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ABSTRACT

Analyses of the responses of radio noise meter quasi-
peak and field intensity circuits to the following types of in-
put pulses are given: periodic rectangular pulses, random
rectangular pulses, random double exponential pulses (e.g.,
positive corona pulses). An experimental investigation of
corona pulses originating on points and conductors is de-
scribed. The probability density functions for the time in-
tervals between pulses, and the shapes and amplitudes of
these pulses were determined.

It is shown that for random corona pulses, with charac-
teristics disclosed in tests on conductors, the quasi-peak
readingof anoise meter is proportional to the average charge
contént of the pulse and to the square root of the average
repetition rate.
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CORONA PULSE CHARACTERISTICS
AND THEIR RELATIONSHIP TO RADIO NOISE

- A. Reed*-

INTRODUCTION

This report presents a summary of an investigation of corona pulse charac-
teristics and their relation to readings on a radio noise meter. Mathematical
treatments of the effects of various types of pulse inputs to the meter are related
to results of experimental work done in the high-voltage laboratory and at the

high-voltage building at the Metcalfe Road Field Station of the National Research
Council .

The mathematical treatment consists firstly of an analysis of the effect of
periodic, rectangular pulses fed into the input of an idealized radio noise meter,
and the resultant effect on the Quasi Peak and Field Intensity circuits. Secondly,
a spectral density analysis of the effect of random rectangular and double expo-
nential pulses is presented. The noise meter readings are related to pulse
characteristics such as amplitude, duration, and average repetition rate.
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The initial experimental work was done with a vertical coaxial arrangement
(Fig. 1), with the corona produced on metal points which were screwed into
the central conductor. Other experiments were performed using No. 4 stranded
wire in the coaxial setup, and 370-foot Lark and No. 2 conductors at the Metcalfe
Road Field Station.

THEORY

The idealized noise meter was assumed to consist of the following sections
(Fig. 2):

Selective Circuit

AN
R

I

Input Filter

It

Rr3 =FC

é) Meter

d

Fig. 2 Ideal noise meter

a) An ideal filter with center frequency f;, and bandwidth Af
b) A rectifier
c) A selective circuit (QP or FI)

d) A meter to indicate the response

Periodic Pulses

A Fourier analysis of the noise meter filter response to a periodic rectangular
pulse train is made (Appendix I), and using this result, a transform analysis of
the QP and FI response is made. From this analysis, four main points are
evident:

a) If the pulse repetition rate is greater than the bandwidth of the filter, the
meter reponse is proportional to the repetition rate.

b) If the pulse repetition rate is less than the bandwidth of the filter, the
meter response is proportional to

S



where A f is the bandwidth of the filter and fo is the pulse repetition rate.

c) Because of the above two points, an analysis of this type is not truly ap-
plicable to the case of corona pulses originating from more than one point.
Although corona pulses occurring at a single point are very nearly periodic,
the combined effect of many points results in a random pulse train. Hence,
the noise meter sees pulses at repetition rates which are sometimes greater
and sometimes less than its bandwidth. Because of the differences of the effects
of these two conditions, a periodic pulse train with the same average repetition
rate cannot be used to approximate the random train.

d) The QP and FI circuits are of the same basic configuration. When the input
to the noise meter is a periodic pulse train, the QP reading should be very nearly

twice the FI reading.

Random Pulses

A spectral density analysis (Appendix IT) of the response to a random input of
rectangular pulses gives the result that

) _ 2A% (1 -coswT) P
(QP reading)? = — [1+2Re<1_P)} (1)
(QP reading) = Kw/z. Q . (2)

For a random input of double exponential corona pulses of the form

A (e"at - e'bt)

we obtain

(QP reading) = K - V[, @,

where f o is the average repetition rate

Q= A ba;)a = the area of a single pulse, proportional to the charge content of

the pulse.

EXPERIMENTAL PROCEDURE

Periodic Pulses

Items (a) and (b) of the theory indicate that the meter response should decrease
suddenly as the pulse repetition rate is increased through the bandwidth of the filter.



Because the actual filter in the noise meter is not an ideal filter as was assumed
for the derivation of this result, one would not necessarily expect an abrupt de-
crease in meter response, but rather a gradual one at repetition rates near the
bandwidth of the filter.
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Fig. 3 Periodic pulse generator

An experiment was performed using generated pulses as the input to the noise
meter. These pulses were obtained by differentiating the output from a variable-
frequency square-wave generator (Fig. 3). The plot of noise meter response vs
pulse repetition rate (Fig. 4) shows the expected dip at a repetition rate near the
bandwidth of the filter.

PERIODIC PULSES - QP reading at 1 Mc va. Pulse Repetition Rate
at Repetition Rates near Bandwidth of Filter

40 T T
35 -

T

30 |~ -
25} .
20—
15

Quasi—Peak Reading (db)

[8)]
T
Bandwidth of

0 | |
0] 2000 4000 6000 8000
Pulse Repetition Rate (pps)

Fig. 4 Periodic pulses — graph of QP reading
at 1 mc/s versus pulse repetition rate



Corona Pulses

a) Description of Laboratory Apparatus

The laboratory test setup (Fig. 1) was essentially the same as that used by
Denholm [1] and Rakoshdas [2]. It consisted of a vertical copper cylinder with
a coaxial center conductor. The inside conductor was either No. 4 stranded wire
or a 2 -inch-diameter aluminum tube with threaded holes into which metal points
could be screwed, as done by Akazaki [3]. The power supply was connected to
the vertical cylinder and all measurements were made on the inner conductor
which was essentially at ground potential. The oscilloscope was equipped with a
camera and fast-rise preamplifier.

b) Method of Obtaining Data

(i) Laboratory Setup

Various numbers of metal points were attached to the inner conductor and
the voltage was increased so as to cause the points to be in corona. Noise meter
readings and photographs were taken within minutes of each other so as to minimize
experimental error due to aging of the points. Photographs of a cathode-ray oscil-
loscope display were taken so as to determine the probability density function for
the time intervals between successive pulses and also to determine the shapes and
amplitudes of the pulses. All noise meter readings were taken at 1 mc/s.

Data were taken with 2, 4, 5, and 10 points in positive corona and with 4 and
10 points in negative corona. Measurements were also made using polished No. 4
stranded wire as the central conductor. The results of these experiments are
shown in Figs. 9 to 13.

(ii) Field Station Setup

Two 370-foot test lines at the Metcalfe Road Field Station were used and the
noise meter was coupled to the line with the tuned circuit, as shown in Fig. 5.
Because of the strong signal from a local radio station it was necessary to include
a portion AB of the circuit which was tuned so as to minimize the background noise.
Photographs were taken of the pulse-wave shape and of the pulse repetition rate,
along with noise meter readings, at two different voltages on each of the two lines.
One of the lines was a Lark conductor and the other a No. 2 stranded wire.
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Fig. 5 Noise meter coupling to the 370-foot outdoor test line

DISCUSSION OF RESULTS

Coaxial Setup

It was found that pulses originating from a single point were very nearly periodic
and of the same amplitudes. When two different types of points were used so that
each gave a distinctive type of pulse, it was noted that each point gave periodic
pulses independently of the other point so long as the separation was 6 inches or
more. The result of several similar points in corona was a random pulse train
which was due to the superposition of several periodic pulse trains.

When more than two metal points were in corona, an exponential form of frequency
distribution for the pulse repetition rate was indicated; i.e.,

e-x/T ,

p(x) = = (3)
T

where T is the mean interval.

For only two points in corona, the distribution was rectangular because of the
periodicity of the two superimposed periodic pulse trains., The distribution of
negative corona pulses from the polished No. 4 wire was also of the exponential
form, but for positive pulses the distribution was nearly Normal or Gaussian.



TABLE I — SUMMARY OF RESULTS

Average Average b-a Predicted

Actual repetition measured | Q=A% (a_b) for QP rdg. Distribution | QP reading
Corona formed on: QP reading rate amplitude |double-exponential K= W of repetition using Deviation

(uV) (pps) (volts) pulses rates QP=33.5QVf| (%)
Group I (50-ohm
Laboratory Setup termination)
2 pts (+) 54.4 kv 425 4,115 1.125 0.181 (X 107%) 36.6 Rectangular 390 8.2
4 pts (+) 54.4 kv 500 7,407 1.08 0.173 33.6 Exponential 498 0.4
5 pts (+) 54.4 kv 510 9,911 0.968 0.156 32.8 " 520 2,0
10 pts (+) 54.4 kv 700 19,011 0.934 0.150 33.8 " 692 1.1
No. 4 wire + 58.7 kv| 2000 1,688 1.15 0.185 26.3 Normal 2550 27.5
No. 4 wire + 60.9 kv| 3000 2,825 1.15 0.185 30.4 Normal 3300 10.0
4 pts (-) 54.4 kv 35 195,000 0.009 0.00216 36.7 Exponential 32.2 4.9
10 pts (-) 54.4 kv 60 449,000 0.01 0.00241 37.2 " 54 10.0
No. 4 wire at -56.6 80 9, 340 0.1 0.0241 34.4 " 78 2.5

kv Avg=33.5
Group II (500-ohm
Field Stn Setup termination)
Lark + 300 kv 9000 1,436 2.43 _ e Exponential
Lark + 275 kv 8500 1,272 2.34 — —_— "
No. 2 + 150 kv 2000 6,882 1.24 e —_— [
(Fair)
No. 2 + 150 kv 1800 10,121 0.93 — — "
(Rain)

No. 2 + 200 kv 4000 16,447 1.17 — B — "




However, the extra term in the expression for the spectral density, which involves
the standard deviation, is negligible compared with the rest of the expression,

so that the same general relationships hold in this case. A possible explanation
for this change in distribution function is that the positive corona on the polished
wire does not occur at fixed points, but rather travels back and forth on the line.
If this is the case, it seems feasible that the exponential distribution will go over
to a Normal distribution. This implies that negative corona occurs at fixed points.
The difference may be due to the different shielding effects of positive and negative
ions.

According to the theory, the QP meter reading obeys relationship (2). Kis
a constant at a particular measuring frequency which depends on the bandwidth,
gain of the noise meter, and other fixed parameters. Equation (2) was inverted
to solve for K and an average value was used to give the "predicted"” QP reading.
The predicted and actual readings generally differed by less than 10% for a wide
range of repetition rates and meter readings (Table I). There was one case where
the reading differed by 27%.

Rakoshdas [2] found that corona pulses approximate the shape of a double
exponential:

A% (emat _ g7bty

This was verified. For a 50/150 nanosecond positive pulse, a = 10.5X 10 and
b = 34.6x10%, Negative pulses have a 20 ns rise time and a 50 ns decay time.
For negative pulses, a = 38.3 X 10° and b = 83 X 10%. The above values were
used to find Q and A* in Table I. Q is proportional to the charge content of the
pulse .

The average pulse amplitude for positive pulses decreases slightly with an
increase in the number of points in corona, whereas for negative corona there
is no significant change. This indicates that the shielding effect of the negative
ions is smaller than that of the positive ions.

The corona pulses formed on the stranded wire had a much lower repetition
rate and much higher amplitude than the pulses formed at the metal points
owing to the much higher gradient at the metal points. The higher gradient
causes the ions to move faster, and thus their shielding effect is more short-
lived. This effect was reported by Akazaki [3] as a result of his work with
waterdrops.



Field Station Setup (370-foot Line)

The input to the noise meter when connected to the long line was not a double-
exponential pulse, but rather a decaying oscillatory waveform caused by the
response of the tuned coupling circuit and reflections from the open end of the
line. For this reason, the relationships derived in Appendix I cannot be directly
applied to the results. Only positive corona was examined at the field setup
because the background noise due to radio stations and airplane beacons was
too great to examine the effect of the smaller negative corona pulses successfully.

It was found that the repetition rate of the pulses increased and the amplitude
decreased during rain, thus verifying the results of Akazaki [3]. The result was
a decrease in radio noise during rain. It was also found that the distribution of
the time intervals between pulses was of the exponential type, indicating that the
corona was formed at specific points on the line. This fact was stated in a closure
by Morris and Rakoshdas [4].

CONCLUSIONS

1) Corona pulses originating from a single point are very nearly periodic, of
the same amplitude, and have a double-exponential shape.

2) For random corona pulses, the quasi-peak reading of a noise meter is
proportional to the average charge content of a pulse and to the square root of
the average repetition rate.

3) The time intervals between successive pulses originating from a finite
number of points have an exponential distribution.

4) The time intervals between successive positive pulses originating from
a polished wire have a Normal distribution.,

5) The time intervals between successive positive pulses originating from
a 370-foot outdoor line have an exponential distribution.

6) Radio noise is primarily due to positive corona because, although the
repetition rate is much greater, the charge content of negative pulses is much
less than that of positive corona pulses. The radio interference is proportional
to the first power of the charge content, but only to the square root of the repe-
tition rate.

7) The average pulse repetition rate increases during rain, but the charge
content of pulses decreases, giving a net reduction in radio noise.
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APPENDIX I

RESPONSE OF FILTER TO A PERIODIC RECTANGULAR PULSE TRAIN

Consider a string of rectangular pulses with height A and duration 7 (Fig. 6).

v(t) _\A V_'] l—] .

Fig. 6 Series of periodic rectangular pulses

The Fourier series for this waveform is:

(1) v(t)=(determ) + T 25 (sinwnfy) (cos mnfy [1 - 2t])

If we pass this signal through an ideal filter with center frequency f,, and band-
width Af, we obtain output, v (t) in the form:

n= nz T
- ; 1
(2) vi(t) —:?fx sin 7f Tnz=n1 cos 2mnf, (t -= ),
c

where n; f;

fo - 5 the lower band edge

nfh=fo+ —Az—f , the upper band edge.

By the use of trigonometric identity* , vf(t) can be written as:

2f, A cos 27rfct * sin z,r(Af'; fl)t
(3) vf(t) = ——— sin7f,7 |

T
C

sin 27 (g)t :|°

* H.B. Dwight, Tables of Integrals and Other Mathematical Data
No. 420A,(Macmillan and Co., New York, 1961)
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filter rectifier QP or FI circuit
—_— :—"L © “év\ﬁ o
i
v (1) ‘ | Rz% =C Vo(t) to meter
-1, o - o

Fig. 7 General circuit for analysis

By writing the filter output in the form of a sum of cosine terms, we can con-
sider the input to the Quasi-Peak circuit as the sum of rectified cosine terms.
The Laplace transform F(s) of a repetitive rectified cosine wave is:

21rfe"ST/4 1
(4) Fs) = [m 8 e 4r?f2’

where the cosine wave is of the form: cos 2 7ft. The transfer function for the
QP or FI circuit is

- _¢ £ =1/CR,
(5) H(s) = s+ af where { _<1+ Rl)
57 R,

Hence the input to the meter for a single cosine term is:

o—ST/4 1 £
(6) Vo(s) = [27rf1_e-ST;2 +s]' s? + 272 f2 ' s + a .

In the time domain, this is:
-a
+

(ag)*+ (27 f)° [2mfe72 C-T/4)_ ot cos2nft - 2r fsin 2n ft ] }

5, 4t cosarft+ 2rf sin 2rft | *u(t)

(7) v (t) =

x [u(t)+u(t-g-)+ o]

where u(t) is a unit step at timet = 0.

Now this represents the input to the meter from a single input term to the
rectifier of the form

vf = cos2mfit,
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Our actual output from the filter is

(8) Vf(t)= z Vfi (t)y=cosat+ cos (a+06)t+ ....+ cos (¢ + [n-1]06)t,
1

where
6 = 4rfy fi = repetition rate
a = 21r(fc - %) fo = center frequency
n =2A_ff + 1 Af= bandwidth of filter
1

At a measuring frequency of about 1 me/s, the steady-state input to the meter
becomes approximately:

8nfy Af,sinnf, 7 £?
at " (at)z + (21f)

(9)  vo(t)=

af

because f, > Af and T << 1.
2f;

To find the ratio between the QP reading and the FI reading for a periodic
input we note that

agp = 1 ap 1,= 2
and
‘EQP = 1000 tp.1.= 1.67 .
AQP
Using the above values in equation (7) we find that -l 2.0 to within the
FI

accuracy of the above approximations.
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APPENDIX IT

SPECTRAL DENSITY ANALYSIS OF NOISE METER RESPONSE

a) Derivation of the Spectral Density of
a Random Train of Rectangular Pulses

T
T T2 Tk
[ ] [ ] [ ] [ ] L ] [ ]
A
h to f3 t Pk
Fig. 8 Series of random rectangular pulses
Consider a series of pulses g(t) which occur at timest;, t; ....t, . Let

these g(t;) be rectangular with amplitude A and duration 7, and let them be
considered as the input, v; (t), to a radio noise meter.

vi(t) = Zelty) - (1)

This series may be truncated at t =-Tand t = +T, where T is arbitrarily large,
in order to find the Fourier transform of the input. For convenience, let t; occur
at -T and tp 4+, at +T, then

A N T —jwt
V@ Z, ng<tk>e dt , (2)
which may be written as
_A or LN -jwt
VT(w)—j_w (1 -e ) k2=1e k. (3)

Now, the Spectral Density is defined as:

1 1 2
‘I’VV(‘”)",}‘_IPOO 5T | Vip (@) 2. (4)



- 15 -

_ + ..
When we let T = L+ T+ * In

Equation (4) becomes

N ’
2A% (1 - coswr) 1 NN e -t )
= . i — k .
vy (w) T hm°o i %1_1 ]_El e 77 . (8)

If p(x) is the probability density function for the time intervals between
consecutive pulses, it follows that the assembly average of terms of the form
e"J¥X is P(w) where:

P(w) = eJ¥X = [®p(x)e¥Xqx . (6)

To evaluate the sum in Equation (5), consider first those terms for which
k > j. Because

edOlt -t 0Ty | JeTigy | cJeTy
it follows that
. m
ek - - [pwy] (7)
and thus for k >j:
N N .
. 1 —jw(ty - t4) ° m P
1 - X .z = Z P = 8
Nl.moo N k=1 j=1 © m=1 1-P (8)

For k < j we obtain the complex conjugate of (8), and for k=j the limit is unity.
Thus our input spectral density for a rectangular pulse train is:

2A%(1 - cos wT)

w2 T

P

[1+2Re<1_P)]. (9)

<I>VV(w) =

This signal is fed through a filter (assumed ideal) and is then rectified and put
through the selective circuit (QP or FI) before being fed into the meter. To find
the meter response, we must consider four points:

i) If a signal with spectral density q)VV (w) is fed through a 'black box'" with
transfer function H(w), the relation between input and output spectral density is:

out(@) = [H[ & (). (10)
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ii) If the transfer function of the selective circuit is H(w), then

2 _ £2 _
|H(w)| (ag )Z + 2 ’ where g 1/01;1 as in Fig. 6.
a= 1+ !
R,

iii) An ideal filter with center frequency w, and bandwidth Aw will pass only
frequencies w, such that

(“’C‘T>5‘*’i(wc+—

iv) The meter will respond to only the d-c component of the signal fed to it
because the meter response is much slower than the measuring frequencies. As a
result the meter response will be proportional to 1/ times the integral of the
spectral density over the frequency band of the filter. Because the bandwidth

is very much less than the measuring frequency, the integral I of the spectral
density over the bandwidth is very nearly:

[ - £2 Aw  2A% (1-coswT)
(ag)2+ w2 T w* T

[1+2Re(lfp )]. (1)

b) Spectral Density Analysis of Noise Meter Response

to a Random Train of Double-Exponential Pulses

From the study of high-voltage corona phenomena, it has been found that the
noise-producing pulses have a double-exponential shape, the equation for which
may be written in the form

g(t) = A(e™a et (12)

As before, consider a series of these pulses, repeated randomly in time, being

fed into an RN meter. Call the input to the noise meter v; (t). Then

o0

vi(t) =2, 8(t) . (13)
By truncating the above series and taking the Fourier transform we obtain

N - .
Vi (@) = 2 A ftk [e72(t) _ eb(t-ty) ] ¢ 19t ¢ (14)
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The upper limit in this expression is taken to be infinity because the pulse
separation is assumed to be much greater than the pulse duration. As before,
we go through the limiting procedure to find the spectral density, ‘I’VV (w).
The energy to the meter in this case is then

£? . A% Aw (b-2a)?
(at )2 + w? TT (a? + w?) (b% + w?)

Ix

[1+2 Re(lfp)]. (15)

Now, for a measuring frequency of 1 mc/s, because a and b for corona pulses
are greater than 10’ (B.R. Das) and because at << w

1~ A2 A (b-a)f {1+2Re<lf_)P)]. (16)

The QP meter reading will be proportional to the square root of I, the integrated
spectral density. Thus, at a particular measuring frequency, we can say

Eé—(l’la_)[1+23e(lp)]. (17)

(QP reading) =
VT ab -P

If the time intervals between consecutive pulses are exponentially distributed; i.e.,
if

1 -x/T
p(x) = = e ’ (18)
T
then £
P(w) = ! . 19
© = T3 (19)
where fo = 1/T .
And as a result, the term
P
2Re<1_p)50 (20)
for exponentially distributed pulses.
If the time intervals between pulses are normally distributed; i.e., if
(x-T)?
p(x) = e 202 , (21)

ov2w
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where o is the standard deviation
T is the mean value of x,

we find that

w? o?
Pw)= e@T ¢ 2 | (22)
and the term w? o2 w? o2
P 2e 2 (coswm-e 2 )
2Re( )=
1-P wz g2
2 2 - E
-w'o
1+ e -2e *coswm

When experimental values are substituted in this expression, it becomes negligible

Thus, for both exponentially and Normally distributed corona pulses, the Quasi
Peak relationship is very nearly:

KA (b - 2a)
—_—, (23)
‘/%ab

where the constant, K, depends on the parameters of the measuring instrument.

(QP reading) =
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Fig. 9 Distribution of pulse repetition rates for positive corona pulses, 54.4 kv

(solid line: theoretical exponential distribution shaded histogram: experimental results)
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Fig. 10 Distribution of pulse repetition rates for positive corona pulses

( solid line: theoretical Gaussian distribution corre-

sponding to mean and variance of shaded histogram)
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Fig. 11 Distribution of pulse repetition rates for negative corona pulses

(solid line: theoretical exponential distribution

shaded histogram: experimental results)
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Fig. 12 Distribution of pulse repetition rates for positive corona pulses on 370 feet of no. 2 stranded conductor

(solid line: theoretical exponential distribution shaded histogram: experimental results)
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Fig. 13 Distribution of pulse repetition rates for positive corona pulses on 370 feet of Lark conductor

(solid line: theoretical exponential distribution

shaded histogram: experimental results)



