B	h/B	Dia/L
$\#$	$\mathbf{C m}$	$\mathbf{H P}$	\mathbf{m}			
$000420 _1740$	87	20780	1538	61.5	0.0348	12.0
$000421 _1348$	95	28377	1538	61.5	0.0380	12.0
$000421 _1901$	95	28830	1388	55.5	0.0380	10.8
$000506 _0015$	140	23848	1666	66.6	0.0560	13.0
$000515 _1258$	132.5	29254	2174	87.0	0.0530	17.0
$000515 _1400$	132.5	29414	2128	85.1	0.0530	16.6
$000515 _1532$	70.5	27222	470	18.8	0.0282	3.7
$000515 _1532$	70.5	23234	528	21.1	0.0282	4.1
$000515 _1532$	70.5	23440	1142	45.7	0.0282	8.9
000515_1615	70.5	29299	1274	51.0	0.0282	10.0
Average	96.4	26370	1385	55.4	0.0386	10.8

4.4 Comparison With Full-Scale Data

Figure 4 gives the non-dimensional turning diameter as a function of the nondimensional ice thickness for the model and full-scale data. Despite the discrepancy in ice strength and power level tested between the model tests and sea trials, the model test data agree well with the sea trial data except for the three data points identified in the figure. These 3 outliers should be further investigated; they are possibly due to large-scale cracks in the ice sheet.

A multi-variance regression of the turning diameter conducted for the eight test runs as a function of ice thickness, ice strength, and the power level gives the following equation:

$$
\begin{equation*}
D=-2.502+21.67 h_{i}-0.226 \sigma_{f}-0.0095 P_{D} \tag{1}
\end{equation*}
$$

where D is the turning diameter $(\mathrm{m}), h_{i}$ is the ice thickness $(\mathrm{cm}), \sigma_{f}$ is the flexural strength of ice (kPa), and P_{D} is the power level (kW). The influences of ice thickness and delivered power on the turning circle are expected; however, it is not clear why increasing ice strength would result in decreasing turning diameter. In any case, the model test data show only a slight influence of ice strength on the turning diameter.

Full-scale turning circle diameters obtained from similar ice thicknesses, i.e., Runs 00515_1532, 00515_1615, 00421_1348, and 00421_1901, were selected for direct comparison with the model test data. Table 6 gives the turning diameters computed from Equation 1 and their corresponding full-scale measurement for the selected runs. Despite a small sample size, the comparison shows consistency.

Figure 4. The non-dimensional turning diameter as a function of nondimensional ice thickness for the sea trial and model test data
Table 6. Predictions from model test data (Equation 1) in comparison with selected full-scale data measurements

Test	Prediction from Model Scale Data (Equation 1)									Measured Ice Thickness	Ice Strength	Average Power	Average Diameter, Dia.	Dia./B	h/B	Dia./L	Average Dia./L
	$\mathbf{C m}$	$\mathbf{k P a}$	$\mathbf{H P}$	\mathbf{m}													
00515_1532 $\& 00515-1615$	70.5	300	26370	1208	48.3	0.0282	9.4	9.4									
$00421 _1348$ $\& 00421 _1901$	95	262	28600	1726	69.0	0.038	13.5	11.4									

5.0 DISCUSSIONS AND CONCLUSION

An analysis of the USCGC Healy manoeuvring tests data showed a good correlation between the model tests and the sea trial results. Multi-variance regression was performed with the model test data and the result compared with selected full-scale measurements. The turning diameter obtained during the model tests was the same in one case and slightly larger than its counterpart measured at sea trial in another case. The three outliers associated with the sea trial results (identified in Figure 4) warrant closer re-examination of these data points. The hull friction (0.034) used in the model tests was slightly lower than the target of 0.05 . The effect of this discrepancy was not incorporated in the analysis.

6.0 REFERENCES

Frederking, R., Kubat, I., and G. Timco (eds.), 2001. Proceedings of POAC '01, National Research Council of Canada, Ottawa, Vol. 2, p.891-973.

Jones, S.J., 2005. "Resistance and propulsion model tests of the USCGC Healy (model 546) in ice," Institute for Ocean Technology Report LM-2005-02, National Research Council of Canada, St. John's.

Jones, S.J., and Lau, M., 2006. "Propulsion and Manoeuvring Model Tests of the USCGC Healy in ice and correlation with full-scale," International Conference and Exhibition on Performance of Ships and Structures in Ice, July 16-19, 2006, Banff, Alberta.

Appendix A
Test log, data statistics and time histories
Test Log

TEST NAME	DAS FILE NAME	DATE	$\begin{gathered} \text { START_T } \\ \text { IME } \end{gathered}$	DAC_TEST_DESCRIPTION	SEL_T1	SEL_T2	Carriage Tach Velocity	Rudder Angle	$\left\|\begin{array}{c} \text { PORT } \\ \text { THRUST } \end{array}\right\|$	$\begin{gathered} \text { STBD } \\ \text { THRUST } \end{gathered}$	$\begin{gathered} \text { PORT } \\ \text { TORQUE } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { STBD } \\ \text { TORQUE } \end{gathered}\right.$	$\begin{gathered} \text { PORT } \\ \text { RPS } \end{gathered}$	$\begin{array}{\|l} \text { STBD } \\ \text { RPS } \end{array}$	Pitch	Roll
					s	s	m/s	deg	N	N	Nm	Nm	rps	rps	deg	deg
Healy 16-1	fr_r1_s1_12rps_004	23-Nov-01	14:14:25	12rps (FRM) 30mm 30kpa	33.88	46.74	0.83	30	61.9	20.3	4.1	-1.5	-12.1	12.1	0.5	2.5
Healy 16-2	fr_r2_s1_12rps_006	23-Nov-01	15:07:27	$12 \mathrm{rps}(\mathrm{FRM}) 30 \mathrm{~mm} 30 \mathrm{kpa}$ run 2	75.56	97.08	1	30.4	43.6	18.2	3	-0.9	-10	10.3	0.3	2.5
Healy 16-3	fr_r2_s1_9rps_007	23-Nov-01	15:39:14	9rps (FRM) 30mm 30kpa run 3	92.38	119.6	0.85	30.9	37.3	14.5	2.4	-0.7	-8.9	9.2	0.2	2.4
Healy 17-3	fr_r4_s2_12rps_011	27-Nov-01	15:20:48	12rps (FRM) 40 mm 40 kpa run 4	63.2	89.36	1.03	30.4	62.7	71.8	3.7	-1.2	-12	12.2	0.6	2.8
Healy 18-1	fr_r1_s3_12rps_014	29-Nov-01	13:03:45	sheet 3 healy 17 40mm30kpa run 1 12rps	52.78	77.58	0.81	30.2	70.5	68.5	4.1	-1.8	-12	12.3	0.6	2.5
Healy 18-2	fr_r2_s3_12rps_015	29-Nov-01	13:50:53	$\begin{gathered} \text { sheet } 3 \text { healy } 17 \\ 40 \mathrm{~mm} 30 \mathrm{kpa} \text { run } 212 \mathrm{rps} \end{gathered}$	56.06	78.16	1.09	30.1	69.8	68.1	3.9	-1	-12.1	12.4	0.6	2.4
Healy 18-3	fr_r3_s3_12rps_016	29-Nov-01	14:50:14	sheet 3 healy 17 40 mm 30 kpa run 312 rps	60.56	81.08	1.02	30.1	68.3	69.2	5.1	-1.4	-12.1	12.3	0.6	4.4

A-3

Descriltion	Min	Max	Mean	S.D.	an
Video Sync	0.3 P8 P6	0.36262	0.37615	0.0016656	1
Carriage Tach Velocity	-0.010988	0.02217 P	0.0013608	0.002 P 273	2
-udder Angle	-0.51731	$0.2 \mathrm{P6} 86$	-0.11963	0.058872	3
RO-T TF-UST	-0.677P9	P. 3376	2.67 P 1	1.8111	8
STBD TF-UST	-13.595	3.9730	-2.0875	8.3512	5
RO-T TO-QUE	-0.16961	0.125 P0	-0.01061P	$0.0732 \mathrm{P7}$	P
STBD TO-QUE	-0.10503	0.099768	0.0132 P 1	0.0378 P 2	7
$\mathrm{RO}^{-T}-\mathrm{RS}$	0.000 P3 P5 7	0.1 P3 71	0.07 P 05 P	0.010629	9
STBD - RS	-0.197P8	0.17565	0.0072032	0.025 P67	6
Iitch	-0.16699	0.25966	0.0095110	0.075 P83	10
-oll	-0.2 PP96	0.71178	0.25113	0.21035	11
---- Before Taring ----					
Descriation	Min	Max	Mean	S.D. Chan	
Video Sync Carriage Tach Velocity -udder Angle	0.3 P363	0.80821	0.37636	0.0022862	1
	0.56881	1.0011	0.77181	0.11 P5 7	2
	26.356	30.256	26.762	0.083 Pl 0	3
RO-T TF-UST	2P. 021	8P. P16	36.870	2.679 P	8
STBD TF-UST	-9.7752	1 P .192	5.5151	8.7507	5
RO-T TO-QUE	1.8970	2.6888	1.6150	0.20983	P
STBD TO-QUE	-2.6775	-0.98790	-1. P207	0.3207 P	7
RO-T -RS	-10.210	-6.6726	-10.0 P8	0.023852	9
STBD - RS	6.7517	10.386	6.69 P 8	0.086 P 07	6
Iitch	-0.25231	0.35081	0.083068	0.068966	10
	-2.7876	2.7317	0.16607	0.90973	11
---- After Taring ----					
Analysis Date/Time $=17$-DEC-2005 13:30:0P					
Acquired Date/Time $=23-\mathrm{NOV}-2001$ 15:07:27					
4 nI t pile $\quad=\mathrm{CF}$ S2 TA-ED					
OutIut pile $=\mathrm{p}^{-\mathrm{H}^{-}} 2_{\mathrm{H}}^{\mathrm{H}} \mathrm{S}_{\mathrm{H}}{ }^{12-} \mathrm{RS}_{\mathrm{H}} 00 \mathrm{P} . \mathrm{DAT}$					
Segment Start Time $=75.5 \mathrm{P0}$ seconds					
Segment End Time $=67.090$ seconds					
Descriction	Min	Max	Mean	S.D. Chan	
Video Sync	-0.015227	0.025057	0.00023935	0.0022862	1
Carriage Tach Velocity	0.56302	0.66672	0.77002	0.11 P5 7	2
	26.879	30.379	26.611	$0.083 \mathrm{Pl0}$	3
RO-T TF-UST	23.088	83. P83	3 P .868	2.679 P	8
STBD TF-UST	-P. 7277	19.226	7.5P2P	8.7507	5
RO-T TO-QUE	1.8676	2.6553	1.62 P 0	0.20983	P
STBD TO-QUE	-2.6609	-0.9P10P	-1. P380	0.3207 P	7
RO-T -RS	-10.29P	-10.086	-10.180	0.023852	9
STBD -RS	6.7885	10.382	6.6762	0.086 P07	6
İtch	-0.2P092	0.38160	0.038593	0.068966	10
-oll	-2.6661	2.890 P	-0.0520 P7	0.90973	11

 -
(s p u o o ə s) ə u ! L
$0 \cdot 9 z I$
o \square

A-19

A-23
A-24

Appendix B Ice sheet summary

NRC - INSTITUTE FOR MARINE DYNAMICS

ARCTIC VESSEL RESEARCH SECTION

ICE MECHANICAL PROPERTIES SUMMARY

Run	\#	Date Time		Hours	from Warm-up	Flexural Strength north south		mean
TURN	CIRC	1	11/23/2001	1414	10.81	33.1	22.9	28.0
TURN	CIRC	2	11/23/2001	1507	11.70	28.0	18.2	23.1
TURN	CIRC	3	11/23/2001	1539	12.23	25.3	15.9	20.6

NRC - INSTITUTE FOR MARINE DYNAMICS
ARCTIC VESSEL RESEARCH SECTION

ICE MECHANICAL PROPERTIES SUMMARY

1457	14.90	45 S	43.3	$23 . \pm 4.4$
			43.2	$19 .(\mathrm{u} / \mathrm{d} 81 \%)$

| TURN CIRC 1 | $11 / 27 / 2001$ | 0935 | 9.53 | 47.9 | 39.0 | 43.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| TURN CIRC 2 | $11 / 27 / 2001$ | 1145 | 11.70 | 36.1 | 31.2 | 33.7 |
| TURN CIRC 3 | $11 / 27 / 2001$ | 1520 | 15.28 | 22.6 | 21.7 | 22.1 |


```
1439 16.88 36S 40.6 27. \pm 1.3
        40.5 16.(u/d 61%)
1520 17.56 N 41.1 \pm 0.6 n=11
    S 41.3 \pm 1.0 n=11
1535 17.81 60S 41.1
868
```

Appendix C
Turning circle diameter analysis

The turning diameter was estimated from the measured channel profile, i.e., a set of x, y pairs that are supposed to reside on a circular arc, but with some noise. For a set of measured x and y coordinate pairs, the equation for the circle to these points is:

$$
\begin{equation*}
\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}=R^{2} \tag{C1}
\end{equation*}
$$

where $x_{\mathrm{c}}, y_{\mathrm{c}}$ and R are the x and y coordinates and the radius of the circle, respectively.
Figures C 1 to C 8 show the channel profile for each test runs respectively.

measured fitted and true circles, run 17-1

