| hd |

NRC Publications Archive
Archives des publications du CNRC

Eigen frequency statistics and excitation statistics in rooms: model
tests with electrical waves
Schroder, M.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de I'éditeur, utilisez le lien
DOl ci-dessous.

Publisher’s version / Version de I'éditeur:
https://doi.org/10.4224/20331430
Technical Translation (National Research Council of Canada); no. NRC-TT-1261,

1966

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=0edfffe6-385d-4856-be16-c41ea292d0d4
https://publications-cnrc.canada.ca/fra/voir/objet/?id=0edfffe6-385d-4856-be16-c41ea292d0d4

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’accés a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la
premiére page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

 Ld

National Research  Conseil national de
Council Canada recherches Canada Canada


https://doi.org/10.4224/20331430
https://nrc-publications.canada.ca/eng/view/object/?id=0edfffe6-385d-4856-be16-c41ea292d0d4
https://publications-cnrc.canada.ca/fra/voir/objet/?id=0edfffe6-385d-4856-be16-c41ea292d0d4
https://nrc-publications.canada.ca/eng/copyright
https://publications-cnrc.canada.ca/fra/droits

PREFACE

The mathematics underlylng the distribution of natural
modes of acoustical vibrations in a room 1s the same as that for
electromagnetic eigen functions 1n a resonant enclosure.

This paper concentrates almost entirely on the electrical
case and discusses both the relative amplitudes and the frequency
spacing between eigen functions. The theoretical deductlons are
supported by experimental observations on these quantities. It
18 shown that when the ratio of enclosure length to wavelength is
around 6 : 1 the degree of degeneracy of modes in a perfect cube
i3 not as great as one would expect from theoretical conslderations.

This is taken to mean that the irregularities in the construct-
ion of the cavity introduce a degree of randomness. When the cube
is deformed by about 1.0% so that the sides originally 200 mm x 200
mm X 200 mm become 200 mm X 199 mm x 198 mm, the randomness becomes
complete. Even the lnherent degeneracy of 2 due to the two possible
directions of polarisation is removed due to a further degree of
randomness belng impressed on the assumed Polisson type distribution
of the mode separation.

The other measure of randomness 1s provided by the relative
amplitudes of the different eigen functions. A dellberate amount
of degeneracy 1ls 1ntroduced by actuating the modes in the centre
of one face. By introducing irregularities of the order of the
cube of the wavelength, the degree of randomness approaches its
theoretical maximum.

All the conclusions reached for the electromagnetic eigen
functions should hold for the acoustical case. The only modification
which must be made to all the deductions 1s the removal of the
polarisation degeneracy.

The Divislion of Bullding Research wishes to record its thanks
to Mr. D.A. Sinclair, Head, Translatlons Section, National Research
Councll, for translating this paper and to Dr. R.J. Donato who
checked the translation.

Ottawa R.F. Legget
October 1966 Director
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EIGEN FFREQUENCY STATISTICS AND EXCITATION STATISTICS IN ROOMS3

MODEL TESTS WITH ELECTRICAL WAVES

Abstract

In the first part of the present paper the natural frequency
spacing statistics of resonant cavitiles 1s investigated. It 1is
shown that the non-accidental degenerations of regular rooms
can be effectively split up by minute deviations from geometric
symmetry. With a cube of 20 cm length, for instance, the average
degree of degeneration 1s 24 at 3 cm wavelength. However, a
difference between the three dimensions of 0.1 cm only suffices
to make the spacing statistics a purely random one.

In the second part the excltation statistics of the normal
modes 1s investlipgated. Here again a degenerate case 1s the
starting point. A rectangular cavity 1s excited at the central
point of one of 1its surfaces. In thls manner only one fourth of
the normal modes wlll be excited. But introducing a tiny perturbing
element with a volume of (wavelength)® 1into the resonator results
in all the modes belng exclted according to a purely random law.

Though the present investigation 1s of interest within the
domain of room acoustics predominantly, all measurements have been
performed with microwaves -in metallic cavities, because of thelr
high @ which 1s 1n the order of some 10% Thus the individual
resonances c¢an be resolved even at higher ratlios of room dimensions
to wavelength.

1. Introduction

The fréquency curve of a room can be regarded as a superposition of the
individual resonance curves. It follows that the frequency curve 1s determined
by three dlstributlons, namely the statistics of the spacling, the exclitation
and the damplng of the lndlvidual elgen frequencles. In the present study
the spacing and excltatlon statistlics are lnvestigated.

It is shown that for all actual comparatively large rooms the spacing
and excltation statistlcs are those of a completely random space. Accordingly,
the variations of the frequency curve of a room (mean height of the "peaks",
mean distance between maxima, etc.) become, in the limiting case of "half-
value width large compared with the mean distance between elgen frequencies"
(EF) and "linear dimensions of the room large compared with the wavelength",

a functlion of the reverberatlion time only.

There 1s no difficulty in transferring the results obtalned from electri-
cal resonant cavitles to corresponding acoustical rooms, provided it 1s kept
in mind that the number of EF 1n a gilven 1nterval is about twlce as great
as 1n the analogous acoustical case. This 1s because of the transversal
character of electromagnetic waves, for the complete description of which it



~ e

135 necessary to specify the directlon of polarization as well as the data
needed for the description of a sound wave 1n alr. For a rectangular space
the EF densities can be glven as a function of the volume V, the area S

and the edge length L:

e 7 ] ,
Number of acoustical LEF :(f V.8 “ij.fi; (1a)
PO TU R T A
8V L\. Af (1b)
number of electrical EF = YA

where A is the wavelength and Af/f the relative size of the frequency interval.
For the number of electrical EF we here conslder only the term given by

the volume. The correctlion resulting from addition of the edge length term

is only about -1%. Formula {1lb) can then be written in the following simple

fOI‘m ;l7 33 (2)

T A

where af/f i1s the mean relative interval between neighbouring EF.

Another difference from acoustics consists 1n the fact that in the
electrical case both field values are vectors. For sound in ailr there is a
scalar fleld value, the sound pressure. As a consequence, for a rectangular a-
coustlc resonator there 1is a possibllity of excitling all EF uniformly, since all
natural vibrations show a bulging of the sound preséure in the corners. With
an electrical resonant cavity, however, it 1s ilmpossible to produce an
excitation at one point such that all EF are uniformly excited.

2. The Spacling Statistics of the Eigen Frequencies

(a) Definition of a spacing parameter

As a characteristic value for the more or less uniform distribution of
the EF the second moment of the spacing statistics between each palr of
neighbouring EF has been 1ntroduced by R.H. Bolt(l’z), and 18 referred to the
mean interval determined principally by the volume. He denotes this value

by v ',
DX
Ve g = DR,
(__ Vd/) /
N L

where df 1s the distance between nelghbouring EF, Af the size of the interval
in questilion and N the number of EF 1n this interval.

When the intervals between the EF are equal, then according to this
definltion ¥ = 1, for a completely random distribution, where the occurrence
of an interval df has a probability proportional to exp(-df/df), ¥ = 2. In
rooms with a high degree of geometric symmetry (spheres, cubes, ellipsoids
of rotation, bodles with square cross-sections, cylinders, etc.) non-accident
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degenerations occur. A certain number of EF colinclde, and leave correspond-
ingly large gaps on the frequency axls. The spacing index of the EF, ¥, is
large, since in addition to the frequency interval 0O, falirly large intervals
occur more frequently than would be the case for a pure random distribution.
The question 13, how far must the shape of the resonator depart from geomet-
rical symmetry 1n order to render the distribution of the EF random. Quantita-
tively speaking, the degree of randomness 1s measured by the closeness of

the approach of ¥ to the value 2.

It should be mentioned that 1t is not always possible to infer the
existence of pure random distribution from the condition¥= 2. 1In a
¢ylindrical resonator, for example, the cross-section of which can be converted
into itself by a rotation with an angle of less than 180°, and which is oper-
ated in the fundamental vibration form, the EF are degenerate and are
equidistant. In the frequency range in which the resonator can vibrate only
in the fundamental vibration form, this also glvesV¥ = 2, even though there
can be no question here of randomness of the EF distribution.

(v) Results

The measurements were begun with a rectangular cavity of dimensilons
17 x 27 x 43 cm®, corresponding to an edge length ratio of approximately
2:3%:5, 127 EF were counted in an interval of 100 MHz at A = 3.2 em, The
theoretical number of EF for this interval 1s N = 15141 (Thus 30 EF were not
found). The sum of the squares of the intervals waSIZEf’ = 126 MHz. The
spacing index thus becomes

N w
T:KFZﬂﬁzlw.

This result implies, of course, that all EF not found coincide exactly
with other EF, so that the intervals still to be added are O intervals. This
is certainly only approximately true. The true value of ¥ for the evaluated
interval is thus somewhat lower.

The result ¥= 2 shows that the distribution of the EF in the rectangular
space 1n question 18 random, for ¥= 2 is the value for a totally random
distribution. What 1s surprising about this result is the fact that the
rectangular space is nevertheless still a very regular body. The original
explanation for this phenomenon was the fact that the dimensions of the
rectangle had been chosen In accordance with the ratio 1 : %m:: bﬁg, or
approximately 2 : 3 :5(3).

In order to clarify the situation, measurements were then carried out
in a cube, and led to no less astonishing results. As a consequence the above
test result must be interpreted as follows: the slight departures of the side
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ratlos from the simple whole numbers 2 : 3 : 5, comblned wlth the slight
geometrical lrregularities of the resonator are by themselves sufficlent to
produce a completely random distrlbution of the EF. The theory of the magical
ratio 2 ¢ % : 5 has no significances here in view of the given ratio of wave-
length to edge length of 1 : 6. In the case of rectangular spaces the value
of ¥ 1s determined rather by the extent to whlch the slde ratlos depart from
amall whole numbers. Thls becomes even clearer when we consider the test
results on the cube.

The most striking phenomenon I1n the EF distribution of a cube 1s the
fact that there isaminimum Ilnterval between any two non-coincident EF. The
EF of a cube are glven by the formula

LY Y
from e Vnlopmiy nl s
20 ;

where ¢ 1is the veloclity of llght, a the side length of the cube and n,
n, the three wave indices, giving the number of half perilods in the direction

ny,

of the three edges.

The sum of the squares within the root is a whole number. The minimum
distance Df between two non-coinclding EF 18 given by the increase of this
sum by unity. Hence, for the relative minimum interval we immediately get

D1 1 1(AT
f 2 n.:+n§+n3 8 (3 : (Ja>

Comparing equation (2) for the mean interval of EF with this,

7w
/ T 8V

it will be recognized that on the average at least

=T (ob)

EF must coincide. In fact, the mean degree of degeneration is somewhat great-
er, slnce even intervals 2 - Df occur. This 1s always the case whenever a
whole number cannot be regresented as the sum of three squares. As the
, that 1s the case 1in the limit for every sixth
whole number., When the numbers are large thus the mean degree of degenerat-
jon 1s greater than the value of Df/df by a factor of 6/5:
Mean degree of degeneration of a cube = ér . a . (3c)

5 A
The spacing index 1s then obtailned dlrectly from the definition

1
theory of numbers shows(‘

y 4t a

DuRg T ———t —

B (2a)

In Table I the possible values of n® and degrees of degeneratlon are



given for the 1interval

P 2
n s a,r':',-|< nr‘:',-l- n,f = 160 1o = 102.

It will be noted that in general the degree of degeneratlon 1is twlce as
great in the electrical case as in the acoustical, since there are two possible
polarizations for the oblique electrical waves, for which none of the three
wave 1ndices n., ny, n_ vanishes.

Under the column "permutations" 1is given the number of possible permuta-
tions of the three indices. Generally speaklng this 1s six, if two indices
are the same, however, 1t 1s reduced to three.

According to Table I the total number of electrical EF for this 1nterval
is 249. According to formula (1b), 254 EF should fall within this interval,
and according to the simplified formula (2), 255. The total number of
acoustical EF for the same interval according to Table I is 135. Formula (la)
glves the value 143,

Of the 13 indices tabulated, 10 are occupled by EF. The average de-
generation, therefore, is 24,9 in the electrical case. According to formula
(3c) the mean degree of degeneration for the region about n? = 156 should be
23.5. It 1s further noted that the highest degree of degeneration, U8, is
Just twice the mean. R.H. Bolt(l) has already pointed thils out.

The EF groups llsted in the table were measured in a cube of 20 cm slde
in a reglon about the wavelength 3.2 cm. The results are assembled 1n Table
II. The experimental apparatus will be described below. The second column
agaln glves the degree of degeneration as obtained from Table I. In the next
column we enter the number of EF actually found, which, of course, 1s still
consliderably smaller, since the EF are decldedly grouped. Nevertheless more
EF were found in more densely occupled places than for more sparsely occupied
ones. The 6 EF belonging to the index n® = 160 were actually all detected.

In the next column the spread of the 1ndividual groups is recorded, as caused
by the slight mechanical tolerances in the manufacture of the cube. Finally,
the last column gives the interval between the adJacent EF of two neighbouring
groups.

The measured groups cover a wavelength reglon of 3.268 - 3.143 cm, corres-
ponding to a frequency 1nterval of 360 MHz., By summation of the spreads and
the intervals between groups from n® = 150 to 161 in accordance with the last
two columns of Table II, we obtain 354 MHz. This provides a check on the
accuracy with which the indlvidual frequency intervals have been measured.

I we assume that the EF are situated randomly within the 1ndividual
groups, then from the above test results the spacing index of the intervals is
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obtained as ¥ = 16. We are led to assume randomness within the individual

groups by observing the spectra on the screen of the cathode ray tube. This
assumption, however, 1s not essentlal and has no great 1nfluence on the value
of ¥, which 1s determined chiefly by the great distances between the groups.

The theoretical spacing index of the EF 1s calculated for the present
case from Table I and glves ¥ = 27.8. According to formula (3d) it should be
26.2.

At first glance the difference between the measured ¥ = 16 and the
theoretical value of 27 1is disconcerting. Here we already see how very
sensltively the spacing index reacts to small departures from the ideal geomet-
rical shape. The mechanlcal tolerances are of the order of a few tenths of a
millimetre. With a side of 20 cm, thils comes to only about 0.1%. The influ-
of the excitation on the other hand 1s negliglible, as can be established by
comparisonag for excltation of different intensity.

The oscillograms of Flgures 1 and 2 are a good lllustratlion of these con-
ditions. Fig. la shows the 24 EF of the group n? = 158, of which, however,
only 12 are really recognlizable. Figures 1lb to 1d show the same group for
different contractions of two opposite faces of the cube. 1In Flg. 1ld to the
right the transition to the group n? = 157 1s already made {higher frequencies
are plotted to the left), although the "effective contraction" 1s only about
0.25 mm. (The effective contraction 1s defined by the change of volume divid-
ed by the area of the squeezed face.)

In order to cleose the double gaps as well, 1.e. 1n order to get a transl-
tion here to the group n? = 160, contraction would have to be twice as great.
If the group were not already divided up, the necessary change would of course
be somewhat greater still. For the closing of the double gaps 2-Df of a
mathematical cube a relative change of side of 2. Df/f = (A/2a)? 1is required.

Cn contraction, the EF form into ever new comblnations, so that the
oscillogram changes continuously. Only a few 1solated EF remain intact,

i.e. can be differentiated, like the one furthest to the left in Fig. 1. This
one 1s recognlizable in all four osclllograms.

Figure 2 shows four oscillograms of the 6 EF's of the group n°= 160.

In this rare case all the EF are visible and can be differentlated. Figures
2b to 2d show the group for a slight contraction 1n each of the three edge
directions. It will be seen that two of the 6 EF are always displaced to-
wards higher frequencies (to the left), while the other four are scarcely
affected. This 1s because the 6 EF of the group n? = 160 are not merely
tangential waves, because one of the three waves indices (12, 4, 0) vanishes,
but are also quasi-axial, since one of the two non-vanishing indices (4) 1is
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considerably smaller than the other (12). The angles between the wave
vector and the three edge directions are 18°, 72° and 90°.

Following the measurement of the cube, the EF atatistlcs of a near cube
with the dimensions 200 x 200 x 199 mm?® were recorded. The change of side
length by 1 mm, corresponding to 0.5%, should, on the basis of the above
considerations, be enough to cause the widest gaps to vanish. In an interval
of 355 MHz, 151 EF were found. The theoretical number 1s 231. The sum of
the squares of the intervals was 1966 MHz . Agsumling that the EF not found
coincide exactly with others, then the missing intervals are null intervala, so
that as an upper boundary for the relatlve spacing lndex we have Wu = 3.6.
However, 1f 1t be assumed that the EF not found do not coinclde with the
others, then the value of ¥ i3 reduced by the ratio 151/231. This ylelds, as
a lower limit for the spacing index, Wl = 2.4 (in this connection see Section
2 (c)).

The truth lles between these extremes. True, the EF not found do not
coincide exactly with the others, but they will preferably lie close to them.
The further an EF 1s situated from the neighbouring one, the less likely 1t is
that it will be accldentally concealed by a more strongly excited one. The
greater, therefore, is the probability that 1t will be found. If we assume
that the EF not found are situated at a mean distance of 0.8 MHz from theilr
nearest neighbours, then the most probable value for the index of fluctuation

is given by:
W=W—4§:ﬁ!i5=3|
P I TR
where N is the theoretical number of EF, N' the number of EF found, ds the
mean distance between the EF not found and their nearest neighbours, df the
theoretical mean distance between EF. The formula wlll be derived in Section
2 (c).

It will be seen that ¥is reduced to almost one tenth of the theoretical
value by the reduction of a side from 200 mm to 199 mm. For this, of course,
the mechanical tolerances, i.e. principally the irregularities in the
boundary faces of the cube, are in part responsible. For in general four
EF should stlll coincide, and even for otherwise random distrlibution this
should yield a value of ¥ = 4 -2 = . (3ince two sides are equal, there are
two possible permutations. For the oblique waves present 1n the remainder
a further factor of 2 1s added on account of the two independent polarizat-
ions.) The mechanical tolerances also offset the still remaining degenerat-
ions. However, a deflnlte departure from the value of the purely accidental
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distributionV = 2'can st1l1ll be discerned.

Two other near cubes with dimensions 200 x 200 x 198 mm® and 200 x 199 x
198 mm® were then evaluated. The first one 1is similar to the one Just
discussed except that one side 1s still further reduced from 199 to 198 mm.
The second near cube now retains only the symmetry of a general parallelepiped.

Measurements on the near cube of 200 x 200 x 198 mm> in an interval of
97 MHz reveal 44 EF. The theoretical number is 632. The sum of the squares
of the intervals was 543% MHz?, Thus as an upper boundary we get {J = 2,6
and the lower boundary Wl = 2.5. The most probable value obtalned with the
formula employed above 1s¥= 3.2. As expected, the gtatistics of the near
cube 200 x 200 x 198 mm®> do not differ from that with the dimensilons 200 x
200 x 199 mm>. Indeed the agreement 18 even closer than would be expected
in view of the statlstical fluctuations of flnite test intervals.

In the parallelepiped 200 x 199 x 198 mm> an interval of 671 MHz was
measured. 230 of the theoretical #2C EF were found, The sum of the squares
of the intervals was 3055 MHz“. As boundaries for the index of fluctuation,
L= 1.6,

The assumption that the true value of ¥= 2, 13 conflrmed by comparing
the relative frequencies of the individual intervals with the theoretical
frequency distribution of intervals for random positions of the EF. This
1s doneg in Filg. 3. The smooth curve 1s the theoretical distribution, which
runs proportionally to exp(- df/df) with df = 1.6 MHz. The broken line
gilves the measured frequencies taken 1in groups of 0.5 MHz width. A good

therefore we get ¥ = 2.8 and ¥

agreement 1s noted above 2 MHz, whereas for smaller frequency intervals the
number of measured intervals lags farther and farther behind the theoretical
number. This 1s the "concealing effect" already mentioned: weakly excited
EF are no longer detectable in the immedilate vicinity of more strongly
exclited ones,.

The result ¥= 2 for the parallelepiped with dimensions 200 x 199 x 198 mm®
st11l requires some explanation. For an otherwlisgse random distribution of the
EF the value of ¥ should actually be about four, owlng to the degeneration of
polarization always present 1n the paralleleplped. It 1s easily realized,
however, that the slightest irregularities of the boundary faces agailn
eliminate this cause of degeneration. For the mathematical parallelepiped
two EF always coincide in the oblique waves. If there is no other symmetry
(the sides show no simple relationship with each other), the spacing
statlstics of these simply degenerated EF obey the law of chance, wlth a mean
interval, of course, of 2 - df. In order to eliminate this regularity, the
EF need merely be displaced relative to each other randomly up to 2 - df.
This can be brought about by mechanical tolerances of the order of a ET/f.
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In the present instance these are approximately 0.03 mm. Since the
irregularities of the last measured parallelepiped are almost an order of
magnitude greater, we can certainly conclude that the spacing index is equal
to two in this case. This finding will be applied below to an estimation

of the masking width ds.

From the above measurements on a parallelepiped, a cube, and three near
cubes, it can be concluded that the distribution of EF in every actually
occurring space of dimensions greater than a few wavelengths follows the law
of chance. Moreover, since the phenomenon of polarization degeneration
does not occur in the case of alr-transmitted sound, the boundary of the space
in the acoustical case can even consist of mathematically smooth surfaces.

(¢) An estimate of the fluctuation square

According to the definition given above of the relative fluctuation
square ¥ of the spacing statistics of the EF, we may write

N
g N 2
"=aE L

where Af = §;f is the size of the measured interval. The index "N" over the
summation sIén indicates that the sum in this formula has "N" terms.

In reality, however, only N'< N intervals were measured and some of
them wrongly, that 1s to say when they were divided up by EF which were not

2 N

found. In place of the sum df”, only the expression Z: ar* 1s known,
n

s

where df' represents the measured intervals which agree only partially with

the true intervals df.
Now if the intervals not found are equal to zero, then

N N’
Ddp=)dm.

This assumption 18 tantamount to saying that the EF not found coincide exactly
with other EF, and leads to an upper limit for the fluctuation square:

Ne

vV = N dy’se
u—r/az " (4a)

A lower boundary for the fluctuation square is obtained from the assumption
that the EF not found are independent of the others and the spacing statistics
remain the same owing to their being added. Then

N

) YA\ RO
N ’ , . ’ ,
Sie-s S35
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and consequently,

hd NI I!'W
'IZFZ“"" (4b)

In reality the EF not found are nelther entirely independent of those that
are found, nor do they colncide exactly with these. Rather they are situated
wlth a certaln distribution in the vicinlty of more strongly excited ones.
This 18 shown very strikingly by Flg. 3. The intervals df >2MHz have all been
found. Of the other intervals, the smaller they are the more of them are
missing.

We are thus able to calculateV more accurately than from the above
boundary values Wu and Tl. If we denote the distances from the EF neot found
to the nearest nelghbours by ds, then we may write:

2N --N NN

N - . N—N-
Dap =34 (@ —dap+ ) det,

The three terms on the right slde state that of the N' measured intervals
N' -« (N - N'}) = 2N' - N remaln intact. N - N' intervals are reduced by ds and
N - N' intervals of the slze ds are newly added.

This theorem, of course, 1lmplles that no many of the newly added EF
fall in the same gaps. The smaller N - N' is compared with N, the better
satlsfled this condition 1s. Assumlng further that the new intervals are
small compared with measured df', then ds? can be neglected compared with

df' - ds and we obtain —

N—N*

N N’
Zd/’:Zd]”—2Zd/’-da,

or, i1f the distributions of df' and ds are uncorrelated:

N N

S D — 2N W) qF - da.

From these sums we agaln obtain the relative fluctuation squares by normaliz-
ing:
(N—N") ds

Y=Y, -2

ds
TR

In the case of the parallelepliped measured above, thls formula can be used
for the calculation of the masking width ds. WithV¥= 2, Wu = 2.8, N = 420,
N' = 230 and df = 1.6 MHz, then

ds = 0.8 MH2x .
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This value for the masking width, the mean value of the EF not found, would
also be assumed by consideration of Fig. 3. ds = 0.8 MHz also fits well for
the average half-value width of the EF, which was determined with 6.5 MHz.
The average half-value wldth of the more strongly excited EF, which of course
are the principal causes of the masking effect, 1s somewhat greater still.
The greatest half-value wildths are situated even at 1.4 MHz.

In the corrections of the¥ values 1n the preceding section this value for
the masking width ds = 0.8 MHz was always employed. The transfer of this
value of ds to other resonators is valid Af the average half-value width of
the EF is the same and the volumes (EF densitiles) are not too different.

3. The Excltatlion Statlstics of the Natural Vibratlons

(a) Definition of an excitation parameter

As an additlonal parameter of the wave theory, on whlich the frequency
curve of a space 1s based, the excltation statlstics of the natural vibrations
have been investigated. Similar toY above, we now define a relative
fluctuation square of the excltation;

where a 13 a measure of the excltation intensity of the individual natural
vibrations, and specifically a2? ~ Pab’ of the energy absorbed for the EF in
question,

For example, 1f a rectangular cavity resonator 1s exclted at the centre
of one side, only a quarter of all the EF are lnvolved. From the definition
given above it follows immediately that ® 1s comparatively large, and in any
case greater than 4. ® = 4 only for the case that the EF involved are all
equally strong.

This case, which 18 degenerate with respect to the excltation, can be
eliminated by interferences which destroy the origlinal symmetry of the arrange-
ment. The new natural vibrations are then combinations of all natural
vibration forms, including those not previously excited. The number of
resonances in a glven frequency interval 1s increased by a factor of &,

If one of these EF 1s exclted, then no longer wlll only one or two
vibration forms of the paralleleplped be excited wlth a uniform wave vector,
as 1s the case in the undisturbed rectangular box, but an ever greater number
simultaneously, the wave vectors of which are polnted in various directions.
This wave theory phenomenon of the loss of certaln dilstinctive directions 1is
not to be confused with the concept of diffuseness or dlrection diffuse—(3’5_9)
ness used elsewhere 1n the acoustlcs of space.
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(b) Results

The measurements were carried out on an electromagnetic cavity resonator
with dimensions 101 x 150 x 299 mm>. For the fluctuation square of the
intervals of the EF the value ¥= 2.2 18 obtained. For the round numbers
100 x 150 x 300 mm®, approximately¥ = 10 would have been obtained.

First two measurements were made of the excitation statistics in the
undisturbed space. The interval employed for all measurements was chosen
such that the theoretical number of EF was 200. Actually 56 and 54 EF were
observed respectively, 1.e. somewhat more than expected. This was due, of
course, to unavoidable departures from perfect gsymmetry. The excitation
parameter in one case was &= 4.96, and in the other® = 5.04. The two measure-
ments were made with coupling intensitles between resonator and generator
differing greatly from each other. The small influence on the result of
the measurement will be recognilzed,

In order to have a better comparison with the theory, the 6 and 4 weak-~
est EF, respectively, can be disregarded. We then get® = 5.22 and 5.18,
respectively. The theoretical value 5.53, which will be derived below, is of
course unobtainable, because the neglect of the weakest EF 1s not perfect
compensation for the given departure from mathematical symmetry. The agree-
ment with the theory is nevertheless good.

The question now arises as to how the interferences of the surface of the
resonator must be made in order to mix substantially the EF of the parallele-
plped, thereby improving the excitatlon statistics. In this connection the
theory, which 1s outlined further below, states:

1. The critical interference volume 8V is of the order of A®, regardless of
the size of the space.

2. The effect of the Interference with respect to the mixing of the EF 1is
independent of the geometrical form of the interference, provided its
length 1s small compared with the wavelength.

3. The local position and distribution of the interference likewlse has no
effect on the mixing, unless the original symmetry of the set-up 1is only
partially destroyed by the interference.

In what follows we shall first mention a series of experiments that
confirm these three theoretical results. In Fig. 4 the test results for ¢
are plotted against the interference volume 6V. The open circles denote
measurements with small cubes which were placed on the floor of the resonator
as interfering bodies. The fillled-in circles give the measurements wilth
circular cones. The small square denotes a measuring point at which the cube
13 divided into eight equal parts and distributed over the space. The two
circles on the ordinate of the diagram are the two measurements already cited
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for the empty box. The two boundary tangents ¢ = 5.55 for the empty box and

¢ = 1.57 for an excltation statistic of pure chance are alao included in the

drawing. As 1s evident from Filg. 4, 1s a function of the interference volume
o6V only. For 6V > XV? the value of ¢ 1s statlonary. The departure from the

theoretical value 1.57 1s only 3% .

In particular the independence of of the position of the interference
has been confirmed, which 1n each case has been chosen purely acclildentally by
arbltrary placing the interfering element into the space. Moreover, three
more measurements with the A® cube have been made in this connection. The
results were ® = 1.60, 1.62 and 1.64, respectively. The remaining fluctuations
are of a statistical nature. They would vanish only for the measurement of
an infinitely large Interval.

However, 1f the position of the interference element 1s deliberately
preselected in such a way that the original symmetry of the space remalns
wholly or partially intact, then only an imperfect intermingling of the EF
occurs, ¢ 1s greater than for an equal interference volume but asymmetrical
position. To illustrate this a measurement with the A3 cube has been made,
where the cube was placed iIn the centre of a plane perpendicular to the
excitation face. As a consequence only one of the two mirror symmetries in
the plane of excitation 1s destroyed. Instead of about 50 EF which would be
found in the empty space, 1in this case about twice that number (exactly 103)
EF were obtalined. For the fluctuation parameter of the excitation we got
¢ = 2.77. The theoretical value for satisfactory symmetry is ¢ = 2 + 1.57 = @
3.14.

(c) Theory of the excitation parameter

According to the definition given above the excltation intensity a 1is
measured by the energy Pab absorbed for the EF involved. For the energy

absorbed by the resonator, however, we have(lj):
Py=2D 2,
ab == Liypur dr+do .

Here do 1s the internal damplng of the resonator and dr the damping due
to the coupling. P1n 1s the energy recelved from the generator by radiation.
If P, 1s kept constant and the coupling is weak (dr<< do), both of which
condltions are easily realized, the fluctuation of the internal damping of
the different EF 1s relatively small, and the simple relationship a*~ dr
Egldsi_ (The flqgfuation of do was measured on 108 EF, The result was
dg - d; = 0.07-dg. The correction of ¢ when the fluctuation of d_ was taken
into account was approximately »%).

If the coupling takes place through a hole at the end of a hollow conductor
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which conducts only the fundamental wave, this can be regarded as a magnetic
dipole. The coupling strength is proportional to the component Hy of the
magnetic field of the natural vibration involved parallel to the exciting
field in the hole(lu). For the coupling damping, therefore, we may write

dr ~ H?. fThe relative fluctuation square of the excitation thus becomes:

& H?
e )
@ r

In case of an undistorted parallelepiped which is excited at the centre of a
side, we may now write:

0 = [o for £ of all EF,
v

sin 0 - cos ¢ for the remaining %.

Here ¢ is the angle between the wave vector of the natural vibration involved
and the y direction, the direction of the exciting magnetic fleld, and ¢ the
angle of polarization.

In forming the average, V¥ should be averaged over all space directions
and ¢ over all polarizations:

Thus, for the undistorted parallelepiped

[
By==533....

In the wholly random case the component Hy is made up of a large number of
independent components. The Hy values are thus distributed according to Gauss:

W(H,) ~ exp(—HE[2-HY).

Hence, we get directly

7R
|H | .]13,

14
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or, for the fluctuation parameter in the limiting case of strong mixing:
tb“,:%-—'—- L67... .

Finally, we shall take up the question of how the interference volume 8V (the
variation of the surface of the parallelepiped) must be produced in order to
attain the state of randomness characterized by & = 1.57.

According to a known result of the time-independent theory of
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distortion(le)

value problem

, the variation of the eigen functions Py of the boundary

3
A+ kg =0, Cl) =0

n BauNBARY
are represented as follows:
=9 4D by
i

If the distortion consists 1n a deformation of the surface 6r, then the
coefflcients are

{ l o* 02 0

= k"z lrnz /3’?; 32 O ds,

assuming that the undistorted eigen functions are normallzed:

/1 av=1.

The kizvalues are the eigen values belonging to the mi values. The first
Integral should be extended over the area S, the second over the volume V of
the resonator.

If the distortion 1s concentrated 1in a reglon whose volume is small

compared with the wavelength, we may write, more simply,

l 0. D
,,z k,,z Pi ot 9f 8V.

Here the elgen functlons are to be taken at the place of the distortion. The
independence of b1J from the form of the distortion will be recognized.

Now, forming the mean value of IbiJI for a constant difference of elgen
values, then, 1f the place possesses no speclal properties of symmetry, by
neglecting numerical factors of the order of unlty and observing the stand-
ardizationfgiF = 1/V, we obtain

L AL
KtV
It will be realized that for this mean value formation a specific position of
the distortion has dlsappeared. The mixing coefficlents are now only a
function of the slze of the dlstortion volume and the distance between the
two elgen values 1nvolved.

Exactly the same result would be obtalned 1f the distortions were not
concentrated in one place, but were distributed over several positions; assum-
ing that all partial distortions are again small in thelr geometrlc volume
compared with the wavelength. 2

Going from the eigen values ki to the frequency scale and denotling the
difference of EF wlth Afij’ the above formula acquires the followlng still
simpler form
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Y
280y V (5a)

This formula permits an interesting interpretation if the distorted volume 5V
is replaced by the mean detunling caused by the distortlion. For the varliation

|by| =

of eigen values, that 1s, we may write

K= f/srw ——zp,ds

or in the case of concentrated distortion:
a!
| ,wBV
Forming the mean value glves
e 2038V
LY

Finally golng over to the frequency scale, we obtain the known formula

g__l
f 3

14
Ve

Substituting this relation between distortion volume 6V and mean detuning
8f in equation (5a), and neglecting the numerical factor which is close to
unlty, we obtailn

5
byj| = -—
|il A/il

(5b)
In this form it 1s clear that precisely those EF whose distance apart is less
than the mean detunlng are the ones that are intermingled.

However, replacing the Afi values in equation (5a) by the mean 1nterval
between two EF according to formula (2), and requiring rBIE] = 1, then as a
crltical value for the distorted volume for the intermingling of neighbouring

natural vibrations, we get
1

8V=4—n_1~‘. (50)
Egssentlally then, the required distorted volume does not depend on the
dimenslons of the space but only on the wavelength.

Thls result holds even 1n the case of damped natural vibrations, even if
the half-value width of the resonance curves 1is large compared with the mean
interval between EF. The relative half-value, however, must be small compared
wlth unity.

Summing up the results of the lnvestigation of the statistics of intervals
and excitation of EF once more, it may be sald that for every relatilvely
large occurring space both these statistlcs follow the law of chance. The
necessary departures from mathemtical symmetry are lmplied here in the three
words "occurring in practice'. Assuming that the EF have uniform half-width,
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or that the half-wlidth varies but 1little, 1t follows that the statistical
parameters of the frequency curve of such a space (mean height of the "peak",
mean distance maxima, etc.) are given by the reverberation time alone.

If the latter conditlion 1s not satisfled, it must be expected that, for
example, the mean distance between maxima of the frequency curve depends also

on the fluctuation of the reverberation time(lo"ll),

4. The Apparatus

Figure 5 shows a photograph of the microwave part of the apparatus for
measuring the excitation statistics. The Klystron generator for wavelengths
of about 3.2 cm will be recognized. The Klystron passes 1ts energy through a
(not shown) attenuator to a so-called "magic tee"(ls”ls) Here the energy is
divided into two parts on the two slde arms. Fifty percent vanishes in the
non-reflecting cut-off at the left of the picture. The other half passes to
the resonator, which is coupled on by a dlaphragm. oOutside of the resonances
all energy 1is reflected, while at resonance a conslderable part of the energy
is absorbed. The remaining energy returns to the maglic tee, where another
division takes place. Fifty percent goes into the generator arm and 1is
absorbed there by the attenuator. Finally, the other half goes into the
fourth arm to the detector, which has been left out of Fig. 5 for the sake of
simplicity. At a maximum, therefore, 25% of the total energy can reach the
detector, and is thus avallable for the reading. It can be shown that thils
energy loss 1s unavoldable without any special reference to the maglc tee,
which here acts as a "directional coupler" with a coupling factor of 4. The
directional coupling property of the magic tee(l7) prevents the energy from
going directly from the generator to the detector without passing through
the resonator. Otherwlse interference with the signal reflected by the
resonator occurs. The voltage of the detector would be independent of the
phase angle of reflection at the resonator. The oscillograph images would no
longer have the form of resonance curves, but in some cases would look like
"discriminator" curves. From the detector the rectified energy passes to a
low frequency amplifier to which the cathode ray tube is connected. The
Klystron 1is frequency modulated and the time base on the oscillograph runs
synchronously with 1t. The spectrum emitted by the Klystron, including the
absorption at the resonances of the cavity (see Fig. 6a) thus appears on the
screen. If the time base 1s stretched out and the sign of the image 1is
reversed, an impression of ordinary resonance curves 1is received (Fig. 6b).

If the coupling 1is weak, the helght of curves A 1s proportional to the
energy Pab’ absorbed by the resonator, independently of the characteristic of
the detector. Thlis 1s why the measurements for excitation statistics were
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made according to the absorption method:

(I’A)ﬂ ~ Pra/l. al Izum"‘ ab

Hence for A« 1 and Pinput = const, it follows that A ~ Pab'
From the definition of the fluctuation square of the excitation

[ Y

the measurement condition

then follows.

The measurement of the spaclng statlstics, of ¥, 1s carried out basic-
ally in the same manner. However, the resonator 1s coupled on not by a
diaphragm, but by a small antenna, the extension of the central conductor of
a co-axlial cable, projecting a small distance into the cavity. A bridge plece
from hollow conductor to co-axial cable is then attached to the measuring
arm of the maglc tee. The shape and length of the antenna 1s adjusted by
trial and error until all EF are covered as uniformly as possible. Fig. 7a
18 an example of a very uneven excitation. Result of this 1s that several’
weaker EF are masked by the more strongly exclted EF. Fig. 7b shows the
same place in the spectrum with better adjustment of the antenna.

For measurement of the spaclng statlistics, a frequency scale is also
required on the screen of the cathode ray tube. Detalled data on such special
osclllographs may be found in the microwave literature(ls). Here 1t need only
be sald that the frequency marks are produced by interference of the frequency
modulated Klystron wlth an unmodulated one. The demodulated interference
signal 1s fed to a detuned high frequency amplifier and after a second
demodulation goes to the control grid of the cathode ray tube, There it
produces two dark marks on the time base whlch are twice as far apart as the
frequency selected for the high frequency amplifier. The marks are adJusted
laterally by varylng the frequency of the unmodulated Klystron. Thus every
frequency difference appearing on the screen can be evaluated with the
accuracy of the high frequency amplifier.

I should 1like to take this opportunity of thanking Professor Dr. E. Meyer
for his generous support of the work and hls many valuable suggestions. I
also wlish to thank the Deutsche Forshungsgemelnschaft for the provision of a
stipendlum.
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Fig. 1

The 24 eigen frequencies of the group n? = 1583,
12 of which can be seen here. 1In all four oscillo-
grams the distance between the dark marks denotes 15
MHz. In photograph (a) we see the group for the un-
contracted cube. The separation due to mechanical
irregularities is about 11 MHz. Photographs (b) to (d)
show this group with progressive contraction of two
opposite cube faces. The group spreads out progres-
and in gd) has already Jolned up at the right with the
group n* = 157. The contraction required to fill up
this gap was only 0.25 mm. (Higher frequencies are
plotted at the left).

Fig. 2

The six eigen frequencies of the group n2 = 160.
The distance between the dark marks in this case
signifies 5 MHz. The separation of the group is
approximately 6 MHz. Photograph (a) shows the group
in the uncontracted state. The oscillograms of (b)
to (d) show the groups for small contractions in one
of the three edge directions of the cube. Since thils
group 1involves quasi-axlal waves, two of the six elgen
frequencies in each case are displaced towards higher
frequencies (to the left), while the remalning four
remaln relatively unchanged.
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Fig. 3

Spacing statistics of the elgen frequencies of
a near cube with dimensions 200 x 199 x 198 mm3 for a
wave length of approximately 3.2 cm. The broken line
is the theoretical frequency curve for the different
intervals. The so0lid 1line represents the measurements.
Good agreement 1s obtained for intervals above 2 MHz.
Below 2 MHz the number of resonances found is continu-
ously further below the theoretical number, owing to
the limited resolving power. :
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Fig. 4

The excitation statistics of the natural vibrat-
tlons of a parallelepiped with dimensions 101 x 150 x
269 mm® at a wavelength of approximately 3.2 cm. The
excltation statlstics are plotted against the disturbe-
ance volume. For the open clrcles the interference
consists of small cubes placed on the floor of the
space. The filled-in circles stand for measurements
wilth small cones and the square for a measurement for
which a cube was divided into 8 equal parts and dis-
tributed over the floor of the space. The lack of
dependence of the excitation parameter ¢ on the shape
of the disturbing element 1s evident. It is striking
that even for very small interference element volumes
in comparison with the volume of the whole space, the
excltation statistics are completely random, charac-
terized by the value 1.57 for the excitation parameter.



Fig. 5

The microwave part of the measuring apparatus.
The Klystron generator for a > cm electric wave,
the "magic tee", the non-reflecting absorber (1eft;
and the cavity resonator being investigated (right

are shown

Fig. 6

Photograph (a) shows the spectrum of
the Klystron generator with cavity resonator
absorption points. In photograph (b) we
see the centre part of the spectrum with extended
frequency axis and reversed ordinate dlrection
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Fig. 7

A group of elgen frequencles with
very different excltation of the individual
eligen frequencies. In photograph (b) an
ad Justment of the "antenna" resulted in a
more uniform excitation. This reduced the
probabllity of concealing weakly excited
elgen frequencles.



