

NRC Publications Archive Archives des publications du CNRC

The New waterflow housing: 2005 (for the Victoria sub model) Osmond, T.

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

Publisher's version / Version de l'éditeur:

https://doi.org/10.4224/8895902 Student Report (National Research Council of Canada. Institute for Ocean Technology); no. SR-2005-19, 2005

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=088f33ff-653f-4508-ab33-ce51b73dabd2 https://publications-cnrc.canada.ca/fra/voir/objet/?id=088f33ff-653f-4508-ab33-ce51b73dabd2

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

DOCUMENTATION PAGE

SR-2005-19 August 2005 REPORT SECURITY CLASSIFICATION DISTRIBUTION Unclassified Unlimited TITLE THE NEW WATERPROOF HOUSING - 2005 (for the Victoria Sub Model) AUTHOR(S) AUTHOR(S) Tim Osmond CORPORATE AUTHOR(S)/PERFORMING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL PUBLICATION SPONSORING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL PUBLICATION KEY WORDS PAGES FIGS. TABLES
REPORT SECURITY CLASSIFICATION DISTRIBUTION Unclassified Unlimited TITLE THE NEW WATERPROOF HOUSING - 2005 (for the Victoria Sub Model) AUTHOR(S) AUTHOR(S) Tim Osmond CORPORATE AUTHOR(S)/PERFORMING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL PUBLICATION SPONSORING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL PUBLICATION Institute for Ocean Technology, National Research Council, St. John's, NL PUBLICATION Institute for Ocean Technology, National Research Council, St. John's, NL PUBLICATION
TITLE THE NEW WATERPROOF HOUSING - 2005 (for the Victoria Sub Model) AUTHOR(S) Tim Osmond CORPORATE AUTHOR(S)/PERFORMING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL PUBLICATION SPONSORING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL PUBLICATION INSTITUTE for Ocean Technology, National Research Council, St. John's, NL INSTITUTE for Ocean Technology, National Research Council, St. John's, NL INSTITUTE for Ocean Technology, National Research Council, St. John's, NL INC FILE NUMBER 421016
TITLE THE NEW WATERPROOF HOUSING - 2005 (for the Victoria Sub Model) AUTHOR(S) Tim Osmond CORPORATE AUTHOR(S)/PERFORMING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL PUBLICATION SPONSORING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL PUBLICATION Institute for Ocean Technology, National Research Council, St. John's, NL INSTITUTE FOR OCEAN TECHNOLOGY, NATIONAL RESEARCH COUNCIL, St. John's, NL INSTITUTE FOR OCEAN TECHNOLOGY, NATIONAL RESEARCH COUNCIL, St. John's, NL INC FILE NUMBER 421016
(for the Victoria Sub Model) AUTHOR(S) Tim Osmond CORPORATE AUTHOR(S)/PERFORMING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL PUBLICATION SPONSORING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL PUBLICATION Institute for Ocean Technology, National Research Council, St. John's, NL IOT PROJECT NUMBER 421016
(for the Victoria Sub Model) AUTHOR(S) Tim Osmond CORPORATE AUTHOR(S)/PERFORMING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL PUBLICATION SPONSORING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL PUBLICATION Institute for Ocean Technology, National Research Council, St. John's, NL IOT PROJECT NUMBER 421016
Tim Osmond CORPORATE AUTHOR(S)/PERFORMING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL PUBLICATION SPONSORING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL Institute for Ocean Technology, National Research Council, St. John's, NL IOT PROJECT NUMBER 421016
CORPORATE AUTHOR(S)/PERFORMING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL PUBLICATION SPONSORING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL IOT PROJECT NUMBER 421016 NRC FILE NUMBER
CORPORATE AUTHOR(S)/PERFORMING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL PUBLICATION SPONSORING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL IOT PROJECT NUMBER 421016 NRC FILE NUMBER
PUBLICATION SPONSORING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL IOT PROJECT NUMBER 421016
PUBLICATION SPONSORING AGENCY(S) Institute for Ocean Technology, National Research Council, St. John's, NL IOT PROJECT NUMBER 421016
Institute for Ocean Technology, National Research Council, St. John's, NL IOT PROJECT NUMBER 421016
Institute for Ocean Technology, National Research Council, St. John's, NL IOT PROJECT NUMBER 421016
IOT PROJECT NUMBER NRC FILE NUMBER 421016 1000000000000000000000000000000000000
IOT PROJECT NUMBER NRC FILE NUMBER 421016 1000000000000000000000000000000000000
421016
KEY WORDS PAGES FIGS. TABLES
iv, 11, 8
Victoria, Waterproof Housing, Equipment App. A
SUMMARY
This report documents the design of the New Waterproof Housing, designed May – August
2005 for the Institute for Ocean Technology. The new waterproof housing was designed to
allow for enough space to implement the PHINS (Inertial Navigation System) in the Victoria sub. Several modifications and improvements have been made to the old waterproof
housing in the process. This report documents these modifications. It also shows the
relevant calculations that ensure integrity and functionality of the housing. The engineering
drawings for the housing and a presentation to the Institute are included.
ADDRESS National Research Council
Institute for Ocean Technology
Arctic Avenue, P. O. Box 12093
St. John's, Newfoundland, Canada A1B 3T5
Tel.: (709) 772-5185, Fax: (709) 772-2462

National Research Council Conseil national de recherches Canada

Institute for Ocean Technology

÷

Canada Institut des technologies océaniques

THE NEW WATERPROOF HOUSING - 2005 (for the Victoria Sub Model)

SR-2005-19

Tim Osmond

August 2005

Abstract

This report documents the design of the New Waterproof Housing, designed May – August 2005 for the Institute for Ocean Technology. The new waterproof housing was designed to allow for enough space to implement the PHINS (Inertial Navigation System) in the Victoria sub. Several modifications and improvements have been made to the old waterproof housing in the process. This report documents these modifications. It also shows the relevant calculations that ensure integrity and functionality of the housing. The engineering drawings for the housing and a presentation to the Institute are included.

Document Contents

1. Background – An explanation of the reason for building the new waterproof housing

- 2. Components A list of components that make up the housing
- 3. Design Criteria Factors and features that are designed into the housing
- 4. Calculations Relevant calculations to housing design
- 5. Figures As referenced throughout document
- 6. Appendices As referenced throughout document
- 7. Drawings Engineering drawings required to fabricate housing
- 8. Attachments Various pieces of information used in designing housing
- 9. Presentation Presented to the Institute, August 2005

Background

Institute for Ocean Technology owns a piece of equipment listed in this document as the old waterproof housing. The old waterproof housing is an aluminum, cylindrically shaped housing that seals via a rubber gasket and a plate that bolts to the front face of the housing. It contains ample space for a motion pak, two inclinometers and little else. The equipment inside the housing rests on an internal plate (see figure 1).

The old waterproof housing was used in the Victoria sub model that was tested during 2004. A cantilevered frame bolted to the front of the internal sub balance and the housing was attached to the frame using two threaded rods that bent around the cylinder and bolted to the frame. The motion pak and inclinometers require accurate positioning. The threaded rods were intended to give the housing a high degree of adjustability. To adjust the internal base plate, it was intended that it was simply a matter of tightening the threaded rods on either corner of the frame. Testing however, showed this was not the case. It was found that tightening the threaded rods around the housing causes the housing to twist unpredictably. It was very difficult to position the internal plate of the housing in the desired plane and hold it there. Disassembling the frame and housing, reassembling it and returning it to its original position was also impossible. While these problems are correctable there are other issues with the old waterproof housing

One problem with the old housing is that it has limited space inside. A new piece of IOT equipment called the PHINS (inertial navigation system) could potentially be used in further testing of the Victoria sub model. The PHINS does not fit in the old waterproof housing nor will most other equipment taller than 4 inches. The old waterproof housing is small and the cylindrical shape renders much of its internal space unusable. This is because in order to mount the internal equipment on a flat plate, much of the space under the plate is left inaccessible (see figure 2). It is also difficult to screw the equipment into the plate with access from only an 8-inch hole in the front of the housing. At IOT, there is always the potential for situations to arise where there is excess water and a waterproof housing is needed. The old waterproof housing offers little flexibility as most other equipment will not fit inside. For these reasons it was decided by the design and fabrication group in a preliminary meeting that a new waterproof housing would be needed. A waterproof housing that would both correct the problems of the old waterproof housing and offer more flexibility for future applications.

Components

The CAD file for the waterproof housing is available under Projects/42_945_10_Victoria/Tosmond/Water Housing.ckd

The new waterproof housing is composed of the following components:

- The base plate (13.5 x 10.5 x 0.25 aluminum plate, 8 aluminum upper pads, 3 aluminum lower pads, 1 aluminum reinforcing plate, an exit pipe)
- The inner plate (12.5 x 9.5 x 0.375 aluminum plate)
- The top frame (1 x 1 x 0.25 aluminum angle bar, 5 aluminum plates)
- A rubber gasket
- 23 0.25-20 F593C steel screws, 0.625 inch length
- 4 0.125-inch steel dowel pins, 0.5 inch length

A mounting frame has also been designed to mount the housing to the Victoria sub model $(1.5 \times 1.5 \times 0.25 \text{ HSS}, 3 \text{ aluminum pads})$.

Other optional components include:

- An inclinometer platform
- 3 0.138-32 steel screws, 0.625 inch length

Design Criteria

The design criteria for the new waterproof housing is listed below:

- The new waterproof housing must be completely waterproof
- The equipment contained within the new waterproof housing should be more accessible than the old housing
- The housing should be repeatable
- The housing should be larger than the old waterproof housing
- The housing should be flexible in it's ability to accommodate unforeseen types of equipment
- The housing should be adjustable
- The housing must also provide a perfectly flat surface to mount equipment to it

The new waterproof housing must be completely waterproof. This is because the equipment contained in the housing can easily be over 100 000 CAD in value. Exposure to water to a damaging degree would be detrimental to the Institute. The housing is designed to be waterproof up to the deepest location within the IOT facilities (7 meters in the tow tank). The waterproof housing has a number of features designed to ensure it does not leak.

First of all the frame for the top of the housing is built with 0.25-inch aluminum angle bar. This design gives the housing strength to withstand the 12 psi of pressure applied to the housing at the deepest point in the tow tank. All connections are first chamfered at the edges and then welded with watertight welds (see figure 3). The plates that make up the five walls of the housing are 0.1875-inch thick aluminum plates, thick enough to easily withstand the pressure of the 12 psi (see calculations – Deflection and Stress of Top). The plates are sealed to the top frame again using watertight welds around the frame (see figure 4).

The base plate of the housing is a 0.25-inch thick aluminum plate. Only one hole is cut into this plate, the hole for the equipment wires to exit. The wires exit through a pipe that is welded watertight to the base plate (see figure 5).

The top frame and the base plate seal together via a rubber or neoprene gasket (see figure 6). The rubber is cut to fit around the outside of the base plate and clamped down with the top frame using 18 0.25-inch steel bolts (see figure 7).

The equipment inside the housing does not attach to the base plate but to an inner plate that rests on 8 small pads, 0.25 inches offset from the base plate. This gap or offset between the base plate and the inner plate offers several advantages:

- Should there be any leakage in the housing, the offset allows more water to enter before the level of water will reach the equipment. A certain amount of water will run down into the exit pipe before it begins to back up

and rise to the level of the equipment. This should provide more time for any leaks to be noticed.

- Absorption packs can be placed in the lower space to absorb any water that should enter the housing via condensation or leakage.

Any leaks noticed in the testing phase are to be corrected. The above features allow the housing to be completely waterproof.

With the new waterproof housing, design considerations have been given to allowing the equipment contained in the housing to be easily accessible. The new waterproof housing is easier to use than its predecessor; it is simpler and faster to take equipment in and out of it. The housing rests on lower mounts as oppose to the upper mount system of the old housing. This allows those working with the housing to easily access the equipment. The top is removable by loosening the 18 bolts and handles are designed into the top to allow it to be easily lifted off (see figure 8). At such time that the top is removed all equipment becomes easily accessible.

Due to the thickness of the inner plate, equipment can be easily attached to the housing by screwing, bolting or pinning it. It is also strong enough to deflect less than 0.001 inch when fully loaded with equipment (see Calculations – Deflection of Inner Plate). Multiple footprints may be drilled into one inner plate so that many different types of equipment may be attached or multiple inner plates may be fabricated with different footprints and attached as desired. The inner plate allows the new waterproof housing to accommodate many different types of equipment and the offset design prevents it from deflecting due to external water pressure. Because the base plate does not contact the inner plate at a central location deflection transferred from the base plate to the inner plate is minimized. This translates in to better repeatability, as the inner plate will not move with respect to the machined pads even during submersion.

The waterproof housing is designed to be highly repeatable. The housing has three pads welded to the bottom that mount on three pads on the mounting frame. The three pads on the mounting frame are machined to be perfectly coplanar with the horizontal plane of the vessel being tested. The three pads on bottom of the housing are also machined to be coplanar. Two to three highly accurate steel dowel pins are used to pin the housing to the mounting frame. There are 8 small pads on the upper side of the base plate. These pads are machined to be parallel with the three lower pads on the base plate. This ensures that the inner plate that mounts to the 8 upper pads is perfectly parallel with the three pads on the mounting frame and is thus parallel to the horizontal plane of the vessel being tested. The inner plate is both dowel pinned and bolted to the base plate. The inner plate is now precisely positioned with respect to the mounting frame.

As mentioned above the old waterproof housing has little space and will not accommodate equipment much taller than 4 inches. Maximum internal surface area is 13.5 inches long by 8 inches wide. Although the internal volume of the housing is 678.6 in², only between 30 to 70% of this space is usable depending on equipment size and shape as well as accessibility. The new waterproof housing contains over 800 in² of space. Of this space over 95% is usable and the new housing can accommodate equipment as tall as 7 inches, 12.5 inches long and 9.5 inches wide. The new housing fits the PHINS system, the Motion Pak, 2 inclinometers and a temperature/humidity gauge, all completely accessible with room to spare. The exterior dimensions of the housing are 14.5" x 11.5" x 7.5". Empty, the waterproof housing weighs approximately 25 lbs (see appendix A) indicating the housing is a balanced design between size and weight.

The new housing also has the ability to change from being repeatable to adjustable. Because the housing mounts via a three-pad system with one in the front and two on the rear, it is particularly amiable to shimming. If the pins are removed from the lower mounts, shimming under the two rear pads will control the roll angle of the housing and shimming under the forward pad will control the pitch of the housing. This way minor adjustments can be made if necessary.

Calculations

The follow calculations were made for the new waterproof housing.

Pressure of Water at Maximum Depth Maximum Depth: d = 7 meters = 275.6 inches Density of Water: ρ = 62.4 lbs/ft³ = 0.03611 lbs/in³ Safety Factor: SF = 1.2 Pressure: P = d * ρ * SF P = 275.6 inches * 0.03611 lbs/in³ * 1.2 = 11.94 lbs/in² ≈ 12 psi

Deflection and Stress of Top

Using the deflection and stress of plates equations taken from the Machinery's Handbook 26, pgs 268 – 270.

Using the equations for a rectangular plate, uniformly distributed load, supported at all ends. Supported was selected over fixed because the values are more conservative and there is some ambiguity between how the welded plates will react. Only calculations for the top plate are presented here because it is the largest and will experience highest deflections and stresses. Calculations for the four walls are not necessary.

Pressure: P = 12 psiArea: A = 11" * 8" = 88"² Modulus of Elasticity: $E = 10.0 * 10^6$ psi Thickness of plate: t = 0.1875 inches Long side: L = 11 inches Short side: l = 8 inches Deflection: D = $(0.1422 \text{ P}^*\text{A}) / [\text{Et}^3 (\text{L}/l^3 + 2.21/\text{L}^2)]$ = (0.1422 * 12 psi * 88"²) / $[10.0 \times 10^{6} \text{ psi} \times 0.1875^{3} (11^{7}/8^{3} + 2.21/11^{2})]$ = 0.0573 inches Safety Factor: 1.2 Stress: $\sigma = (SF * 0.75 P*A) / [t^2 (L/l + 1.61*l^2/L^2)]$ = (1.2 * 0.75 * 11" * 8" *12 psi) / $[0.1875''^{2} * (11''/8'' + 1.61*8^{2}/11^{2}]$ = 12 141 psi Ultimate Tensile Stress: S_{ult} = 45 000 psi Machinery's Handbook pg 554 - AI 6061-T6 Yield Stress: $S_v = 40\ 000\ psi$

S_y / σ * 100% = 12 141 psi / 40 000 psi * 100% = 30.35%

Because the deflection of the wall is approximately 0.06 inches and the stress is only 30% of the yield stress given very conservative estimates, we have a safe

and comfortable margin of error and we can say that the walls will not fail due to pressure stress nor due to fatigue given numerous immersions to a maximum depth of 7 meters.

Deflection of Base Plate

The objective in designing the base plate was to support it to bring deflection to less than 0.005"

Using equation for rectangle, uniformly distributed load, fixed edges. Machinery's Handbook 26, pg 269. Area: A = 12.5" * 9.5" = 119"² Long side: L = 12.5" Short side: l = 9.5" Deflection: D = (0.0.284 P*A) / [Et³ (L/l³ + 1.056 l²/L²)] = (0.1422 * 12 psi * 119") / [10.0 * 10⁶ psi * 0.25"³ (12.5"/9.5"³ + 1.056 9.5"²/12.5"⁴)] = 0.0140 inches

```
D = P*k = 12 psi * 0.0011667
k<sup>-1</sup> = 857.14
```

 $0.005 / 857.14 = P_1 = 4.2857$ $P_2 = 12 - 4.286 = 7.714 \text{ psi}$ Load per inch: w = 7.714 psi * 12.5" = 96.429 lbs/in

Using a sectional method approximating the uniform load across the center of the bottom plate.

 $v_{max} = -5w L^4 / 384 E I$ $0.005" = (96.429 lbs/in) * 9.5^4 / [384 * 10 * 10^6 * I]$ Solving for I Moment of inertia: I = 0.040907 = 1/12 * b * (0.5)³ Width: b = 3.927 I will use 4.5" width of supporting bar to prevent deflection more than 0.005".

<u>Properties of Housing</u> See excel spreadsheet Projects/42_945_10_Victoria/Tosmond/Properties of Housing.xls or Appendix A

Weight: $W = \Sigma$ (Volume * Specific Weights) or $W = \Sigma$ (Length/weight * Length) Weights – reference densities and weight per length from Russel Metals Inc.

Moment of Inertia: I = $\Sigma I_x + Ad_y^2$

Centroid: $x_c = \Sigma m_i x_i / \Sigma m_i$ $y_c = \Sigma m_i y_i / \Sigma m_i$ $z_c = \Sigma m_i z_i / \Sigma m_i$

Buoyancy Forces: F_{bouy} = Volume of water displaced * ρ_{water}

Deflection of Inner Plate

Using the equation for a uniform load, simply supported, rectangular plate.

Load: W = 13.3 lbs
Long Side: L = 12.5"
Short Side:
$$l = 9.5$$
"
Deflection: D = (0.1422 W) / [Et³ (L/ l^3 + 2.21/L²)]
= 0.1422 * 13.3 / [10.0 * 10⁶ * 0.375"³ (12.5/9.5³ + 2.21/12.5²)]
= 1.24586 * 10⁻⁴ inches

Because this value is much less than 0.001 we know that there is no appreciable deflection due to loading within the housing.

<u>Deflection of Frame</u> Center of Gravity: (6.826, -0.002, 5.095) Modulus of Elasticity for Steel: 29 * 10^6 psi Moment of Inertia: I = 0.4368 in⁴

Calculating deflection due to bending in horizontal portion of frame Reference Hibbler "Mechanics of Materials, 5th ed", chapter 12, pg. 591

EI * $d^2v/dx^2 = -286.1 < x - 0 >^0 + 37.3 < x - 0 >^1 - 37.3 < x - 7.67 >^1$ EI * $dv/dx = -286.1x + 37.3/2 x^2 - 37.3/2 < x - 7.67 >^2 + c_1$ EI v = -286.1/2 x² + 37.3/6 x³ - 37.3/6 < x - 7.67 >^3 + c_1x + c_2 v(0) = 0 dv(0)/dx = 0 Therefore c₁ = 0 and c₂ = 0 EI v = -286.1/2 x² + 37.3/6 x³ - 37.3/6 < x - 7.67 >^3 Maximum Deflection: v(14.5) = -0.00103

Calculating deflection due to bending in vertical portion of frame Reference Hibbler "Mechanics of Materials, 5th ed", appendix C $\Theta_{max} = ML/EI = 286.1 \text{ in-lbs } * 9.5" / [29 * 10^6 \text{ psi } * 0.4368 \text{ in}^4] = 2.1457 \ 10^{-4} \text{ rads} = 0.0123 \text{ degrees}$ Deflection: 14.5 sin(0.0123) = 0.00311

Μ

θ

 $D_{tot} = 0.00311 + 0.00103 = 0.00414$

Frequency of Frame See algor results

Figures Figure 1

Figure 2

Figure 3

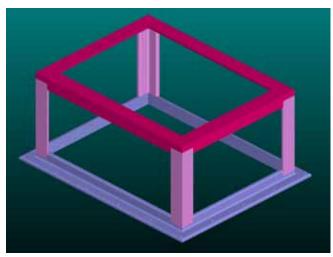
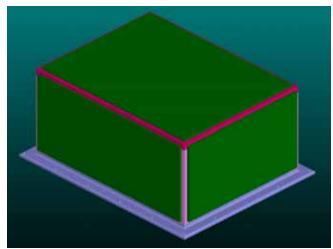



Figure 4

Figure 5

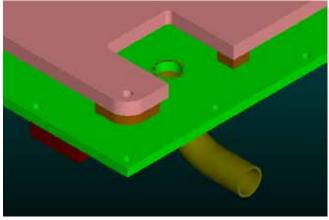


Figure 6

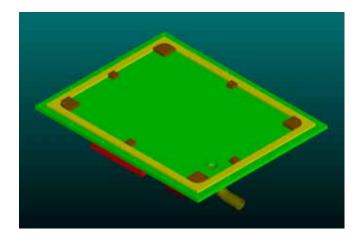
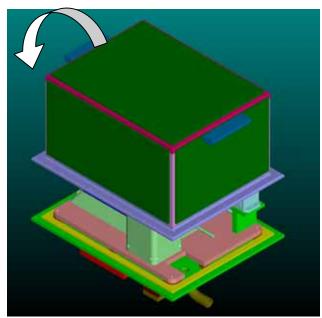
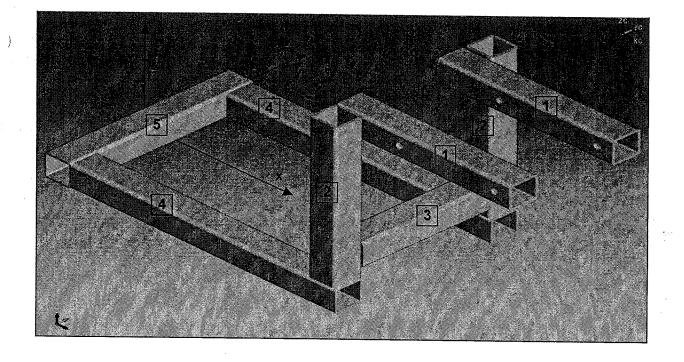
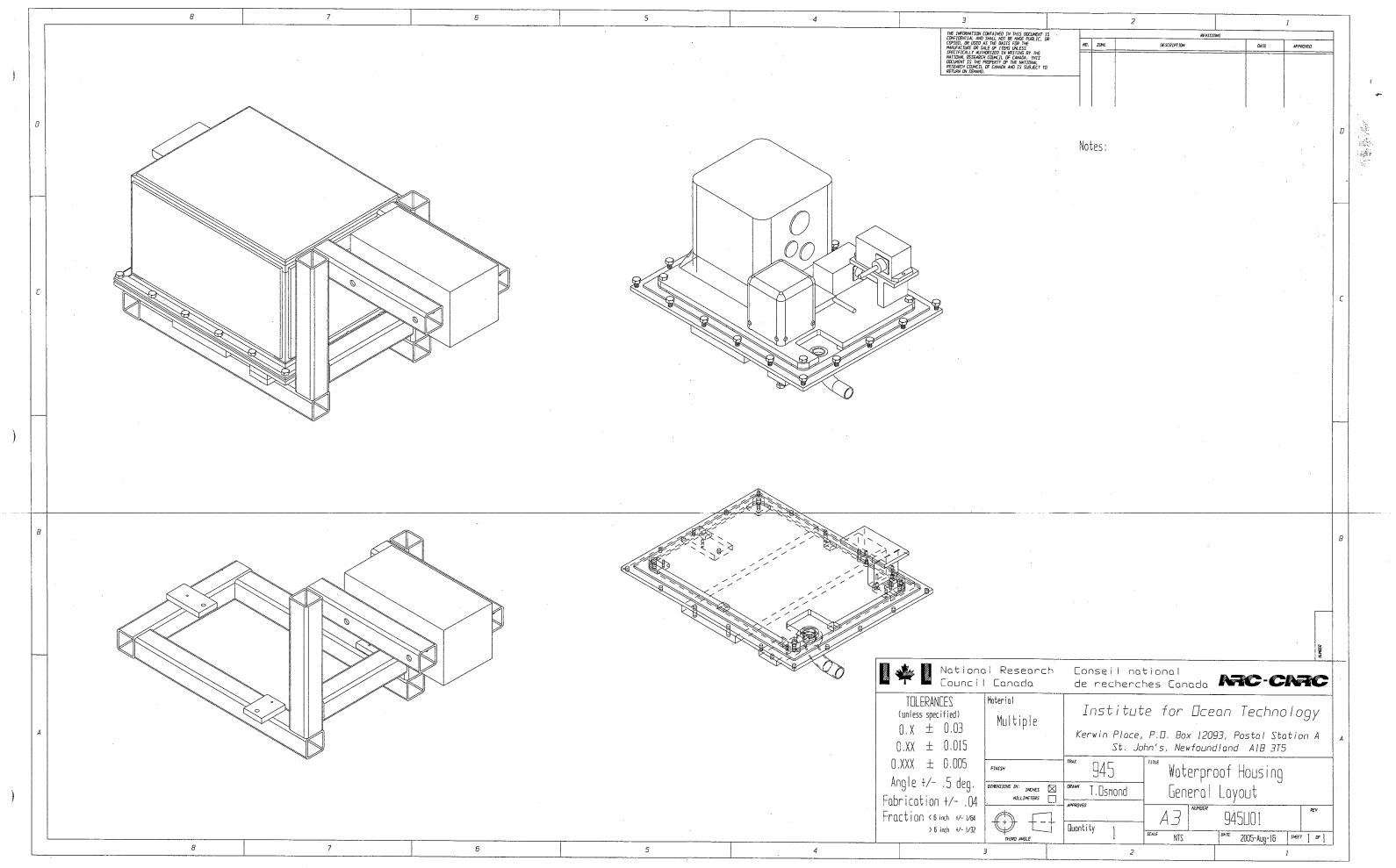
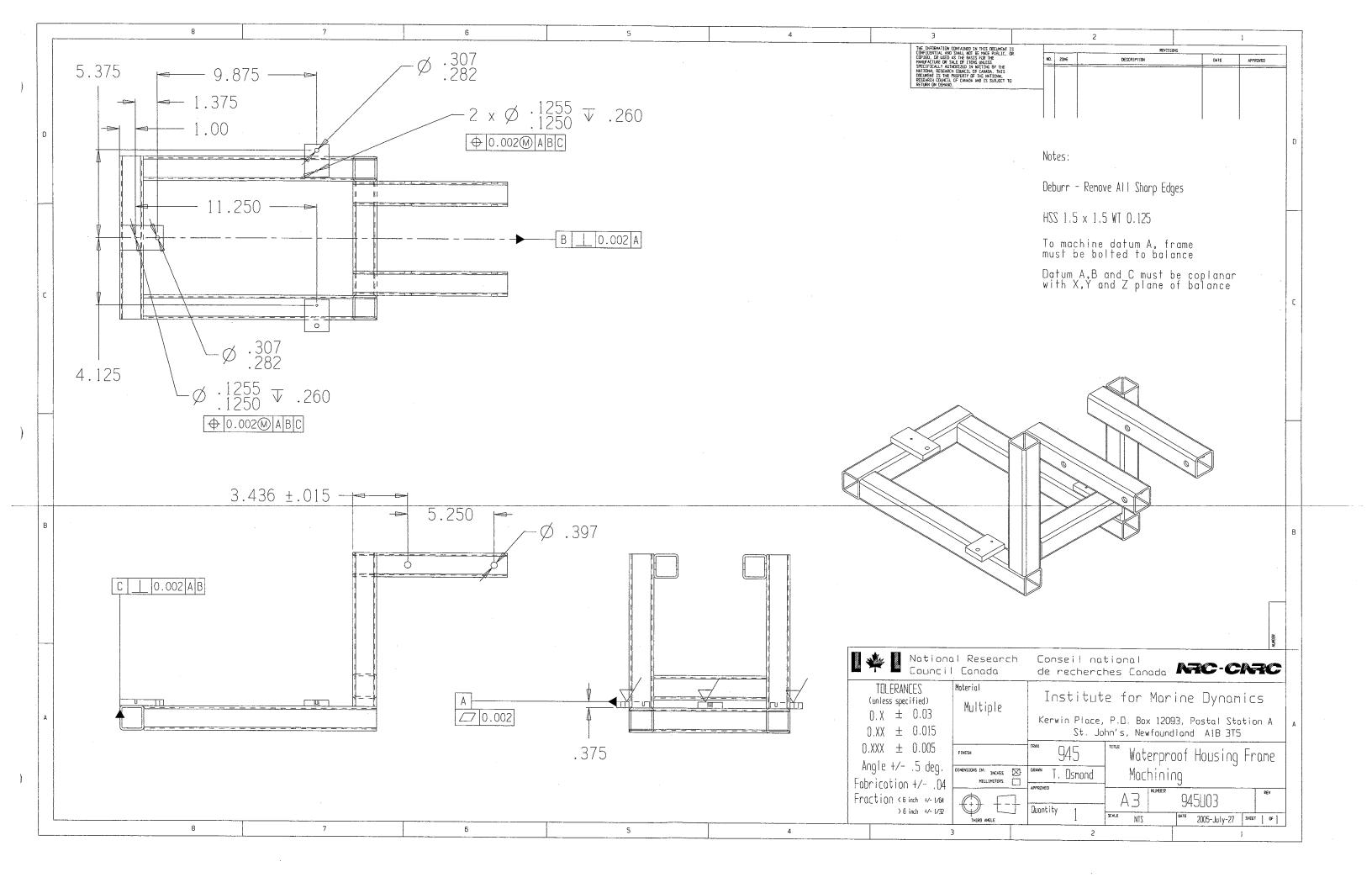



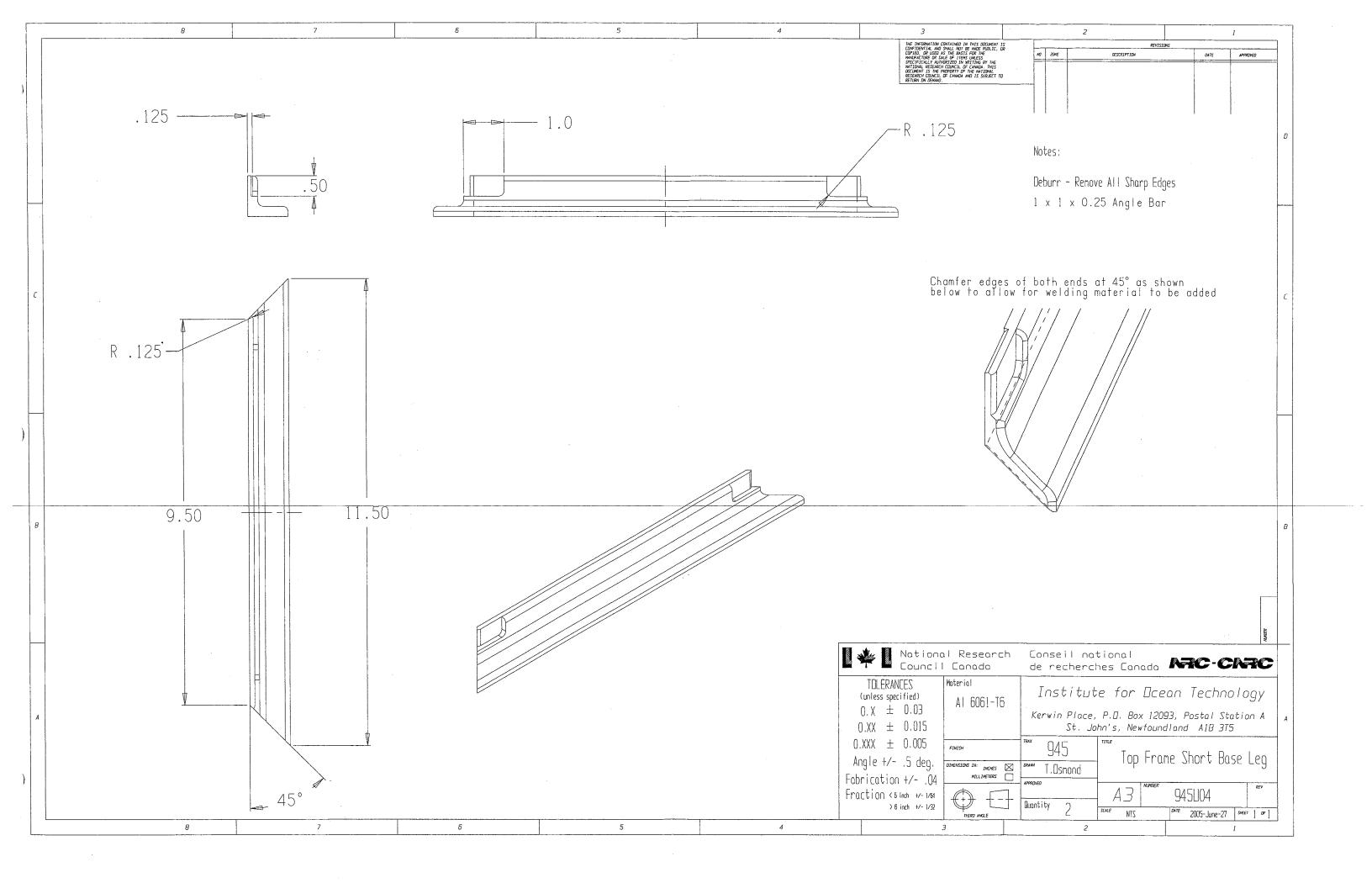
Figure 7

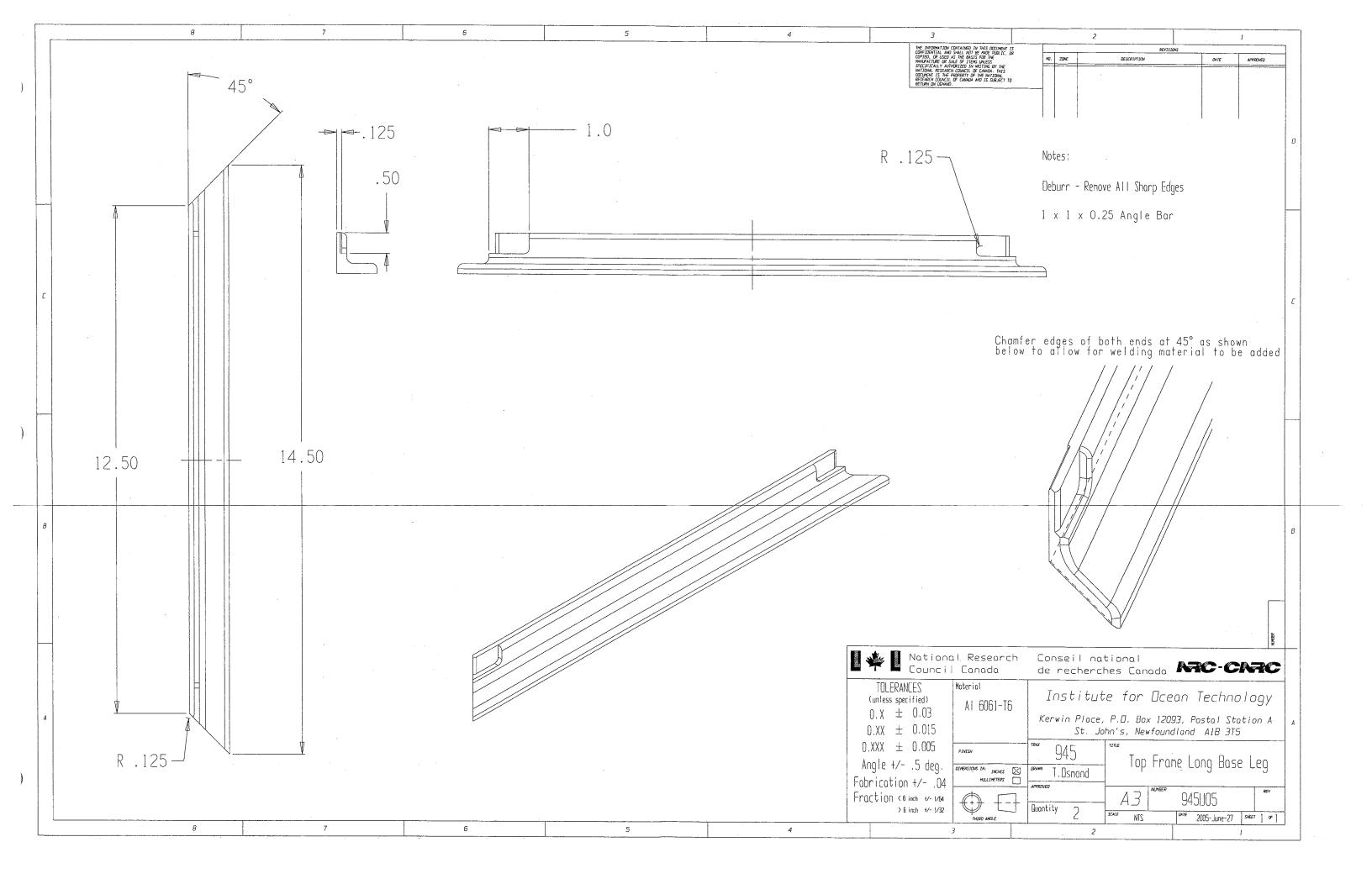

Figure 8

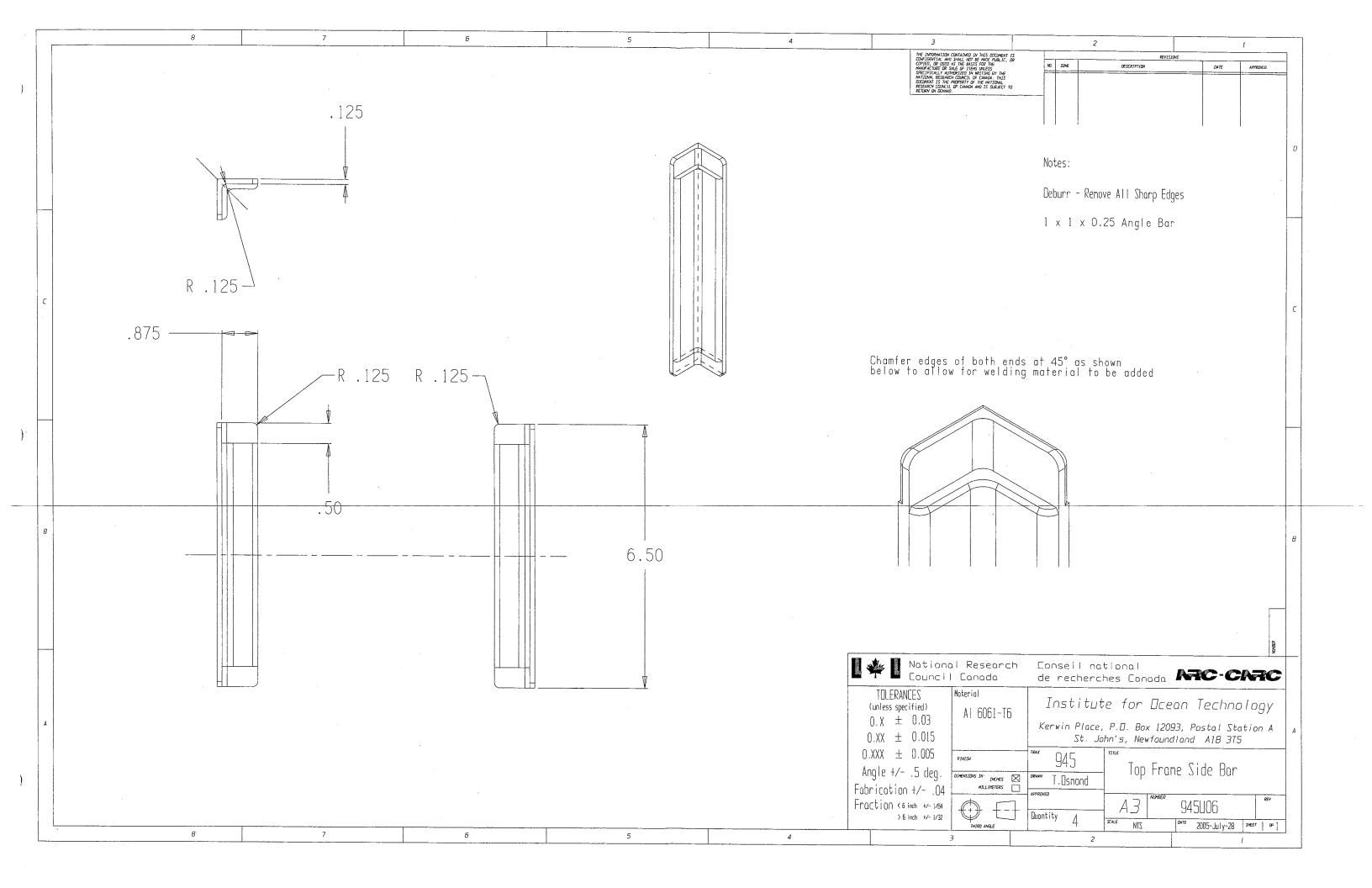

Appendix A

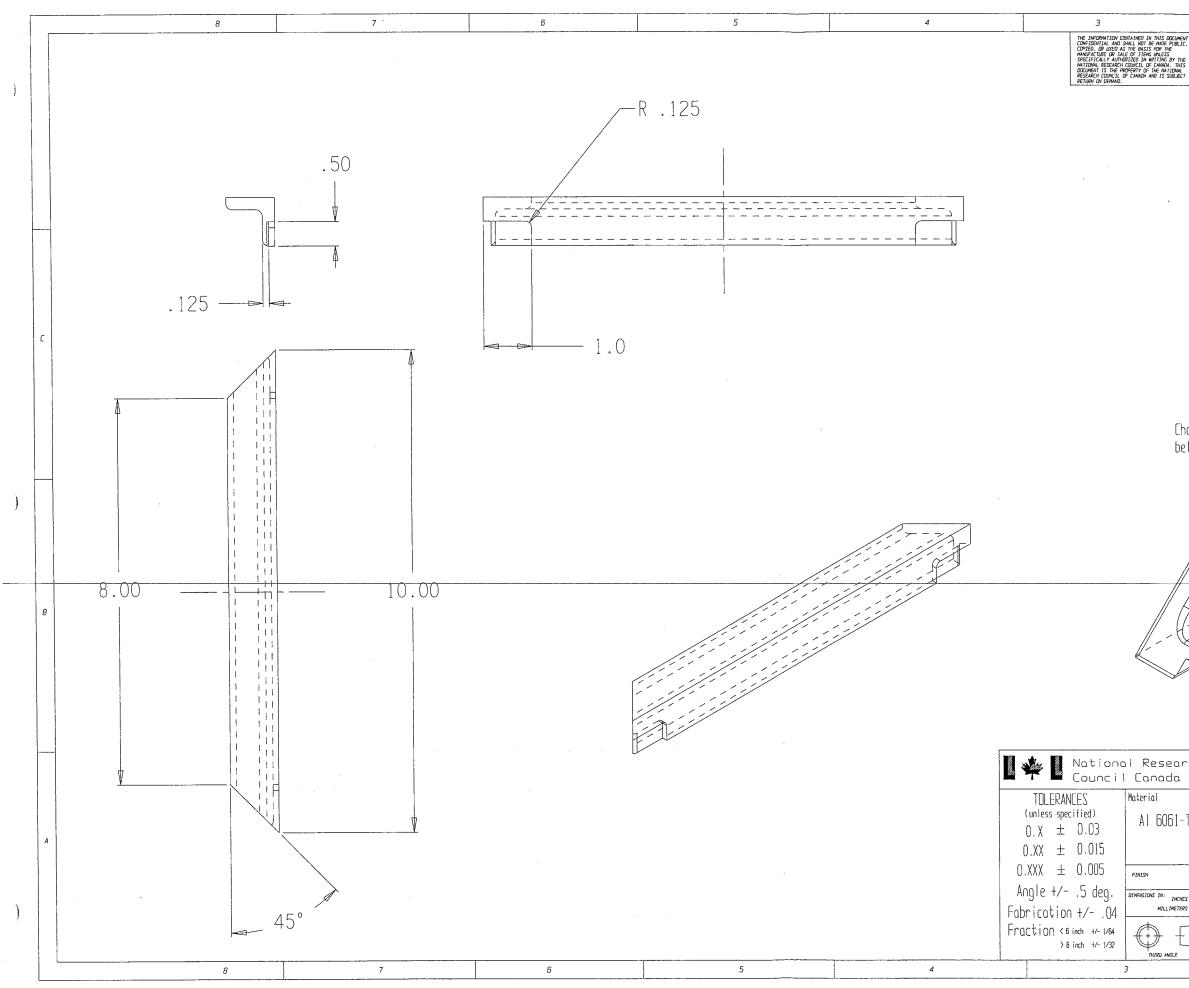
Single Structure Out 1225 0 128 5.402 0.000 <	ISTER STRUCTURE 0.083 0.441 12.25 0 1.88 5.402 0.000 0.87x 15* flat bar \$6.00 0.6075 Pads 1.8975 0.088 0.165 0.75 0.188 0.24 0.000 0.87x 15* flat bar \$6.00 0.6075 50.80 0.5775 50.80 0.5775 50.80 0.5775 50.80 0.5775 50.80 0.5775 50.80 0.5775 50.80 0.5775 50.80 0.5775 50.80 0.5775 50.80 0.5775 50.80 0.5775 50.80 0.5775 50.80 0.5775 0.588 0.227 1.5784 50.80 0.572 1.5784 50.80 0.572 1.5784 50.80 0.572 1.5784 50.80 0.572 1.5784 50.80 0.572 1.5784 50.80 57.21 0.558 1.5784 50.80 1.590 13.33 51.60 0.560 1.474 1.574 50.80 1.574 57.80 0.567 1.474 1.574 1.578 57.80 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>																	
NSTER STRUCTURE (Figs. 0.44 12.25 0 1.84 5.47 0.00 6.27 0.27 8.26 0.078 8.22 0.078 8.22 0.078 8.22 0.078 8.22 0.078 8.22 0.078 8.22 0.078 8.22 0.078 8.22 0.078 8.22 0.078 8.22 0.078 8.22 0.078 8.22 0.078 8.22 0.078 8.22 0.078 8.22 0.078 8.22 0.078 8.22 0.078 0.078 <th>INSTER STRUCTURE 0.058 0.441 12.25 0 1.88 5.402 0.000 0.87x 1.5* fait bar \$6.00 0.6075 I Pads 1.8875 0.088 0.166 0.75 0 1.88 0.124 0.000 0.87x 1.5* fait bar \$6.00 0.6075 SMFment 2.8175 0.088 2.258 7.25 0 2.20 15.84 0.000 5.072 0.27p faits \$31.80 0.27p faits \$31.80 0.27p faits \$31.80 0.27p faits \$31.80 0.221 0.164 43.972 0 2.20 15.884 0.000 5.072 0.27p faits \$31.80 0.000 17.85 17.47.902 maple bar \$160 0.133.3 Storead Top 0.044 42 1.648 2.712 0 2.244 16.312 0.000 5.057 17.47.92 maple bar \$160 0.133.3 Store Tats 0.044 42 1.648 2.716 0.000 5.050 17.47.92 maple bar \$160 0.133.3 Store</th> <th></th>	INSTER STRUCTURE 0.058 0.441 12.25 0 1.88 5.402 0.000 0.87x 1.5* fait bar \$6.00 0.6075 I Pads 1.8875 0.088 0.166 0.75 0 1.88 0.124 0.000 0.87x 1.5* fait bar \$6.00 0.6075 SMFment 2.8175 0.088 2.258 7.25 0 2.20 15.84 0.000 5.072 0.27p faits \$31.80 0.27p faits \$31.80 0.27p faits \$31.80 0.27p faits \$31.80 0.221 0.164 43.972 0 2.20 15.884 0.000 5.072 0.27p faits \$31.80 0.000 17.85 17.47.902 maple bar \$160 0.133.3 Storead Top 0.044 42 1.648 2.712 0 2.244 16.312 0.000 5.057 17.47.92 maple bar \$160 0.133.3 Store Tats 0.044 42 1.648 2.716 0.000 5.050 17.47.92 maple bar \$160 0.133.3 Store																	
STR # FUCTURE Fails 6.5 0.08 0.441 12.23 0 188 6.422 0.000 0.021 0.53 157.45 Mode State 5.400 0.0073 8.4.05 Pails 4.2575 0.088 2.458 7.28 0 1.88 6.421 0.024 0.003 0.57.1 8.1.08 0.0073 8.4.05 Pails 4.457125 0.086 2.308 7.28 0 2.81 8.1.88 0.000 0.727 8.4.05 Pails 4.457125 0.086 0.044 4.2 1.848 7.25 0 2.81 1.81.6 0.0212 8.1.6 0.133 8.60 0.033 8.60 0.133 8.60 0.133 8.60 0.133 8.60 0.133 8.60 0.133 8.60 0.133 8.60 0.133 8.60 0.133 8.60 0.133 8.60 0.133 8.60 0.133 8.60 0.133 8.60 0.133 8.60 0.133 8.60 0.133 <	STER STRUCTURE Outs Outs Outs Outs Outs Outs Outs State <																	
STRES FUNCTURE Press 0.008 0.641 12.25 0 188 5.422 0.000 0.573 14.06 Press 4.1577 0.008 0.168 0.258 0.128 0.000 0.571 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.9 10.00 6.27.2 57.2 57.2 57.8 57.8 57.9 10.00 57.7 57.9 57.8 57.9 10.00 57.8 57.9 10.00 57.8 57.9 10.00 57.8 57.9 10.00 57.8 57.9 10.00 57.9 14.06 57.8 57.9 10.00 12.22 58.9 12.20 58.9 12.20 58.9 12.20 58.9 12.20 58.9 12.23 59.9 10.00 12.23 59.9 10.00 12.23 59.9 10.00 12.23 59.9 10.00	STER STRUCTURE Outs Outs <thouts< th=""> Outs Outs<!--</th--><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th><th></th><th></th><th></th><th></th><th>· :</th></thouts<>												1					· :
STRES TRUCTURE Pres 0.037 419575 0.037 0038 0.441 0.255 12.25 0.058 0.441 0.256 12.25 0.018 0.020 0.210 0.57.15 0.017 0.57.15 0.017 0.077 0.027 8.2.75 0.028 Pres 41.9757 0.038 2.55.75 0.044 12.25 0 1.88 5.402 0.057 8.2.77 Pres 41.9757 0.038 2.55.75 0.044 42.51.25 0.028 0.021.25 8.2.77 Pres 4.45.57.25 0.038 2.56.97 2.40.0 8.3.74 0.000 15.27.25 5.58.85 0.183 8.66.0 Arm Bas 2.1 0.044 4.2 1.26.8 7.26.0 0.26.75 7.18.0.20 0.65.85 1.1 * * 8.0.27 mptes 3*.90.0 1.533 8.64.0 Arm Bas 2.1 0.048 0.044 4.2 0.087 7.26.0 0.000 1.56.0 0.000 1.56.0 0.000 1.56.0 0.000 1.56.0 0.000 1.56.0 0.000 1.56.0 0.000 1.56.0 0.000	STER STRUCTURE Outsource Operation		Jahuma Qi	and the Maight (I be/ou in)	Maight Por Inch	anath M	-inhi (I ha) C			4	NHO \\	14-0 IA	140-	B # _ 1	Φ1 <u>4</u> ~ • • • • • • • • • • • • • • • • • •	¢lin on ¢lin		
Sate 6.5 0.068 0.441 12.25 0 1.58 5.422 0.000 0.827 0.92 × 1.0* fits the art state 86.08 0.5075 5.400 Same 2.587 0.008 2.288 7.28 0 2.38 0.000 0.300 0.007 5.075 5.277 5.17 Same 2.587 0.008 2.288 7.28 0 2.34 5.386 0.000 0.000 0.072 0.974 5.18 0.227 5.578 5.277 5.17 5.16 0.027 5.17 5.16 0.027 5.17 5.18 0.028 0.974 5.18 0.027 5.17 5.18 0.028 0.018 0.024 5.18 0.028 5.18 0.028 5.18 0.028 5.18 0.028 5.18 0.028 5.18 0.028 5.18 0.028 5.18 0.028 5.18 0.028 5.18 0.028 5.18 0.028 5.18 0.028 5.18 0.028 5.18 0.028	Parts 4.5 0.008 0.441 12.25 0 1.88 5.402 0.000 0.827 0.87×16*father 56.00 0.075 Parts 1.6875 0.098 0.045 2.75 0 2.88 2.9819 0.000 0.733 0.27° father 51.05 0 0.735 5 0 0.735 0.27° father 51.05 0 0.75 0 2.88 7.25 0 2.88 7.00 0.73 0.27° father 51.05 0 0.75 0 2.81 0.00 0.73 0.27° father 51.05 0 0.75 0 2.81 0.00 0.73 0.27° father 51.05 0 0.75 0 2.81 0.00 1.87 0.90 0.73 0.27° father 51.05 0 0.133 0.00 0.133 0.00 0.133 0.00 0.00 1.87 7.92 0 2.24 1.81 0.00 1.83 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.14<	TOUCTHOE	Olume of	Decine vvergin (Lusicu.in)		engui vve	algrit (Lus)		Itrola i Cent		V"CX VV	°Су v\	V^CZ	Materiai	ֆ/π υι φ/π	ф/ш ОГ ф/н i	Costs	
Path 1.875 0.065 0.76 0 1.83 0.024 0.005 0.375 0.027 riske 1.000 0.2078 1.227 Path 4.45720 0.086 -4.66 7.25 0 2.31 6.16 0.000 9.70 0.027 riske 90.00 9.70 90.00 9.70 90.00 9.70 90.00 9.70 90.00 9.70 90.00 9.70 90.00 9.70 90.00 9.70 90.00 9.70 90.00 9.70 90.00 9.70 90.00 9.70 90.00 9.70 90.00 9.70 90.00 9.70 90.00 9.70 90.00 9.70 90.00 9.70 90.00 <td< td=""><td>Paids 1.6875 0.098 0.165 0.75 0 1.88 0.124 0.000 0.101 0.57 1.57 0 0.188 0.124 0.000 0.101 0.57 1.57 0 0.188 0.124 0.000 0.101 0.57 1.57 0 0.57 1.57 0 0.57 2.25 0 2.23 2.89 0.000 5.07 0.073 2 2 2 2 2.57 0 0.000 1.88 0.000 0.773 2 0 0.0133 0.0164 2.25 0 2.66 1.375 0 0.183 0.000 1.785 1">1" 1">1" 0.058 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.164 2.268 7.25 0 6.25 7.016 0.000 0.1626 1">1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1"</td><td>HRUCIURE</td><td>45</td><td>0.0</td><td>00</td><td></td><td>0.441</td><td>10.05</td><td>0</td><td>1 00</td><td>E 400</td><td>0.000</td><td>0.007</td><td>O FRIE A FR Bot hav</td><td></td><td>0.00</td><td></td><td></td></td<>	Paids 1.6875 0.098 0.165 0.75 0 1.88 0.124 0.000 0.101 0.57 1.57 0 0.188 0.124 0.000 0.101 0.57 1.57 0 0.188 0.124 0.000 0.101 0.57 1.57 0 0.57 1.57 0 0.57 2.25 0 2.23 2.89 0.000 5.07 0.073 2 2 2 2 2.57 0 0.000 1.88 0.000 0.773 2 0 0.0133 0.0164 2.25 0 2.66 1.375 0 0.183 0.000 1.785 1">1" 1">1" 0.058 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.164 2.268 7.25 0 6.25 7.016 0.000 0.1626 1">1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1"	HRUCIURE	45	0.0	00		0.441	10.05	0	1 00	E 400	0.000	0.007	O FRIE A FR Bot hav		0.00		
Splate 41.8573 0.968 40.06 7.25 0 2.26 7.25 0 2.26 7.25 0 2.26 7.25 0 2.26 7.25 0 2.26 7.25 0 2.26 7.25 0 2.26 1.26 0.000 6.703 0.27 3.27	9 Falar 41.8675 0.098 4.685 7.25 0 2.38 2.619 0.000 8.703 0.257 plate \$10.59 0.0733 \$ \$ P Hate 44.53125 0.068 0.044 4.384 7.25 0 2.201 81.539 0.000 12.274 38" plate \$32.50 0.1333 \$ \$32.60 11" x1" x 0.225 mile bar \$1.60 0.1333 \$ \$ \$32.80 \$0.000 12.274 \$ \$32.80 \$32.60 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																	
6 SMMorr 23.875 0.068 2.288 7.25 0 2.20 18.44 0.000 5.072 0.57 0.57 0.53.55 2.212 11.45 op bord how may been ma	e Stiffener 25.875 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.064 0.068 0.064 0.068 0.064 0.068 0.044 42 1.848 7.25 0 0 0 0 0 0 0 0 0 0 0 0 0																	
or Plane 44.3125 0.088 0.084 4.294 7.25 0 2.81 91.80 0.000 12.274 Strip her 52.31 0.164 81.8.0 op base 0.075 0.088 0.064 42 12.41 7.25 0 2.81 13.83 0.000 12.274 Strip her 52.31 0.164 81.8.0 op base 0.054 0.054 2.2 0.088 7.25 0 9.83 13.83 0.000 12.274 Strip her 57.80 0.133 84.80 Side Flank 0.044875 0.088 2.288 7.25 0 0.25 7.64 0.000 15.66 0.000 15.78 0.053 15.42 The rain Marce Flank 0.044875 0.088 2.388 7.25 0 0.75 0.64.3 0.000 15.828 0.000 15.828 0.000 15.828 0.000 15.828 0.000 15.828 0.000 15.828 0.000 15.828 0.000 15.828 0.000 15.828 0.000 15.828 0.000 15.828 0.000	ar Plate 44,53125 0.098 4.324 7.25 0 2.81 31,639 0.000 12.274 387 pints \$22,31 0.1546 \$ p0 Bars 18,375 0.098 0.044 42 1.848 7.25 0 9.86 13,589 0.000 17.854 "1 x '1 x 0.25' angle bar 31,60 0.133.3 orticle Bars 9.625 0.098 0.044 43 22 0.968 7.25 0 6.25 7.18 0.000 5.966 "1 x'1 x 0.25' angle bar 31,60 0.133.3 orticle Bars 9.625 0.098 0.044 22 0.968 7.25 0 6.25 7.18 0.000 5.966 "1 x'1 x 0.25' angle bar 31,60 0.133.3 orticle Bars 9.625 0.098 0.044 22 0.968 7.25 0 6.25 7.18 0.000 5.966 "1 x'1 x 0.25' angle bar 31,60 0.133.3 orticle Bars 9.625 0.098 0.044 22 0.968 7.25 0 6.25 7.18 0.000 5.966 "1 x'1 x 0.25' angle bar 31,60 0.133.3 orticle Bars 9.625 0.098 0.044 22 0.968 7.25 0 6.25 7.18 0.000 2.966 "1 x'1 x 0.25' angle bar 31,60 0.133.3 orticle Bars 9.625 0.098 0.044 22 0.968 7.25 0 6.25 18.43 0.000 14.188 316' thick plate \$7.88 0.6547 orticle Date 9.1600 14.188 316' thick plate \$7.88 0.6547 orticle Date 9.1600 14.188 316' thick plate \$7.88 0.6547 orticle Date 9.1600 14.188 316' thick plate \$7.88 0.6547 orticle Date 9.1600 14.188 316' thick plate \$7.88 0.6547 orticle Date 9.1600 14.188 316' thick plate \$7.88 0.6547 orticle Date 9.1600 14.188 316' thick plate \$7.88 0.6547 orticle Date 9.1600 14.188 316' thick plate \$7.88 0.6547 orticle Date 9.1600 14.188 316' thick plate \$7.88 0.6547 orticle Date 9.1600 14.188 316' thick plate \$7.88 0.6547 orticle Date 9.1600 14.188 316' thick plate \$7.88 0.6547 orticle Date 9.1600 14.188 316' thick plate \$7.88 0.6547 orticle Date 9.1600 14.188 316' thick plate \$7.88 0.6547 orticle Date 9.1600 14.188 316' thick plate \$7.88 0.6547 orticle Date 9.1600 14.188 316' thick plate \$7.88 0.6547 orticle Date 9.1600 14.188 316' thick plate \$7.88 0.6547 orticle Date 9.1600 14.188 316' thick plate \$7.88 0.6547 orticle Date 9.1600 14.188 316' thick plate \$7.88 0.6547 orticle Date 9.1600 000 14.188 316' thick plate \$7.88 0.6547 orticle Date 9.1600 000 14.188 0000 14.188 0000 14.188 0000 14.188 0000 14.188 0000 14.188 0000 14.188 0000 14.188 0000 14.188 0000 14.188 00000 14.188 0000 14.188 00000 14.								-									
Unitedation 10.01	Inforced Top OpeRs 18.375 D.098 0.044 42 1.848 7.25 D 9.66 13.396 0.000 17.87 1* x* x 0.25* angle bar 31.60 0.1333 other Bars 21 D.098 0.044 42 1.848 7.25 D 9.66 13.396 0.000 17.87 1* x* x 0.25* angle bar 31.60 0.1333 Side Pilets 30.46875 0.098 0.044 22 0.686 7.25 0 6.25 17.84 0.000 61.75 1* x* x 0.25* angle bar 31.60 0.1333 Side Pilets 30.46875 0.098 0.244 22 20.66 7.25 0 6.25 16.453 0.000 17.87 1* x* x 0.25* angle bar 31.60 0.1333 New Sectora 22.6503 0.098 2.162 7.25 0 6.21 16.44 9.62 4.64 0.1 6.20 4.64 0.21 6.26 16.42 0.092 6.16 6.27 16.76 6.26 16.26 7.27 0.000 4.71 15.71 0.000 3.77 7.88																	
obs Burn 13.75 D.096 0.044 42 1.848 7.25 0 2.68 1.338 0.000 17.844 17.844 17.845	op Bes 13.376 0.088 0.044 42 1.846 7.25 0 9.66 13.386 0.000 17.854 1% 1 * X 028* angle bar \$1.60 0.1333 entide Bars 9.625 0.098 0.044 422 0.968 7.25 0 6.26 7.018 0.000 6.066 1% 1 * X 028* angle bar \$1.60 0.1333 Side Plats 30.4675 0.098 0.044 22 0.986 7.25 0 6.25 7.16 0.000 1.602 3/16* hick plate \$7.88 0.0547 Side Plats 23.1652 0.098 2.269 7.25 0 6.25 16.463 0.000 113.023 3/16* hick plate \$7.88 0.0547 Out Sections 1071/L 23.87 174.817 0.000 113.02 3/16* hick plate \$7.88 0.0547 Nis 9.920 4.64 0.1 6.20 4.900 0.928 61.50 7.75 0.000 4.78 UPMENT 10.94 3.56 7.65 7.75 2.54 4.007 3.56 7.75 2.54 <td></td> <td>44.53125</td> <td>0.0</td> <td>38</td> <td></td> <td>4.304</td> <td>7.25</td> <td>U</td> <td>2.81</td> <td>31.639</td> <td>0.000</td> <td>12.2/4</td> <td>3/8" plate</td> <td>\$22</td> <td></td> <td>\$18.40</td> <td></td>		44.53125	0.0	38		4.304	7.25	U	2.81	31.639	0.000	12.2/4	3/8" plate	\$22		\$18.40	
Non-method 21 0.008 0.044 45 21.17 7.28 0 2.24 15.71 0.000 5.58 17.47 17.22 <th17.22< th=""> 17.22 <th17.22< td="" th<=""><td>othom Bars 21 0.068 0.044 48 2112 725 0 2.84 15.312 0.000 5.966 1*x1*x.02* mighe bar \$1.60 0.1333 Side Plates 30.46575 0.068 0.044 22 0.968 7.25 0 6.25 7.164 0.000 6.000 1*x1*x.02* mighe bar \$1.60 0.133 Side Plates 3.16255 0.068 2.289 7.25 0 6.25 16.43 0.000 14.83 3/16* mich plate \$7.88 0.0647 No Plate 2.22663 0.098 2.182 7.25 0 10.13 15.820 0.000 22.083 3/16* mich plate \$7.88 0.0647 No Schons 0.098 2.182 7.25 0 10.13 15.820 0.000 22.083 3/16* mich plate \$7.88 0.0647 We Sections 0.092 4.64 0.1 6.20 46.029 0.992 61.50+ 0.000 3.65 5.67 5.77 UPME</td><td>ор</td><td>40.075</td><td>0.0</td><td>0.044</td><td>40</td><td>4 0 4 0</td><td>7.05</td><td>~</td><td>0.00</td><td>10 000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th17.22<></th17.22<>	othom Bars 21 0.068 0.044 48 2112 725 0 2.84 15.312 0.000 5.966 1*x1*x.02* mighe bar \$1.60 0.1333 Side Plates 30.46575 0.068 0.044 22 0.968 7.25 0 6.25 7.164 0.000 6.000 1*x1*x.02* mighe bar \$1.60 0.133 Side Plates 3.16255 0.068 2.289 7.25 0 6.25 16.43 0.000 14.83 3/16* mich plate \$7.88 0.0647 No Plate 2.22663 0.098 2.182 7.25 0 10.13 15.820 0.000 22.083 3/16* mich plate \$7.88 0.0647 No Schons 0.098 2.182 7.25 0 10.13 15.820 0.000 22.083 3/16* mich plate \$7.88 0.0647 We Sections 0.092 4.64 0.1 6.20 46.029 0.992 61.50+ 0.000 3.65 5.67 5.77 UPME	ор	40.075	0.0	0.044	40	4 0 4 0	7.05	~	0.00	10 000							
enterle Bars 8.825 0.086 0.044 22 0.88 7.25 0 6.25 7.011 0.000 0.0335 \$2.26 Prom Rev	ethicle Bars 9.625 0.088 0.044 22 0.688 7.25 0 6.25 7.168 0.000 6.050 11 x1 * 0.02 mage bar \$1 sp0 0.1333 9 Ford rad Rear Plates 33.1562.5 0.088 2.286 7.25 0 6.25 21.684 0.000 14.883 3/16* thick plate \$7.88 0.0547 Proof Plate 23.1562.5 0.098 2.182 7.25 0 6.25 16.453 0.000 14.883 3/16* thick plate \$7.88 0.0547 B TOTAL 23.657 7.25 0 10.13 15.822 0.000 4.748 3/16* thick plate \$7.88 0.0547 B TOTAL 23.657 7.25 0 10.13 15.822 0.000 4.748 \$7.88 0.0547 UIPMENT 23.657 7.267 0.01 15.823 0.000 4.748 \$7.97 2.513 4.007 \$7.97 \$7.97 \$7.97 \$7.98 \$7.97 \$7.97 \$7.97 \$7.97 \$7.97 \$7.97 \$7.97 \$7.97 \$7.97 \$7.97 \$7.97 \$7.97								-									
Side Finds 30.4875 0.068 2.886 7.28 0 6.325 21.48 0.0000 16.862 211*10x plate 37.88 0.0577 174.45 Front infload 22.3503 0.066 22.89 7.28 0 10.13 15.620 0.000 16.882 211*10x plate 37.88 0.0577 \$3.38 Front infload 22.3503 0.066 22.89 10.13 15.620 0.000 16.822 211*10x plate \$7.88 0.0547 \$3.38 Front infload 22.3503 0.066 22.89 10.13 15.620 0.000 16.323 91.10x \$7.88 0.0547 \$7.88 0.0547 \$7.88 0.0547 \$7.88 0.0547 \$7.88 0.0547 \$7.88 0.0547 \$7.88 0.0547 \$7.88 0.0547 \$7.88 0.0547 \$7.88 0.0547 \$7.88 0.0547 \$7.88 0.0547 \$7.88 0.0547 \$7.88 0.0547 \$7.88 0.0547 \$7.84.55 0.0163 \$7.88 <	Side Plates 20.69 2.290 7.25 0 6.25 21.648 0.000 14.682 316* Hick plate \$7.88 0.0547 Proof and Rear Plate 23.16255 0.096 2.299 7.25 0 10.13 15.820 0.000 14.183 316* Hick plate \$7.88 0.0547 Proof Plate 22.28573 0.098 2.182 7.25 0 10.13 15.820 0.000 14.183 316* Hick plate \$7.88 0.0547 No Sections 0.098 2.182 7.25 0 10.13 15.820 0.000 14.183 316* Hick plate \$7.88 0.0547 UPMENT 23.957 174.417 0.000 14.183 316* Hick plate \$7.88 0.0547 INS 9.920 4.64 0.1 6.20 46.029 0.566 8.791 15.00								-									
Front and Reer Files 23.18225 0.068 2.289 7.28 0 0.2.5 14.483 oncome strift thick pails 57.88 0.0547 \$5.35 nm Gendom 22.2557 1.069 22.857 17.417 0.000 12.008 57.88 0.0547 \$5.35 UPMENT 22.657 17.417 0.000 15.025 57.88 0.0547 \$5.35 57.82 0.0547 \$5.35 UPMENT 22.657 17.417 0.000 15.025 57.88 0.0547 \$5.35 57.82 0.0547 \$5.25 57.82 0.0547 \$5.25 57.82 0.0547 \$5.25 57.82 57.82 0.0547 \$5.25 57.82 57.82 0.0547 \$5.25 57.82 57.82 57.82 57.82 57.82 57.83 57.85 57.82 57.85 57.80 57.85 57.85 57.85 57.85 57.85 57.85 57.85 57.85 57.85 57.85 57.85 57.85 57.85 57.85 57	Front and Rear Plate 22.19625 0.098 2.269 7.25 0 6.25 14.453 0.000 14.183 3/16" thick plate \$7.86 0.0547 New Sections 22.26553 0.099 2182 7.25 0 10.13 15.820 0.000 14.183 3/16" thick plate \$7.86 0.0547 Ow Sections 22.26553 0.000 14.183 3/16" thick plate \$7.86 0.0547 IVPMENT 22.2657 174.517 0.000 113.023 3/16" thick plate \$7.86 0.0547 INS 9.520 4.64 0.1 6.20 46.029 0.992 61.504 Inioneter (1) 0.708 9.42 2.57 4.44 19.44 10.69 8.77 Inioneter (2) 0.708 9.42 2.57 4.44 19.44 10.69 8.77 Inioneter (2) 0.708 9.14 2.12 3.66 6.77 5.76 7.57 UPMENT AND CANISTER 37.273 254.435 -0.002 5.056 1.5x 15.x01.25 HSS \$1.00 0.0833 0.184166667 <td></td> <td></td> <td></td> <td></td> <td>22</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					22			-									
Reof Plane 22.5653 0.066 2.162 7.25 0 0.13 15.820 0.000 22.063 3.76* mick plane 57.85 0.0647 55.50 BTOTAL 23.957 7.25 0 0.13 15.820 0.000 110.023 57.85 0.0647 57.95 0.0647 57.95 0.062 57.95 0.062 57.95 0.063 57.95 0.063 57.95 0.063 57.95 0.063 57.95 0.063 57.95 0.000 57.95 57.95 57.95 57.95 57.95 57.95 57.95 57.95 57.95 57.95 57.95 57.95 57.95 57.95 <td>PROF Plate 22.2663 0.088 2.182 7.25 0 10.13 15.820 0.000 22.083 3/16" mick plate \$7.88 0.0567 B TOTAL 23.957 174.817 0.000 4718 7297 0.000 4718 5 5 5 5 7297 0.000 4718 5 5 5 5 5 5 6 7.277 0.000 4718 5 5 5 5 6 7.77 5 5 5 5 6 7.77 7.77 7.77 5 6 1 6.20 4.020 0.902 61.504 5 5 6 7.77 5 5 6 7.77 5 5 5 7.775 7.77<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	PROF Plate 22.2663 0.088 2.182 7.25 0 10.13 15.820 0.000 22.083 3/16" mick plate \$7.88 0.0567 B TOTAL 23.957 174.817 0.000 4718 7297 0.000 4718 5 5 5 5 7297 0.000 4718 5 5 5 5 5 5 6 7.277 0.000 4718 5 5 5 5 6 7.77 5 5 5 5 6 7.77 7.77 7.77 5 6 1 6.20 4.020 0.902 61.504 5 5 6 7.77 5 5 6 7.77 5 5 5 7.775 7.77 <td></td>																	
PEOF Prile 22.2863 0.096 21.82 7.25 0 0.101 15.820 0.000 22.083 314* hick plate \$7.88 0.0557 \$5.50 ID TOTAL 23.657 23.657 119.807 119.805 110.90 0.9833 \$1.55 119.805 110.90 0.9833 \$1.55 119.805 110.90 0.9833 \$1.55 119.805 110.90 119.815 <td< td=""><td>P Roof Plate B Roof Plate B Roof Plate B Roof Plate B TOTAL B TOTAL B TOTAL Color Co</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\$7</td><td>·.88 0.0547</td><td>\$3.38</td><td></td></td<>	P Roof Plate B Roof Plate B Roof Plate B Roof Plate B TOTAL B TOTAL B TOTAL Color Co														\$7	·.88 0.0547	\$3.38	
JUM BENT NUMEN	Universe 174.817 0.000 113.023 s UNIPMENT INS ston Pak 920 4.64 0.1 6.20 46.029 0.952 61.504 MIPMENT INS ston Pak 1.980 9.82 2.477 4.44 19.444 -5.089 8.781 Minometer (1) 0.708 9.14 2.12 3.66 6.471 1.501 2.581 Minometer (2) 0.708 10.84 3.55 5.66 7.75 5.065 UNPMENT AND CANISTER 3.7273 254.435 -0.062 189.947 5.056 TAME 0.184166667 19 3.499 19.25 0 10.25 67.369 0.000 35.866 15x1.5x0.125 HSS \$1.00 0.0833 0.0833 0.084166667 10.25 67.356 0.000 3.586 15x1.5x0.125 HSS \$1.00 0.0833 15x1.5x0.125 HSS \$1.00 0.0833 0.084166667 10.25 67.356 0.000 3.586 15x1.5x0.125 HSS \$1.00 0.0833 0.184166667 0.755 0.075 <td></td> <td>22.26563</td> <td>0.0</td> <td>98</td> <td></td> <td>2.182</td> <td>7.25</td> <td>0</td> <td>10.13</td> <td>15.820</td> <td>0.000</td> <td>22.093</td> <td>3/16" thick plate</td> <td>\$7</td> <td>.88 0.0547</td> <td></td> <td></td>		22.26563	0.0	98		2.182	7.25	0	10.13	15.820	0.000	22.093	3/16" thick plate	\$7	.88 0.0547		
Cod 7:297 0:000 4:718 Cod 7:297 0:000 4:718 Other Pairs Sint Pairs Sint Pairs Sint Pairs Cod 7:297 0:000 4:718 Sint Pairs Cod 7:297 0:000 4:718 Sint Pairs Sint Pairs Cod 7:297 0:000 4:718 Sint Pairs Cod 7:297 0:000 4:718 Sint Pairs Cod 7:297 0:000 4:718 Cod 7:297 0:000 4:718 Cod 7:297 0:000 4:718 Cod 7:297 0:000 7:75 Cod 7:297 0:000 7:75 Cod 6:020 7:050 Cod 7:297 0:000 7:75 Cod 7:297 0:000 7:75 Cod 7:295 0:000 9:598 Cod 7:295 0:000 9:598 Cod 7:295 0:000 9:5989 Cod 7:295 0:00	Coc 7.297 0.000 4.718 UPMENT INS 9.920 4.64 0.1 6.20 4.60.22 0.992 61.504 NS 1.890 9.82 -2.67 4.44 19.444 -5.098 8.791 Innometer (1) 0.708 9.14 2.12 3.68 6.471 1.501 2.581 Innometer (2) 0.708 9.14 2.12 3.68 6.471 1.501 2.581 Innometer (2) 0.708 9.14 2.12 3.68 6.471 1.501 2.581 Innometer (2) 0.708 9.14 2.12 3.68 6.471 1.501 2.581 IUPMENT AND CANISTER 3.273 254.435 0.002 5.955 51.501 51.50.0 0.833 0.184166667 19 3.499 19.25 0 10.26 67.359 0.000 21.571 51.50.0125 HSS \$1.00 0.0833 0.184166667 19 3.499 19.25 0		<u></u>			<u> </u>		·]					
Cod 7.287 0.000 4.718 UPMENT NNS 9.620 4.64 0.1 6.20 450g 20 0.59g 61.594 Ion Pass (10) 1.383 9.82 2.57 4.64 18.44 6.598 6.731 Ion Pass (11) 1.383 9.82 2.57 4.64 18.44 5.598 7.787 Ion Pass (12) 0.738 10.34 2.55 5.987 7.787 2.000 4.718 Ibit remeter 12) 0.738 10.34 2.55 7.8616 0.002 7.7864 Ibit remeter 12) 0.727 3.7273 Cod 3.876 0.002 1.876 1.87 5.90.125 HISS \$1.00 0.083 \$1.58 Ibit reference 1.104.166867 19 3.449 10.25 0.256 1.833 1.55.15.40.125 HISS \$1.00 0.083 \$1.58 IDI Past reference 1.104.166867 19 3.449 10.25 7.386 0.000 1.85.15.40.125 HISS \$1.00 0.0833 \$1.58.5	CoG 7.297 0.000 4.716 UIPMENT INS 9.920 4.64 0.1 6.20 4.64.029 0.992 61.504 NIS 0.708 9.82 2.57 4.44 19.444 5.098 8.791 Ilinometer (1) 0.708 10.84 3.55 6.68 7.757 2.513 4.007 B TOTAL 13.310 78.618 -0.042 78.684 5.775 2.513 4.007 UIPMENT AND CANISTER 37.273 254.435 -0.082 189.917 5.568 <td></td> <td></td> <td></td> <td></td> <td></td> <td>23.957</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>113.023</td> <td></td> <td></td> <td></td> <td>\$78.22</td> <td></td>						23.957						113.023				\$78.22	
UPMENT INS money as the intervent () the one have () the on	NUPMENT INS this Pak 9 920 4 64 0.1 6 20 46 029 0.692 61 504 this Pak inometer (1) 0.708 9.14 2.12 3.68 6.871 1.501 2.591 inometer (2) 0.708 9.14 2.12 3.68 6.871 1.501 2.591 B TOTAL 0.708 10.84 3.55 5.68 7.675 2.513 4.007 B TOTAL 0.708 10.84 3.55 5.68 7.675 2.513 4.007 (LipMent And CANISTER 37.273 254.435 -0.082 169.917 (CoO 6.826 0.000 3.586 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 19 3.499 19.25 0 10.25 6.7359 0.000 3.586 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 19 3.499 15.25 0 2.76 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833								CoC	3							· •	
INS 9.820 9.82 0.1 6.20 40.029 61.604 Binometer (1) 0.708 9.14 2.12 3.68 6.471 1.601 2.561 Binometer (2) 0.708 10.14 2.12 3.68 6.471 1.601 2.561 BITOTAL 0.708 10.14 2.12 3.68 6.471 1.601 2.561 UIPMENT AND CANISTER 0.723 756.518 -0.002 180.917 -0.023 180.917 AME 0.144160667 19 3.499 15.25 0 10.25 67.369 1.000 35.866 1.5x1.6x0.126 HS \$1.00 0.0833 \$1.66 AME 0.144160667 19 3.499 15.25 0 10.25 67.369 0.000 35.866 1.5x1.6x0.126 HS \$1.00 0.0833 \$1.66 0.144160667 19 3.499 15.25 0 1.5x1.6x0.126 HS \$1.00 0.0833 \$1.66 0.144160667 19 3.499 15.25 0 0.76 46.72 0.000 4.801 1.5x1.6x0.126 HS \$1.00<	INS 920 4.64 0.1 6.20 46.029 0.992 61.504 1980 9.82 -2.57 4.44 19.444 -5.089 8.791 inometer (1) 0.708 9.14 2.12 3.86 6.471 1.501 2.591 inometer (2) 0.708 10.84 3.55 5.66 7.675 2.513 4.007 B TOTAL 3316 Code 5.979 0.006 5.775 UUPMENT AND CANISTER 37.273 264.435 0.082 189.917 Cod 6.826 0.002 5.095 0.184166667 19 3.499 19.25 0 10.25 67.359 0.000 35.866 0.184166667 19 3.499 19.25 0 6.25 63.362 0.000 21.870 1.5×1.5×0.125 HSS \$1.00 0.0833 0.184166667 19 3.499 19.25 0 0.75 1.381 0.000 3.033 1.5×1.5×0.125 HSS \$1.00 0.0833 1.5×1.5×0.125 HSS \$1.00 0.0833 1.5×1.5×0.1	realized and a second F																
Non-Pak (incredie (f) (incredie (f)) 1.880 9.82 2.67 4.44 19.44 -5.089 6.701 2.500 5.575 2.513 4.007 2.501 2.502 7.575 2.502 5.568 4.002 5.568 4.002 5.568 4.007 2.568 4.007 2.558 4.000 0.823 \$1.50 0.0833 \$1.56 AME 0.144.466677 19 3.499 15.25 0 0.125 67.363 0.000 2.386 1.57.15.0.125.185 \$1.00 0.0833 \$1.56 AME 0.144.466677 19 3.499 15.25 0 0.75 1.381 0.50.125.185 \$1.00 0.0833<	uiton Pak immometer (1) 1.980 9.82 -2.57 4.44 19.444 -5.089 8.791 immometer (1) 0.708 9.14 2.12 3.66 6.471 1.501 2.591 immometer (2) 0.708 10.84 3.55 5.68 7.675 2.513 4.007 IB TOTAL 13.316 79.618 -0.082 76.894 Cool 5.879 -0.008 5.879 -0.082 76.894 ID PMENT AND CANISTER 37.273 254.435 -0.082 189.917 Cool 6.826 -0.002 5.686 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 AMME 0.184166667 19 3.499 19.25 0 10.25 67.359 0.000 21.809 1.814166667 19 3.499 19.25 0 6.25 53.362 0.000 21.807 0.184166667 19 3.499 15.25 0 6.25 53.362 0.000 3.091 15.x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 19 3.499 15.25 0						9.920	4.64	0.1	6.20	46.029	0.992	61.504					
clinometer (1) 0.708 0.94 2.12 3.06 6.71 1.501 2.591 JB TOTAL 13.316 76.641 0.082 76.641 0.082 76.641 2UPMENT AND CAMISTER 37.273 264.435 0.082 169.017 Cod 6.826 0.002 5.096 AMME 0.164166667 19 3.499 19.25 0 10.24 5.066 0.164166667 19 3.499 19.25 0 10.25 67.356 0.000 35.661 15.x15.x0.125 HSS \$1.00 0.0833 \$1.68 0.164166667 19 3.499 19.25 0 10.25 67.356 0.000 35.661 15.x15.x0.125 HSS \$1.00 0.0833 \$1.68 0.164166667 19 3.499 19.25 0 76.584 1.000 35.861 1.5x1.5x0.125 HSS \$1.00 0.0833 \$1.68 0.164166667 19 3.499 19.25 0 0.75 45.73 0.000 1.5x1.5x0.125 HSS \$1.00 0.0833 \$2.62 UB TOTAL 0.164166667	clinometer (1) 0.708 9.14 2.12 3.66 6.471 1.501 2.591 clinometer (2) 0.708 10.84 3.55 5.66 7.675 2.513 4.007 BTOTAL 79.618 -0.082 76.684 -			:														
Difference (2) 0.708 10.84 3.55 6.68 7.675 2.13 4.007 JB TOTAL 1.3.16 70.616 -0.082 75.844 COG 5.978 4.002 75.844 COG 5.978 4.002 75.844 COG 5.978 4.002 75.844 COG 5.978 4.002 75.844 COG 5.878 4.002 75.844 COG 5.878 4.002 75.844 COG 5.8272 0.002 5.085 SAME 0.152168637 10 3.460 15.25 0 10.25 67.350 0.000 358.88 1.5 + 1.5 + 0.126 MSS \$1.00 0.0833 \$1.51 ALME 0.164169667 1.105 15.25 0 2.75 48.87 0.000 155.15 × 0.126 MSS \$1.00 0.0833 \$1.51 JE TOTAL 83.000 15.22 0 2.75 48.87 0.000 155.15 × 0.126 MSS \$1.00 0.0833 \$2.42 JE TOTAL 83.000 15.81 × 0.0126 MSS \$1.00 <t< td=""><td>Olimoneter (2) 0.708 10.84 3.55 5.66 7.675 2.513 4.007 JB TOTAL 13.316 79.618 -0.082 76.894 CoG 5.979 -0.006 5.775 QUIPMENT AND CANISTER 37.273 254.435 -0.082 189.917 CoG 6.826 -0.002 5.095 AME 0.184166667 19 3.499 19.25 0 10.25 67.359 0.000 35.866 0.184166667 19 3.499 15.25 0 6.275 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 19 3.499 15.25 0 2.75 16.851 0.000 3.039 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 19 3.499 15.25 0 2.75 16.851 0.000 3.039 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 19 3.499 15.25 0 2.75 16.851 0.000 3.039 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 JB TOTAL 0.1</td><td>(1)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Olimoneter (2) 0.708 10.84 3.55 5.66 7.675 2.513 4.007 JB TOTAL 13.316 79.618 -0.082 76.894 CoG 5.979 -0.006 5.775 QUIPMENT AND CANISTER 37.273 254.435 -0.082 189.917 CoG 6.826 -0.002 5.095 AME 0.184166667 19 3.499 19.25 0 10.25 67.359 0.000 35.866 0.184166667 19 3.499 15.25 0 6.275 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 19 3.499 15.25 0 2.75 16.851 0.000 3.039 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 19 3.499 15.25 0 2.75 16.851 0.000 3.039 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 19 3.499 15.25 0 2.75 16.851 0.000 3.039 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 JB TOTAL 0.1	(1)																
UB TOTAL 13.316 79.618 -0.082 76.854 Cool 6.5779 -0.008 5.775 DUIPMENT AND CANISTER 37.273 254.435 -0.082 189.917 RAME 0.184166667 19 3.499 19.25 0 10.25 67.359 0.000 36.868 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$1.58 0.184166667 19 3.499 19.25 0 2.25 5.305 \$1.00 0.0833 \$1.58 0.184166667 19 3.499 15.25 0 2.75 15.861 0.000 3.638 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$1.58 0.184166667 19 3.499 15.25 0 2.75 15.861 0.000 3.033 \$5.05 0.184166667 1.105 15.26 0 7.75 16.868 0.000 0.0833 \$5.05 0.184166667 19 3.499 15.26 0 7.75 15.818 0.000 0.061 \$1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$2.42 UB TOTAL	JB TOTAL 13.316 79.618 -0.082 76.894 CoG 5.879 -0.006 5.775 QUIPMENT AND CANISTER 37.273 254.435 -0.082 189.917 CoG 6.826 -0.002 5.095 RAME 0.184166667 19 3.499 19.25 0 10.25 67.359 0.000 35.866 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 19 3.499 15.25 0 6.25 53.362 0.000 21.870 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 29 5.341 8.75 0 0.75 16.861 0.000 4.306 0.184166667 19 1.492 0.75 0 0.75 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 29 5.341 8.75 0 0.75 16.861 0.000 4.306 UB TOTAL 83.000 16.286 15.245.85 \$1.00 0.0833 0.75 0 0.75 1.881 0.000 4.328 1.5 x 1.5 x 0.125 HSS																	
Cock 5.979 -0.006 5.779 37.273 254.435 -0.082 189.917 Cock -6.826 -0.002 5.035	CoG 5.979 -0.006 5.775 2UIPMENT AND CANISTER 37.273 254.435 -0.002 189.917 CoG 6.826 -0.002 5.095 RAME 0.184166667 19 3.499 19.25 0 10.25 67.359 0.000 35.866 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 19 3.499 15.25 0 6.25 53.362 0.000 3039 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 29 5.341 8.75 0 0.75 1.681 0.000 3.039 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 10 1.642 0.75 0 0.75 46.732 0.000 4.006 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 JB TOTAL 83.000 15.286 185.686 0.000 4.328 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 JB TOTAL 83.000 15.289 440.121 -0.		· · · · · ·															
SUPPRENT AND CANISTER 37.273 254.435 -0.062 189.917 Cool 6.283 -0.022 508 Cool 6.283 -0.022 508 Cool 6.283 -0.022 508 Cool 6.283 -0.022 508 Cool -0.022 508 Cool -0.022 508 -0.022 508 -0.022 508 -0.022 -0.022 508 -0.022 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023	SUIPMENT AND CANISTER 37.273 254.435 -0.082 189.917 CoG 6.826 -0.002 5.095 RAME 0.184166667 19 3.499 19.25 0 10.25 67.359 0.000 35.866 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 19 3.499 15.25 0 6.25 53.362 0.000 21.870 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 29 5.341 8.75 0 0.75 46.732 0.000 4.002 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 10 1.842 0.75 0 0.75 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 JB TOTAL 83.000 15.286 185.686 0.000 4.328 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 DTAL 52.559 440.121 -0.082 256.079 4.328 \$1.00 0.0833 15x1 52.659 440.121 -0.082 256.07							а.	Coc	<u>````</u>								
CAME 0.184166667 19 3.499 19.25 0 10.25 67.359 0.000 55.868 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$1.58 0.184166667 19 3.499 15.25 0 2.75 16.861 0.000 3.038 15.x 1.5 x 0.125 HSS \$1.00 0.0833 \$1.58 0.184166667 29 5.341 8.75 0 0.75 1.87 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$0.50 0.184166667 10 1.642 0.75 0 0.75 1.381 0.000 1.58 \$1.00 0.0833 \$0.60 1/B TOTAL 52.59 440.121 -0.062 2.66 070 \$1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$0.63 1/D TAL 52.59 440.121 -0.062 2.66 070 \$1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$0.63 1/D L 52.59 440.121 -0.062 2.66 079 \$1.5 x 1.5 x 0.125 HSS \$	CAME 0.184166667 19 3.499 19.25 0 10.25 67.359 0.000 35.866 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 19 3.499 15.25 0 6.25 53.362 0.000 21.870 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 6 1.105 15.25 0 2.75 16.851 0.000 3.039 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 29 5.341 8.75 0 0.75 46.732 0.000 4.006 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 JB TOTAL 83.000 15.286 0.000 66.162 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 DTAL 52.559 440.121 -0.082 256.079 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 TAL 52.559 440.121 -0.082 256.079 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 S1 52.559 440.121 -0.082 256.079 \$1.5 x 1.5 x 0.125 HSS \$1.00 0.0833						37.273			-								
AME 0.184166667 19 3.499 19.25 0 10.25 67.359 0.000 35.866 15x 15 x 0.125 HSS \$1.00 0.0833 \$1.58 0.184166667 19 3.499 15.25 0 6.25 63.362 0.000 35.866 15x 15 x 0.125 HSS \$1.00 0.0833 \$1.58 0.184166667 29 5.341 8.76 0 0.76 48.722 0.000 4.006 15x 15 x 0.125 HSS \$1.00 0.0833 \$0.50 0.184166667 29 5.341 8.76 0 0.76 48.722 0.000 4.006 15x 15 x 0.125 HSS \$1.00 0.0833 \$0.83 0.184166667 10 1.842 0.75 0 0.75 1.381 0.000 4.021 HS 15x 15 x 0.125 HSS \$1.00 0.0833 \$0.85 \$0.435	AME 0.184166667 19 3.499 19.25 0 10.25 67.359 0.000 35.866 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 19 3.499 15.25 0 6.25 53.62 0.000 21.870 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 6 1.105 15.25 0 2.75 16.851 0.000 21.870 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 29 5.341 8.75 0 0.75 46.732 0.000 4.006 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 10 1.842 0.75 0 0.75 1.381 0.000 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 JB TOTAL 83.000 15.286 1.026 0.000 66.162 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 VTAL 52.559 440.121 -0.082 256.079 4.872 \$1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.75 1.5 x 1.5 x 0.125 HSS 1.00 0.0833 1.5 x 1.5 x 0.125 HSS<									3	6.826	-0.002						
0.184166667 19 3.499 19.25 0 10.25 67.359 0.000 35.668 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$1.58 0.184166667 19 3.499 15.25 0 2.75 16.851 0.000 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$1.58 0.184166667 29 5.341 8.75 0 0.75 46.732 0.000 4.006 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$2.42 0.184166667 10 1.842 0.75 0 0.75 46.732 0.000 4.006 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$2.42 0.184166667 10 1.842 0.75 0 0.75 45.732 0.000 4.308 \$1.00 0.0833 \$2.42 IDE TOTAL 83.000 15.28 \$1.00 0.083 \$2.66 \$1.000 4.338 \$1.68 \$1.00 0.083 \$2.62 \$6.92 \$1.01 \$1.5 x 1.5 x 0.125 HSS \$1.00 0.083 \$8.63 VIAL 52.559 440.121 0.002 4.87	0.184166667 19 3.499 19.25 0 10.25 67.359 0.000 35.866 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 19 3.499 15.25 0 6.25 53.362 0.000 21.870 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 6 1.105 15.25 0 2.75 16.851 0.000 3.039 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 29 5.341 8.75 0 0.75 46.732 0.000 4.006 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 JB TOTAL 83.000 15.286 0 0.75 1.381 0.000 1.381 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 JB TOTAL 83.000 15.286 10 1.846.866 0.000 66.162 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 JTAL 52.559 440.121 -0.082 256.079 48.74 48.74 \$1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 JTAL 52.559 440.121 -0.082 256.079																	
0.184166667 19 3.499 15.25 0 6.25 53.82 0.000 21.870 15.x 15.x 0.125 HSS \$1.00 0.0833 \$1.5e 0.184166667 29 6.341 8.75 0 0.75 148.75 0.000 3.039 15.x 15.x 0.125 HSS \$1.00 0.0833 \$2.42 0.184166667 10 1.842 0.75 0 0.75 1.881 0.000 6.15x \$1.00 0.0833 \$2.42 0.184166667 10 1.842 0.75 0 0.75 1.381 0.000 6.15x \$1.5x 0.125 HSS \$1.00 0.0833 \$2.42 UE TOTAL 1.842 0.75 0 0.75 1.381 0.000 4.816 \$1.5x 0.125 HSS \$1.00 0.0833 \$0.83 0.014 0.184166667 10 1.842 0.75 0 0.75 1.381 0.000 4.872 \$1.5x 0.125 HSS \$1.00 0.0833 \$0.83 \$0.83 \$0.83 \$0.83 \$0.83 \$0.83 \$0.83 \$0.83 \$0.83 \$0.83 \$0.85 \$1.00 \$0.008 \$	0.184166667 19 3.499 15.25 0 6.25 53.362 0.000 21.870 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 6 1.105 15.25 0 2.75 16.851 0.000 3.039 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 29 5.341 8.75 0 0.75 46.732 0.000 4.006 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 10 1.842 0.75 0 0.75 1.381 0.000 1.381 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 UB TOTAL 83.000 15.286 10 1.842 0.75 0 0.75 1.381 0.000 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 UB TOTAL 83.000 15.286 100 0.082 256.079 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 OTAL 52.559 440.121 -0.082 256.079 4.872 \$1 \$1 \$1 OTAL 52.559 100 1.5 x 3.74 -0.002 </td <td></td> <td></td> <td></td> <td>0 194166667</td> <td>10</td> <td>2 400</td> <td>10.25</td> <td>0</td> <td>10.25</td> <td>67.250</td> <td>0.000</td> <td>25 966</td> <td>4 5 - 4 5 - 0 405 100</td> <td>¢A</td> <td></td> <td>*4 E0</td> <td></td>				0 194166667	10	2 400	10.25	0	10.25	67.250	0.000	25 966	4 5 - 4 5 - 0 405 100	¢A		* 4 E0	
0.184169667 6 1.105 15.25 0 2.75 18.851 0.100 3.038 15.x 1.5 x 0.125 HSS \$1.00 0.0833 \$0.50 0.184169667 29 5.341 8.75 0 0.75 1.381 0.000 4.006 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$2.42 0.184169667 10 1.842 0.75 0.075 1.381 0.000 4.061 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$2.42 UB TOTAL 83.000 15.286 186.686 0.000 66.162 \$1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$5.92 OTAL 52.559 440.121 0.002 2.56.079 \$110.68 otes: ioint 0.0.0 is taken to be the most foreward point (x direction) located on the center line of the frame at the lowest point in the z direction. \$100.02 4.872 \$110.68 otes: ioint 0.0.0 is taken to be the most foreward point (x direction) located on the center line of the frame at the lowest point in the z direction. 2.061 Total Boyancy Force on Canister Alone 42.230 \$110.68 <t< td=""><td>0.184166667 6 1.105 15.25 0 2.75 16.851 0.000 3.039 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 29 5.341 8.75 0 0.75 46.732 0.000 4.006 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 10 1.842 0.75 0 0.75 1.381 0.000 1.381 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 UB TOTAL 83.000 15.286 185.686 0.000 66.162 \$1.00 0.0833 OTAL 52.559 440.121 -0.082 256.079 \$1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 S1 52.559 440.121 -0.002 4.872 \$1.5 x 1.5 x 0.125 HSS \$1.00 \$1.5 x 1.5 x 0.125 HSS \$1.00 \$1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$1.5 x 1.5 x 0.125 HSS \$1.00 \$1.5 x 1.5 x 0.125 HSS \$1.00 \$1.5 x 1.5 x 0.125 HSS \$1.00 \$1.5 x 1.5 x 0.125 HSS \$1.5 x 1.5 x 0.125 HSS \$1.5 x 1.5 x 0.125 HSS</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>=</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	0.184166667 6 1.105 15.25 0 2.75 16.851 0.000 3.039 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 29 5.341 8.75 0 0.75 46.732 0.000 4.006 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 0.184166667 10 1.842 0.75 0 0.75 1.381 0.000 1.381 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 UB TOTAL 83.000 15.286 185.686 0.000 66.162 \$1.00 0.0833 OTAL 52.559 440.121 -0.082 256.079 \$1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 S1 52.559 440.121 -0.002 4.872 \$1.5 x 1.5 x 0.125 HSS \$1.00 \$1.5 x 1.5 x 0.125 HSS \$1.00 \$1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$1.5 x 1.5 x 0.125 HSS \$1.00 \$1.5 x 1.5 x 0.125 HSS \$1.00 \$1.5 x 1.5 x 0.125 HSS \$1.00 \$1.5 x 1.5 x 0.125 HSS \$1.5 x 1.5 x 0.125 HSS \$1.5 x 1.5 x 0.125 HSS								=									
0.184166667 29 5.341 8.75 0 0.75 46.732 0.000 4.006 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$2.42 JB TOTAL 83.000 15.266 0.75 0.75 1.84 0.000 1.842 0.75 0 15.8 66 0.000 66.151 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$2.42 JB TOTAL 83.000 15.266 185.086 0.000 66.151 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 \$2.42 OTAL 62.559 440.121 -0.082 256.079 \$100 \$10.68 \$100.68	0.184166667 29 5.341 8.75 0 0.75 46.732 0.000 4.006 0.184166667 10 1.842 0.75 0 0.75 1.381 0.000 1.381 JB TOTAL 83.000 15.286 185.686 0.000 66.162 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 OTAL 52.559 440.121 -0.082 256.079 4.872 \$1.00 0.0833 State 52.559 440.121 -0.002 4.872 \$1.500 \$1.500 \$1.500					19			U									
0.184166667 10 1.842 0.75 0 0.75 1.381 0.000 1.811 UB TOTAL 83.000 15.286 185.686 0.000 66.162 121 0.000 4.381 OTAL 52.559 440.121 -0.082 256.079 485.14 \$10.000 4.328 Otes: ioin 0.00 is taken to be the most foreward point (x direction) located on the center line of the frame at the lowest point in the z direction. 80.901 6.374 -0.002 4.872 pecific Weight of AI (6061-T6) 0.098 lbs/cu.in Boyancy Force on Canister Alone 42.230 440.280 442.800 olume/in of AI angle bar 0.4375 cu.in/ in length Boyancy Force (Lbs) 44.280 44.280 44.280 olume/in of AI angle bar 0.43275 cu.in/ in length Boyancy Force (Lbs) 44.280 44.280 44.280 olume/in of AI angle bar 0.43275 cu.in/ in length Otext or 2.21 Lbs/ft 44.280 44.280 44.280 olume/in of AI angle bar 0.43275 cu.in/ in length Isoman or 2.21 Lbs/ft Isoman or 2.21 Lbs/ft Isoman or 2.21 Lbs/ft Isoman or 2.21 Lbs/ft	0.184166667 10 1.842 0.75 0 0.75 1.381 0.000 1.381 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 UB TOTAL 83.000 15.286 185.686 0.000 66.162 1.5 x 1.5 x 0.125 HSS \$1.00 0.0833 OTAL 52.559 440.121 -0.082 256.079 \$1.00 \$		· · · · · · · · · · · · · · · · · · ·			<u>b</u>			<u> </u>									
JB TOTAL 83.000 15.286 185.686 0.000 66.162 \$6.92 DTAL 52.559 440.121 -0.082 256.079 \$85.14 CoG 8.374 -0.002 4.872 \$110.68 otes: int 0,0,0 is taken to be the most foreward point (x direction) located on the center line of the frame at the lowest point in the z direction. 44.230 4.872 \$110.68 pecific Weight of Al (6061-T6) 0.098 lbs/cu.in Boyancy Force on Canister Alone 42.230 44.290 pecific Weight of Steel (50W CSA - G40.21) 0.284 lbs/cu.in Boyancy Force on Frame 2.061 Total Boyancy Force (Lbs) 44.290 44.290 44.290 44.290 olume/in of Al angle bar 0.042875 lbs/ inch 0.042875 lbs/ inch 1x1x0.25	JB TOTAL 83.000 15.286 185.686 0.000 66.162 CoG 12.148 0.000 4.328 OTAL 52.559 440.121 -0.082 256.079 Image: CoG 8.374 -0.002 4.872 \$1								•									
CoG 12.148 0.000 4.328 OTAL 52.559 440.121 -0.082 256.079 Code 8.374 -0.002 4.872 State State State State State otes: State State State State State State otes: State	CoG 12.148 0.000 4.328 OTAL 52.559 440.121 -0.082 256.079 \$ CoG 8.374 -0.002 4.872 \$1				0.184166667			0.75	0	0.75				1.5 x 1.5 x 0.125 HSS	\$1	.00 0.0833		
OTAL 52.559 440.121 -0.082 256.079 CoG 8.374 -0.002 4.872 Iotes: roint 0.00 is taken to be the most foreward point (x direction) located on the center line of the frame at the lowest point in the z direction. \$110.68 specific Weight of AI (6081-T6) 0.098 lbs/cu.in Boyancy Force on Canister Alone 42.230 specific Weight of Steel (50W CSA - G40.21) 0.284 lbs/cu.in Boyancy Force on Frame 2.061 Yolume/in of AI angle bar 0.4375 cu.in/ in length 0.42875 lbs/ inch 44.290 Veight per inch of Xi angle bar 0.184167 lbs/ inch or 2.21 Lbs/ft 1x 1 x 0.25	OTAL 52.559 440.121 -0.082 256.079 CoG 8.374 -0.002 4.872					83.000	15.286										\$6.92	
CoG 8.374 -0.002 4.872 stitlo.68 oides: oint 0,0,0 is taken to be the most foreward point (x direction) located on the center line of the frame at the lowest point in the z direction. \$110.68 pecific Weight of AI (6061-T6) 0.098 lbs/cu.in Boyancy Force on Canister Alone 42.230 pecific Weight of Steel (50W CSA - G40.21) 0.284 lbs/cu.in Boyancy Force on Frame 2.061 folume/in of AI angle bar 0.4375 cu.in/ in length Total Boyancy Force (Lbs) 44.290 veight per inch of AI angle bar 0.184167 lbs/ inch or 2.21 Lbs/ft 0.184167 lbs/ inch or 2.21 Lbs/ft Incher Steel (A)	CoG 8.374 -0.002 4.872 \$1							• .	CoG	3	12.148	0.000	4.328					
CoG 8.374 -0.002 4.872 otes: oint 0,0,0 is taken to be the most foreward point (x direction) located on the center line of the frame at the lowest point in the z direction. \$110.68 pecific Weight of AI (6061-T6) 0.098 lbs/cu.in Boyancy Force on Canister Alone 42.230 pecific Weight of Steel (50W CSA - G40.21) 0.284 lbs/cu.in Boyancy Force on Frame 2.061 olume/in of AI angle bar 0.4375 cu.in/ in length Total Boyancy Force (Lbs) 44.290 /eight per inch of Al angle bar 0.042875 lbs/ inch 0.184167 lbs/ inch or 2.21 Lbs/ft Inch or 2.21 Lbs/ft	CoG 8.374 -0.002 4.872 \$1				· · · · · · · · · · · · · · · · · · ·		52 559		<u> </u>		440 121	-0.082	256 079				COE 14	
bint 0,0,0 is taken to be the most foreward point (x direction) located on the center line of the frame at the lowest point in the z direction. Decific Weight of Al (6061-T6) 0.098 lbs/cu.in Boyancy Force on Canister Alone 42.230 Decific Weight of Steel (50W CSA - G40.21) 0.284 lbs/cu.in Boyancy Force on Frame 2.061 Total Boyancy Force (Lbs) 44.290 Dolume/in of Al angle bar 0.4375 cu.in/ in length leight per inch of Al angle bar 0.42875 lbs/ inch 0.042875 lbs/ inch 0.184167 lbs/ inch or 2.21 Lbs/ft right Per inch of Steel Box Frame 0.184167 lbs/ inch or 2.21 Lbs/ft				· · · · · · · · · · · · · · · · · · ·					CoC	<u>.</u>				۲				
pecific Weight of Al (6061-T6) 0.098 lbs/cu.in Boyancy Force on Canister Alone 42.230 pecific Weight of Steel (50W CSA - G40.21) 0.284 lbs/cu.in Boyancy Force on Frame 2.061 Total Boyancy Force (Lbs) 44.290 plume/in of Al angle bar 0.4375 cu.in/ in length /eight per inch of Steel Box Frame 0.184167 lbs/ inch or 2.21 Lbs/ft	ites:				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				0.07 1	-0.002	7.07 -				φ110.00	
to be the most foreward point (x direction) located on the center line of the frame at the lowest point in the z direction. appecific Weight of AI (6061-T6) 0.098 lbs/cu.in Boyancy Force on Canister Alone 42.230 appecific Weight of Steel (50W CSA - G40.21) 0.284 lbs/cu.in Boyancy Force on Frame 2.061 Total Boyancy Force (Lbs) 44.290 folume/in of Al angle bar 0.4375 cu.in/ in length Veight per inch of Al angle bar 0.4375 tbs/ inch veight per inch of Steel Box Frame 0.184167 lbs/ inch or 2.21 Lbs/ft angle Bar (Al) 1 x 1 x 0.25		······································	<u> </u>															
ipecific Weight of Al (6061-T6) 0.098 lbs/cu.in Boyancy Force on Canister Alone 42.230 ipecific Weight of Steel (50W CSA - G40.21) 0.284 lbs/cu.in Boyancy Force on Frame 2.061 Total Boyancy Force (Lbs) 44.290 Volume/in of Al angle bar 0.4375 cu.in/ in length Veight per inch of Al angle bar 0.42875 lbs/ inch 0.42875 lbs/ inch 0.184167 lbs/ inch or 2.21 Lbs/ft angle Bar (Al) 1 x 1 x 0.25								the z direction										
pecific Weight of Steel (50W CSA - G40.21) 0.284 lbs/cu.in Boyancy Force on Frame 2.061 Total Boyancy Force (Lbs) 44.290 olume/in of Al angle bar 0.4375 cu.in/ in length /eight per inch of Al angle bar 0.042875 lbs/ inch /eight per inch of Steel Box Frame 0.184167 lbs/ inch or 2.21 Lbs/ft 1 x 1 x 0.25		s taken to be the m	nost forewa	rd point (x direction) locat	ed on the center line of t	he frame at the	e lowest point in						1					
becific Weight of Steel (50W CSA - G40.21) 0.284 lbs/cu.in Boyancy Force on Frame Total Boyancy Force (Lbs) 44.290 0.042875 lbs/ inch eight per inch of Al angle bar 0.042875 lbs/ inch eight per inch of Steel Box Frame 0.184167 lbs/ inch or 2.21 Lbs/ft 1 x 1 x 0.25		s taken to be the m	nost forewa	rd point (x direction) locat	ed on the center line of	the frame at th	e lowest point in		•									
pecific Weight of Steel (50W CSA - G40.21) 0.284 lbs/cu.in Boyancy Force on Frame <u>2.061</u> Total Boyancy Force (Lbs) 44.290 olume/in of Al angle bar 0.4375 cu.in/ in length Veight per inch of Al angle bar 0.042875 lbs/ inch Veight per inch of Steel Box Frame 0.184167 lbs/ inch or 2.21 Lbs/ft 1 x 1 x 0.25	pecific Weight of Al (6061-T6) 0.098 lbs/cu in Bovancy Force on Canister Alone 42 230	s taken to be the m	nost forewa	rd point (x direction) locat	ed on the center line of	the frame at th	ne lowest point in		•									
Total Boyancy Force (Lbs) 44.290 Yolume/in of Al angle bar 0.4375 cu.in/ in length Veight per inch of Al angle bar 0.042875 lbs/ inch Veight per inch of Steel Box Frame 0.184167 lbs/ inch or 2.21 Lbs/ft				rd point (x direction) locat		the frame at th				lone	42 230							
olume/in of Al angle bar 0.4375 cu.in/ in length /eight per inch of Al angle bar 0.042875 lbs/ inch /eight per inch of Steel Box Frame 0.184167 lbs/ inch or 2.21 Lbs/ft ngle Bar (Al) 1 x 1 x 0.25		ight of Al (6061-T6)	6)		0.098 lbs/cu.in	the frame at th	В	Boyancy Force of	on Canister Al	lone								
Veight per inch of Al angle bar 0.042875 lbs/ inch Veight per inch of Steel Box Frame 0.184167 lbs/ inch or 2.21 Lbs/ft Angle Bar (Al) 1 x 1 x 0.25		ight of Al (6061-T6)	6)		0.098 lbs/cu.in	the frame at th	B	Boyancy Force of Boyancy Force of	on Canister Al on Frame	lone -	2.061			r				
Veight per inch of Steel Box Frame 0.184167 lbs/ inch or 2.21 Lbs/ft Angle Bar (Al) 1 x 1 x 0.25		ight of Al (6061-T6) ight of Steel (50W)	6)		0.098 lbs/cu.in 0.284 lbs/cu.in		B	Boyancy Force of Boyancy Force of	on Canister Al on Frame	lone –	2.061							
ngle Bar (Al) 1 x 1 x 0.25		ight of Al (6061-T6) ight of Steel (50W f Al angle bar	6) / CSA - G40.		0.098 lbs/cu.in 0.284 lbs/cu.in 0.4375 cu.in/ in leng		B	Boyancy Force of Boyancy Force of	on Canister Al on Frame	lone -	2.061			; ;				
	0.104107 lbs/ mch of 2.21 Lbs/it	ight of Al (6061-T6) ight of Steel (50W f Al angle bar inch of Al angle bar	6) / CSA - G40. ar		0.098 lbs/cu.in 0.284 lbs/cu.in 0.4375 cu.in/ in leng 0.042875 lbs/ inch	th	B	Boyancy Force of Boyancy Force of	on Canister Al on Frame	lone –	2.061						· · · · · · · · · · · · · · · · · · ·	
		ight of Al (6061-T6) ight of Steel (50W f Al angle bar inch of Al angle bar	6) / CSA - G40. ar		0.098 lbs/cu.in 0.284 lbs/cu.in 0.4375 cu.in/ in leng 0.042875 lbs/ inch	th	B	Boyancy Force of Boyancy Force of	on Canister Al on Frame	lone –	2.061							
	$\ln de \operatorname{Rer} (\Delta I) = 1 \times 1 \times 0.25$	ight of Al (6061-T6) ight of Steel (50W f Al angle bar inch of Al angle bar inch of Steel Box Fi	6) √ CSA - G40. ar Frame	.21)	0.098 lbs/cu.in 0.284 lbs/cu.in 0.4375 cu.in/ in leng 0.042875 lbs/ inch	th	B	Boyancy Force of Boyancy Force of	on Canister Al on Frame	lone –	2.061						· · · · · · · · · · · · · · · · · · ·	

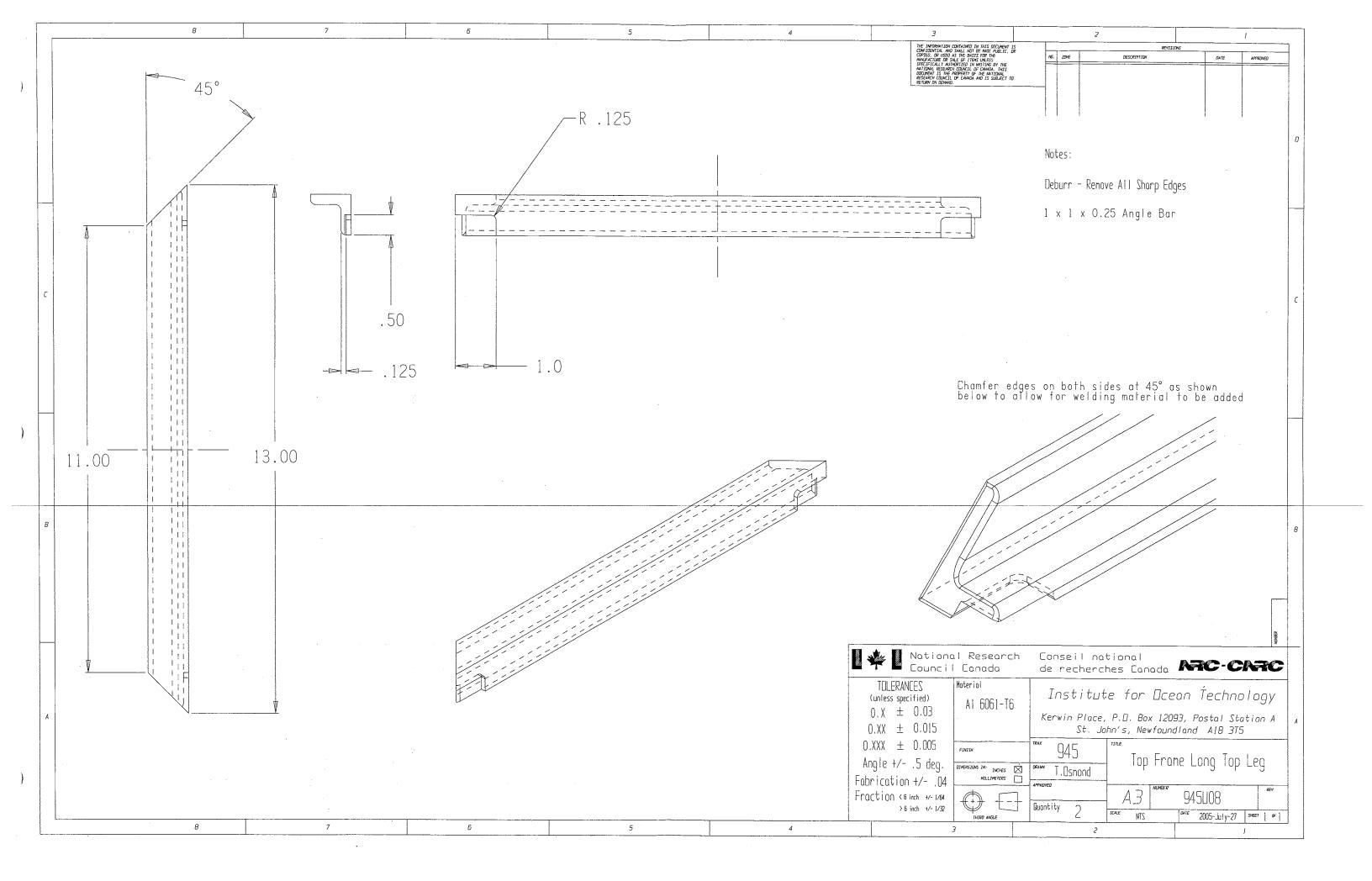

)

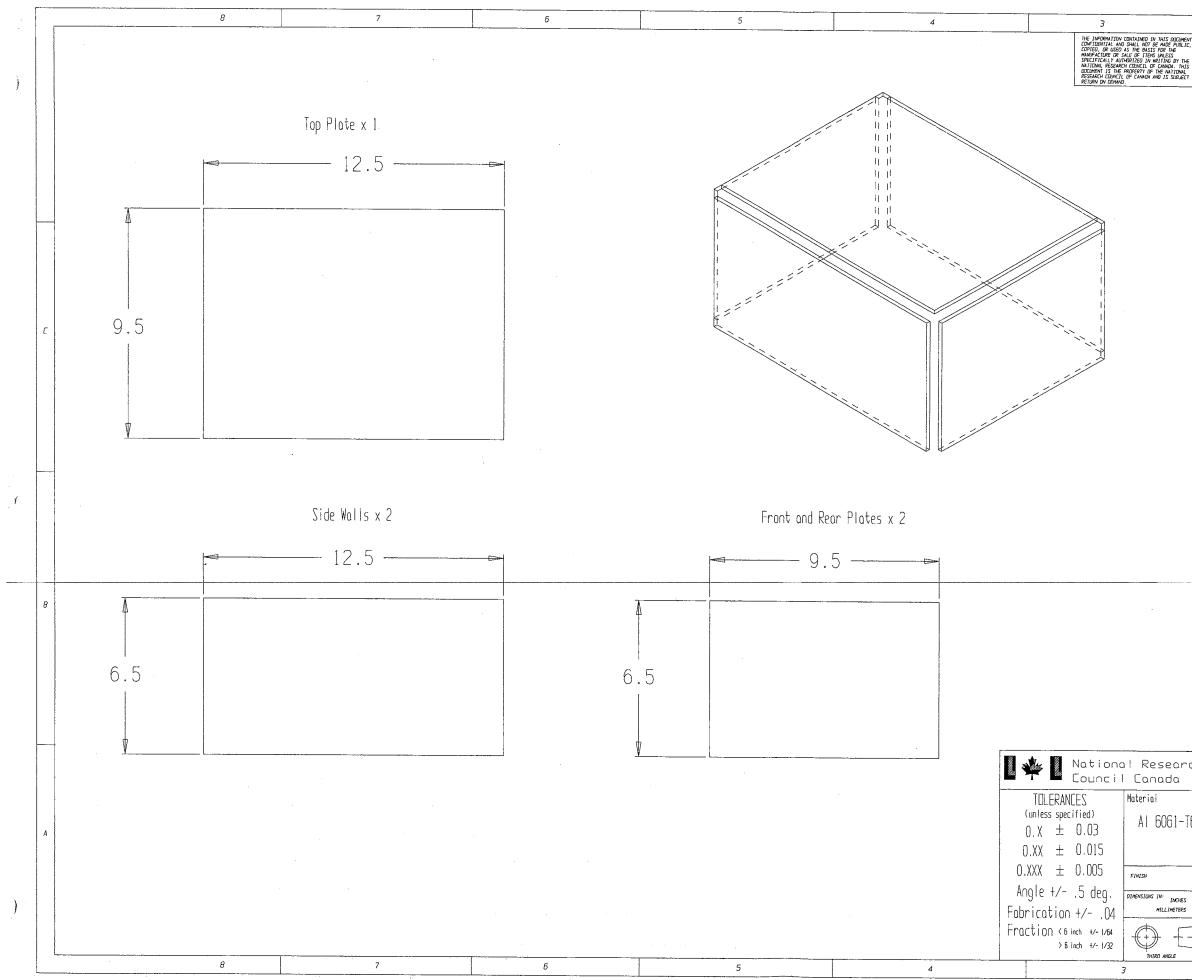


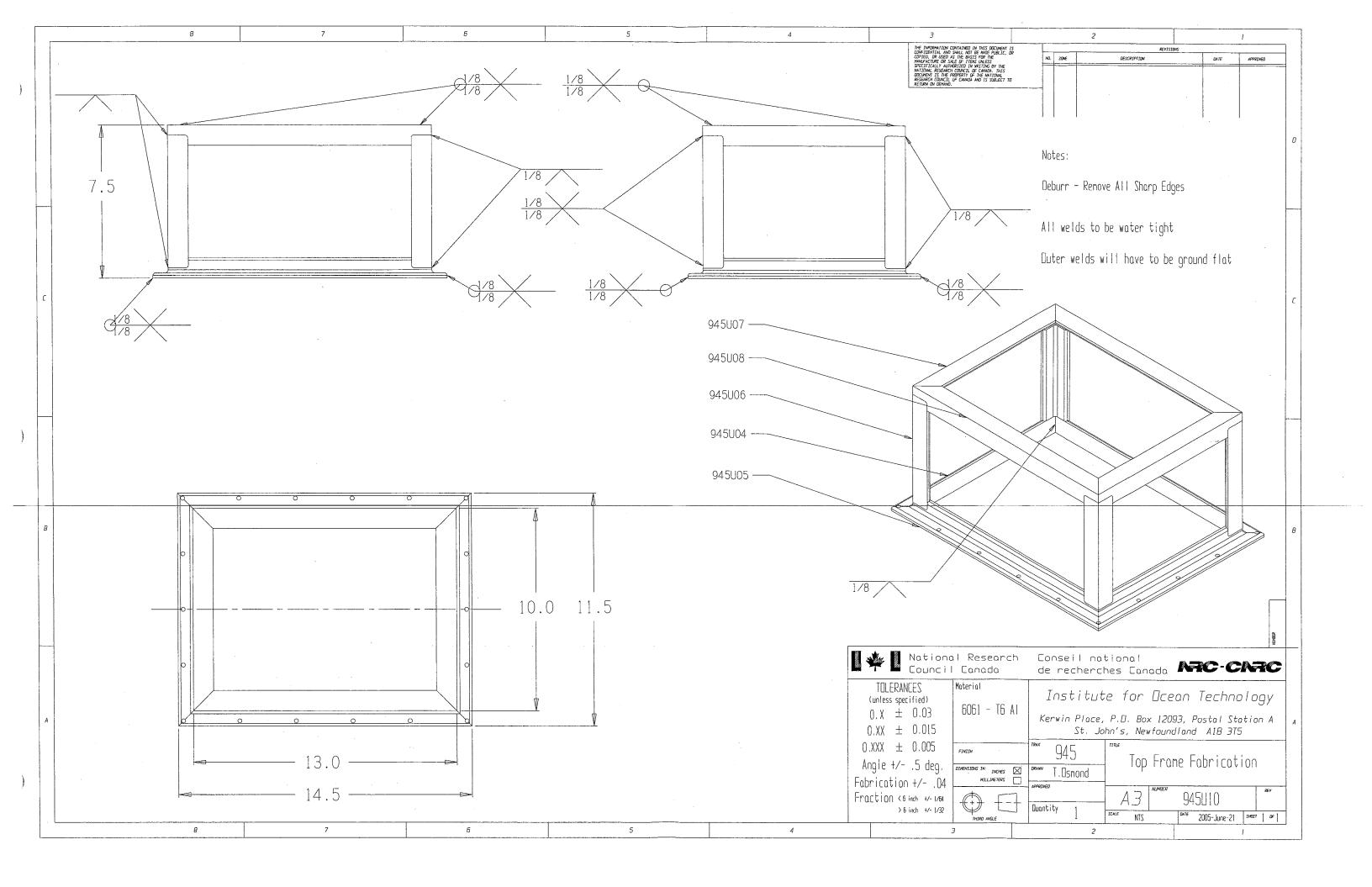

)

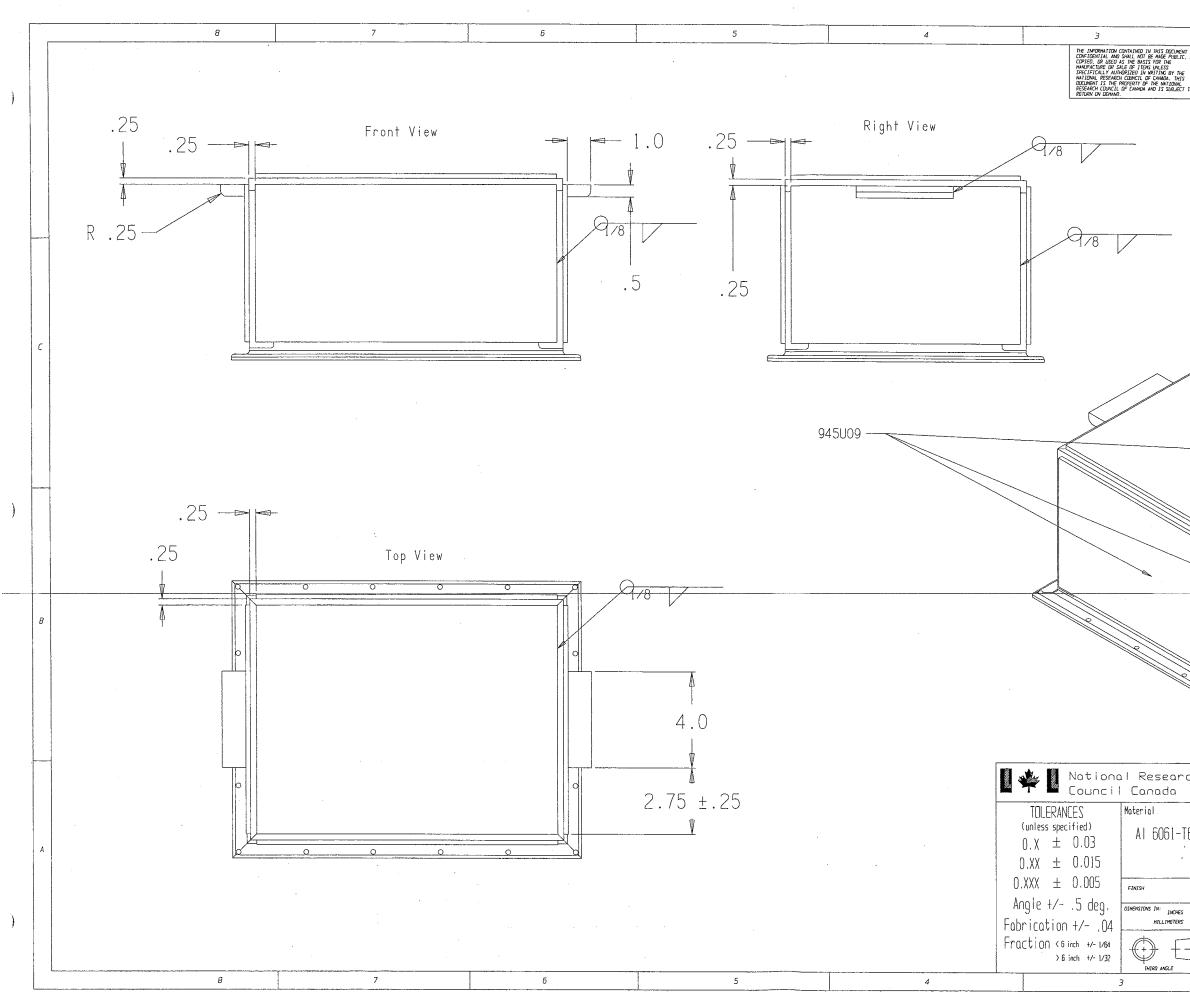


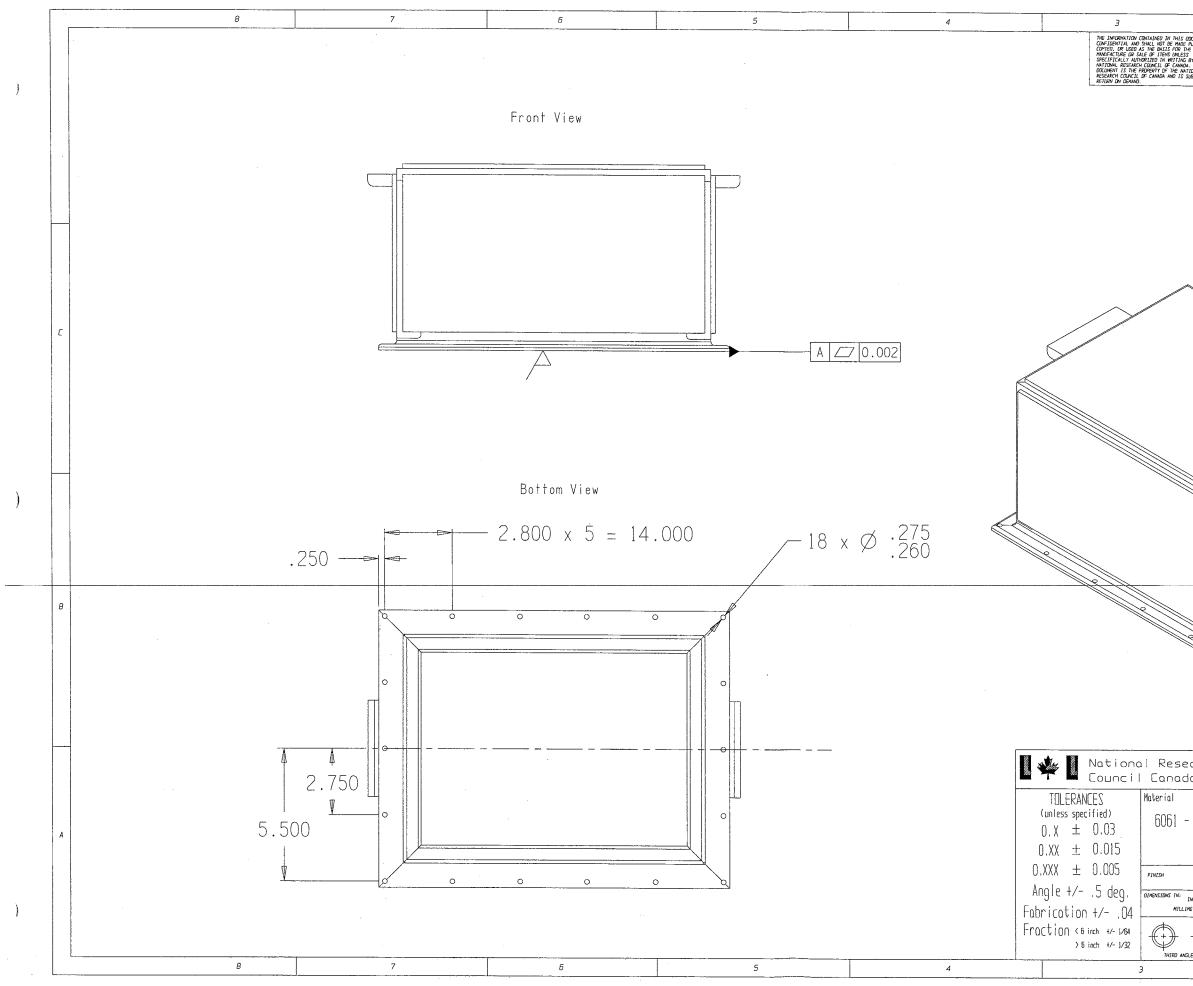




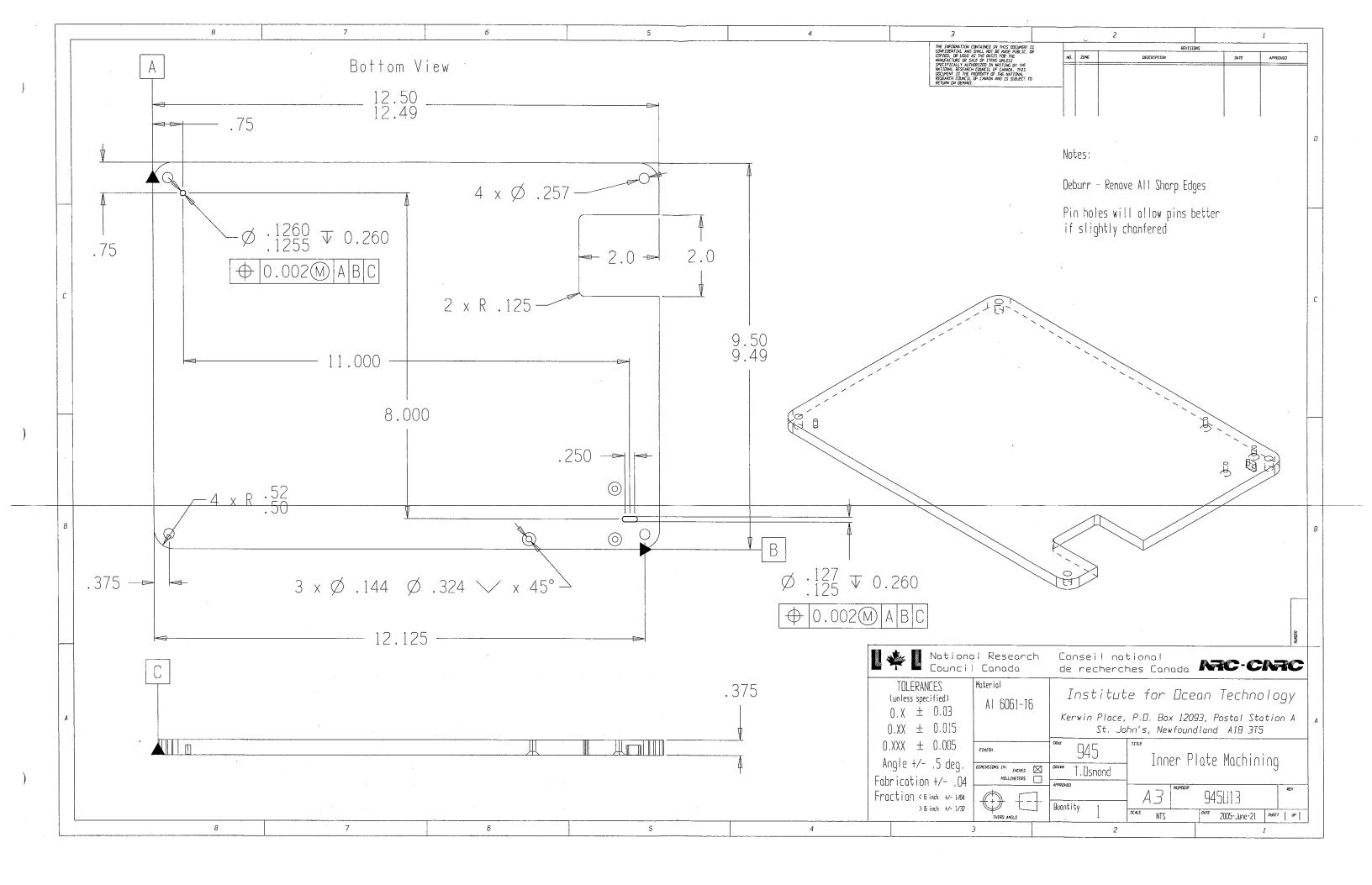


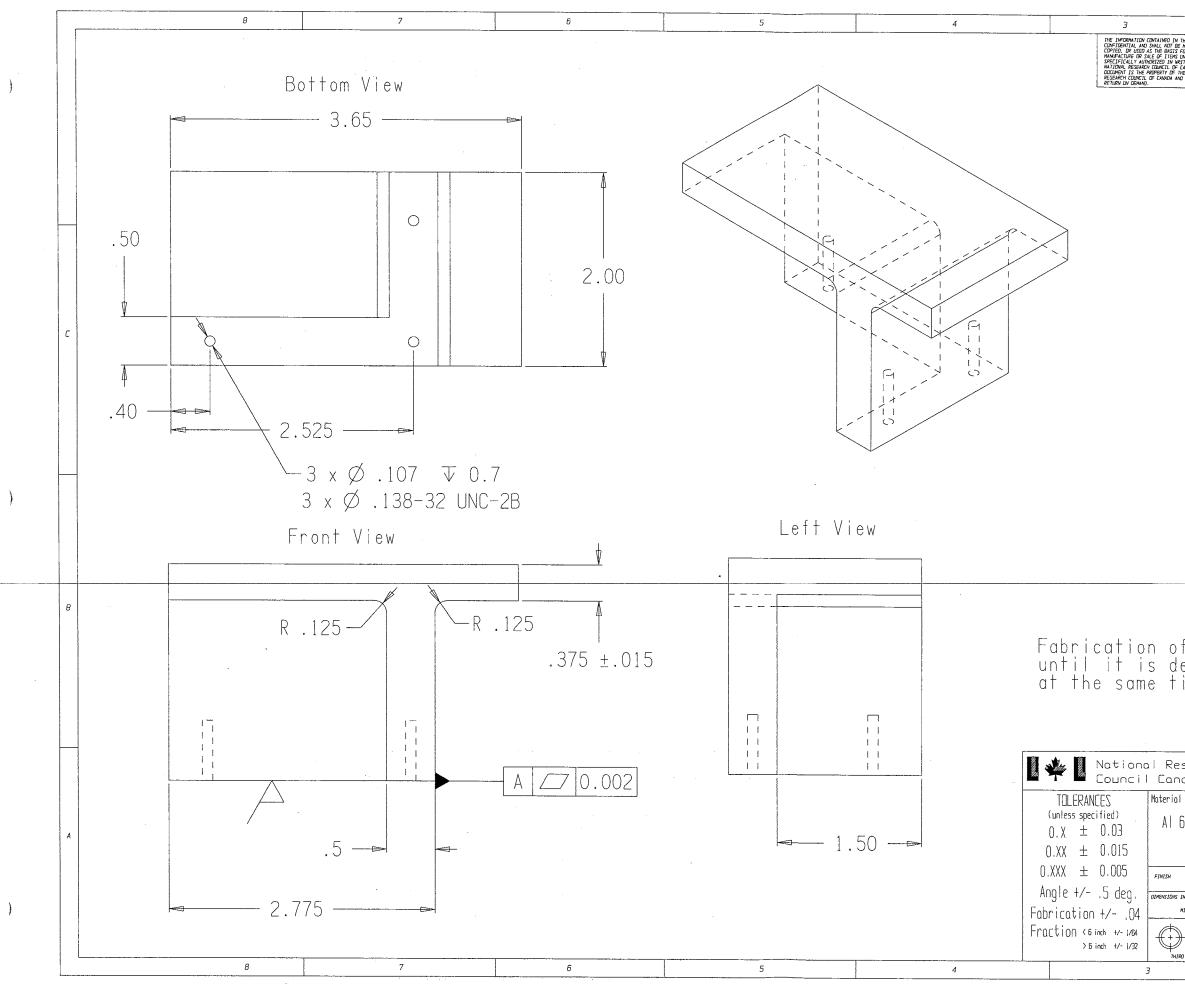



	2		REVISIONS		1	
NG.	ZONE	DESCRIPTION	xcx121042	DATE	APPROVED	
						D
Not	ies:					
Det	ourr - Remov	ve All Sharp) Edoes			
		I				
1 ×	< 1 x 0.25 /	Angle Bar				
						C
r edges	at both er	nds at 45° a	is shown			
to allo	w for weldi	ng material	to be ac	lded		
	/ /	/		1 a. 1		
\bigwedge			1			
A			/			
X			/ /			
$\sum_{i=1}^{n}$; 			В
			; //			В
			; //			В
			; 			В
			; 			В
Ú.					Avenue	В
			.da 🍂	7 6-6	(`	В
Cor de	nseil na recherc				Ch a c	B
Cor de I	nseil na recherc nstitut	tional hes Cana te for L , P.D. Box	Jcean 12093, I	Techr Postal S	CNRC 10 logy tation A	B
Cor de I	nseil na recherc nstitut st. Ja	tional hes Cana te for L , P.D. Box ohn's, New1	Jcean 12093, I ^{found I and}	Techr Postal S 1 A1B 3	CARC 10 logy tation A 15	
Con de I Ker TRAX	nseil na recherc nstitut	tional hes Cana te for L , P.D. Box ohn's, New1	Jcean 12093, I	Techr Postal S 1 A1B 3	CARC 10 logy tation A 15	
Corde I Ker	nseil na recherc nstitut win Place St. Ja 945 I.Osmond	tional hes Cana te for L , P.D. Box ohn's, Newt Inne Top	Jcean 12093, I foundland Frame S	Techr Postal S 1 A1B 3	CARC 10 logy tation A 15	

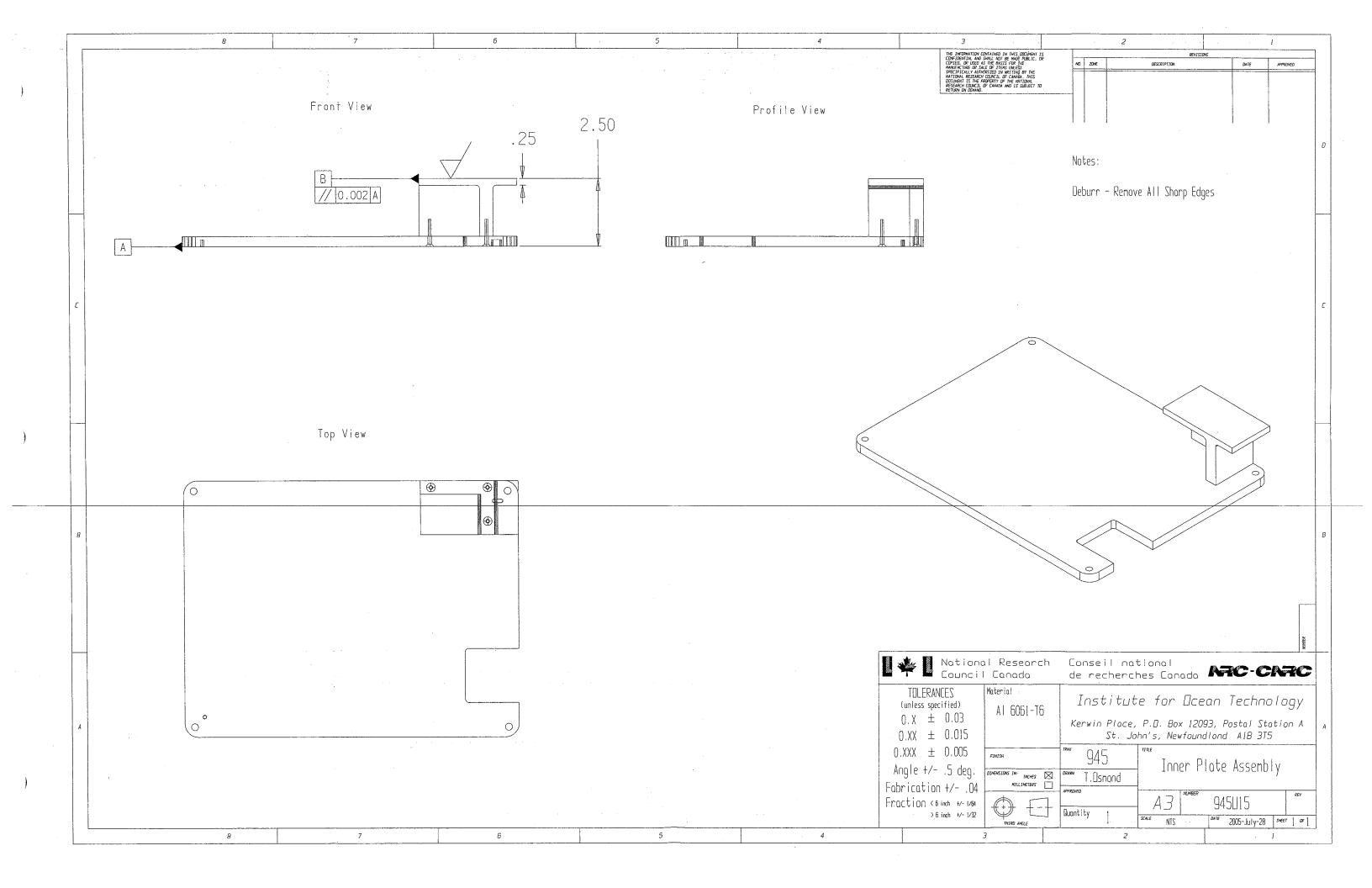


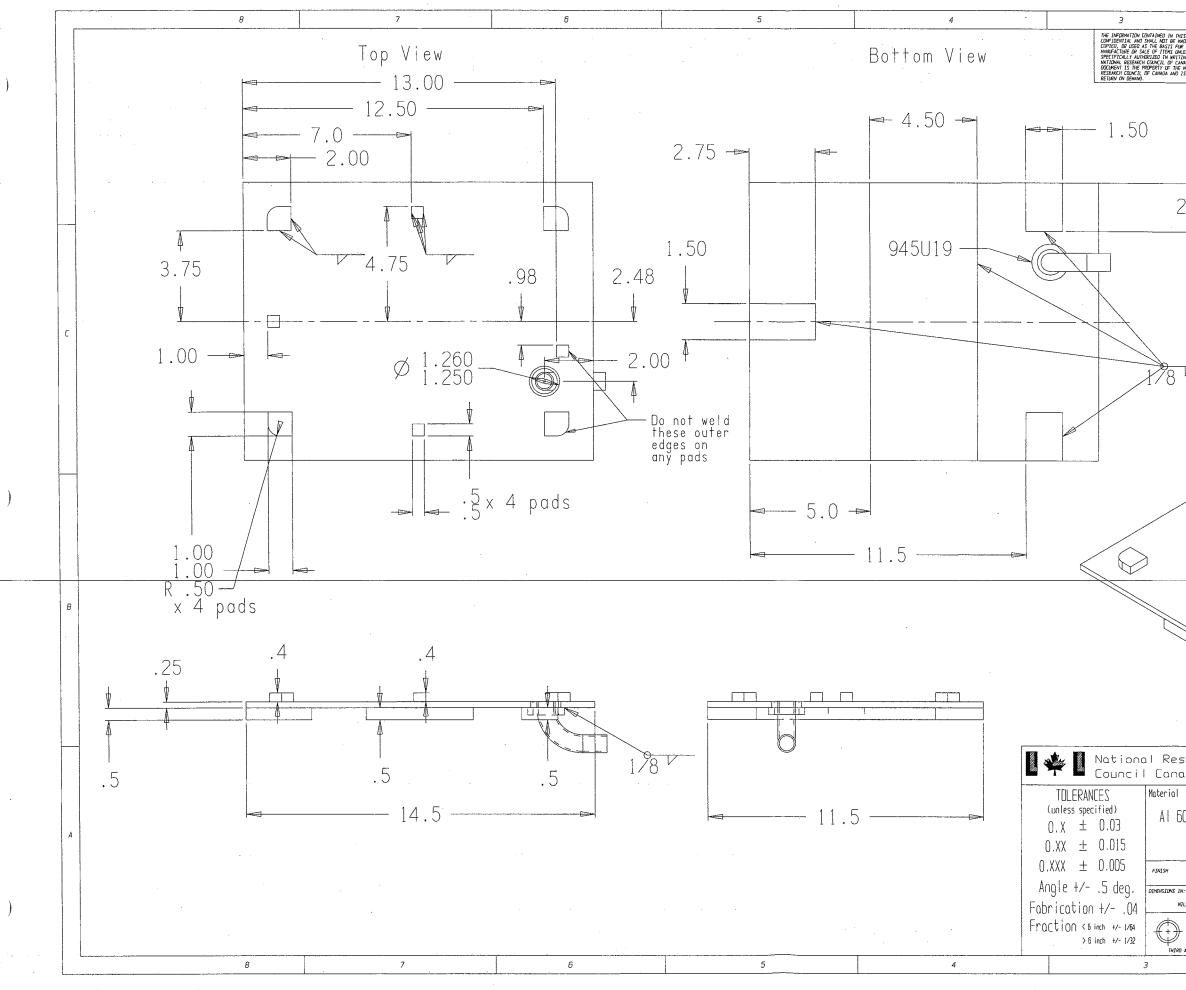
Notes: Deburr - Renove All Sharp Edges Top Plotes All Plotes 0.1875" thick		2 1]
Notes: Deburr - Renove All Sharp Edges Top Plotes All Plates 0.1875" thick <i>c</i>	WT IS C, DR	REVISIONS]	
Notes: Deburr - Renove All Sharp Edges Top Plates All Plates 0.1875" thick c				
Notes: Deburr - Renove All Sharp Edges Top Plates All Plates 0.1875" thick c				
Notes: Deburr - Renove All Sharp Edges Top Plates All Plates 0.1875" thick c				
Deburr - Renove All Sharp Edges Top Plates All Plates 0.1875" thick		Notes:	0	н. А.
Top Plotes All Plotes 0.1875" thick				
All Plotes 0.1875" thick		Uedurr - Kenove All Sharp Edges		
		Top Plates		
		All Plates 0.1875" thick		
			2 2 2 2 2 2 2 2	
			C	
В				
В				
В				
В				
В				
В		· · · · · · · · · · · · · · · · · · ·		
			В	
ch Conseil national de recherches Canada ARC-CARC		de recherches Eanada RAC-CRAC		
Institute for Ocean Technology	ī6	Institute for Ocean Technology		
Kerwin Place, P.□. Box 12093, Postal Station A St. John's, Newfo⊔ndland A1B 3T5		Kerwin Place, P.D. Box 12093, Postal Station A St. John's, Newfoundland A1B 3T5	A	
184X 945 Top Plates				
		Quantity 1 A_3 945U09		
2 I State NTS 2005-JUL-2005 I State 1 OF 1				

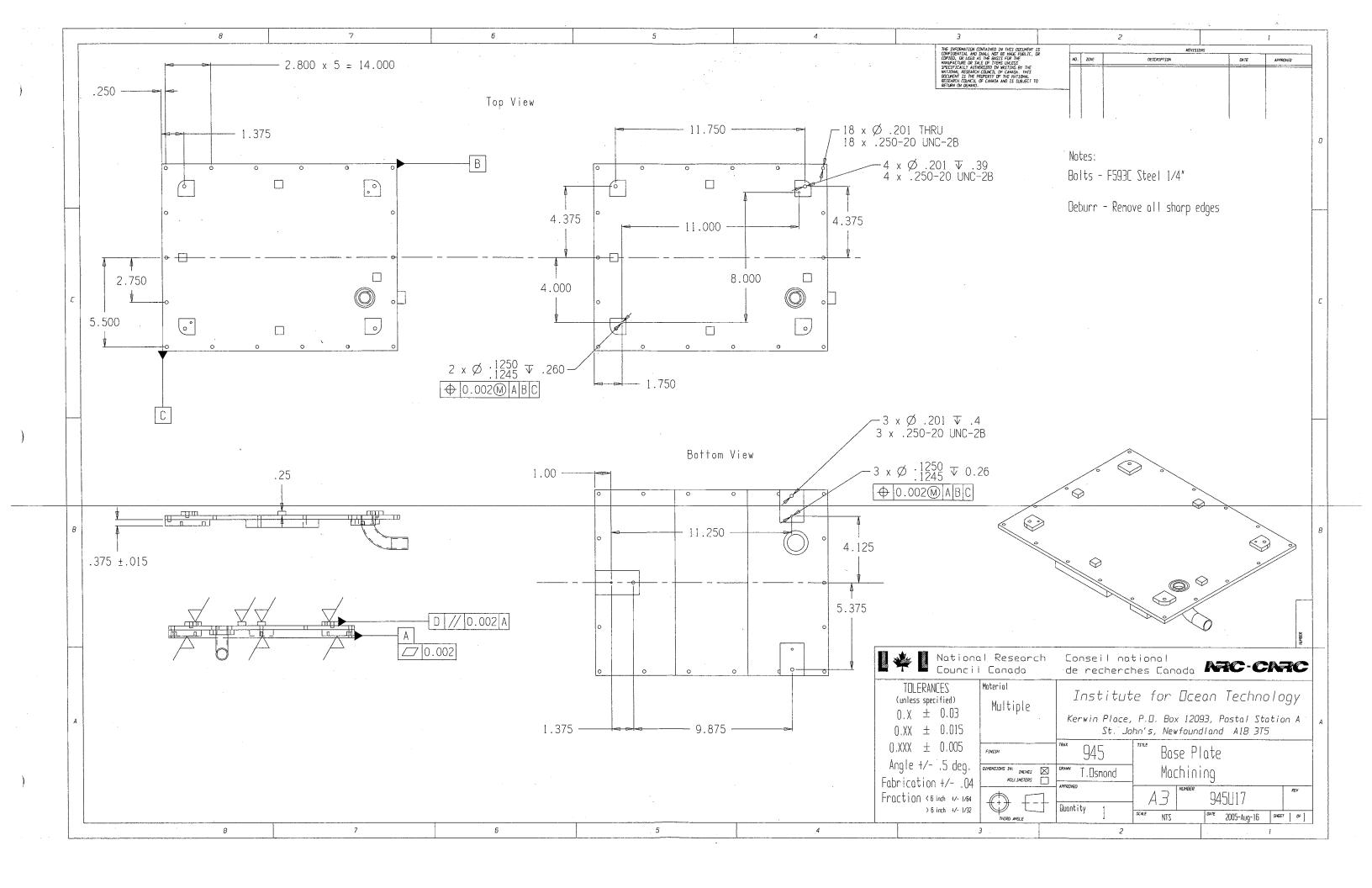


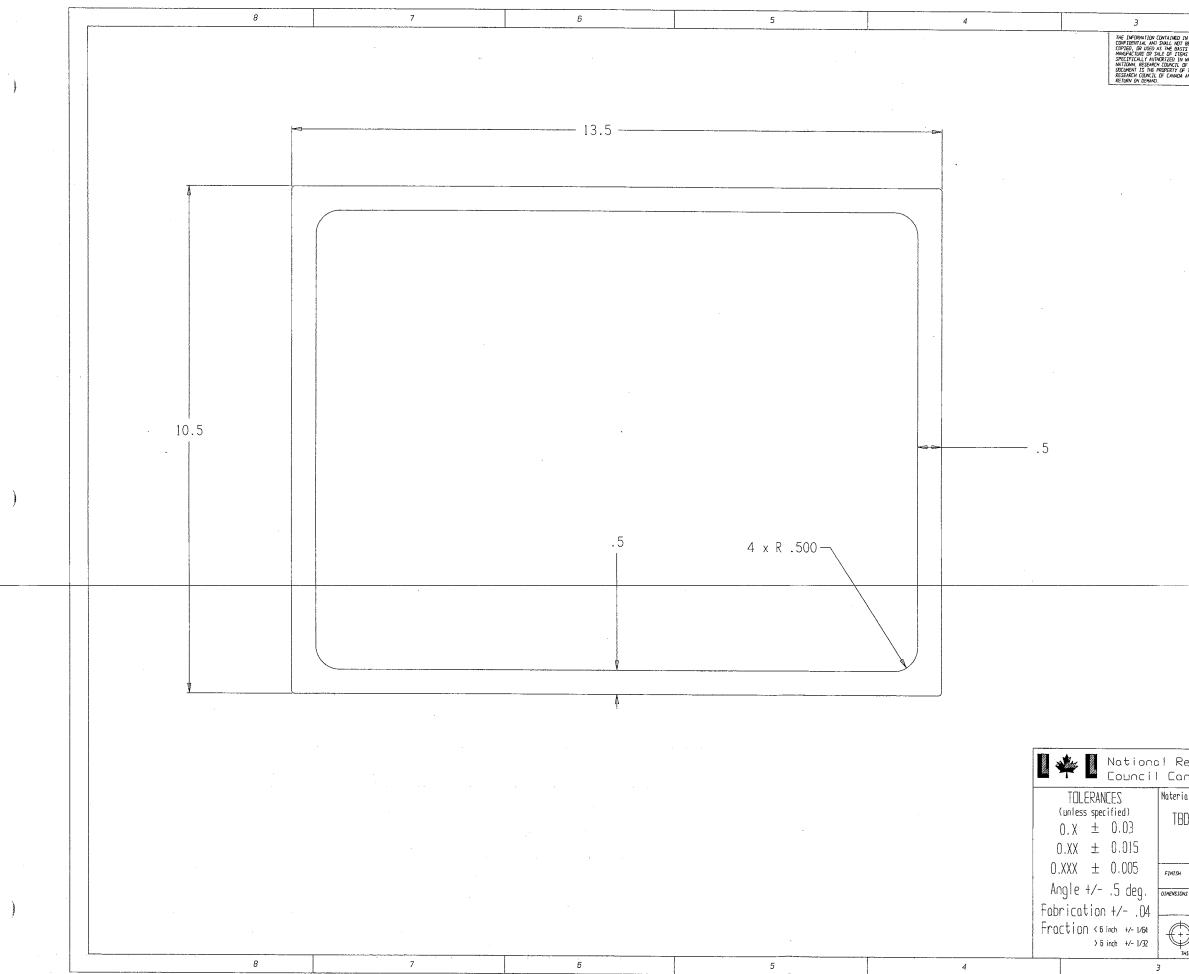


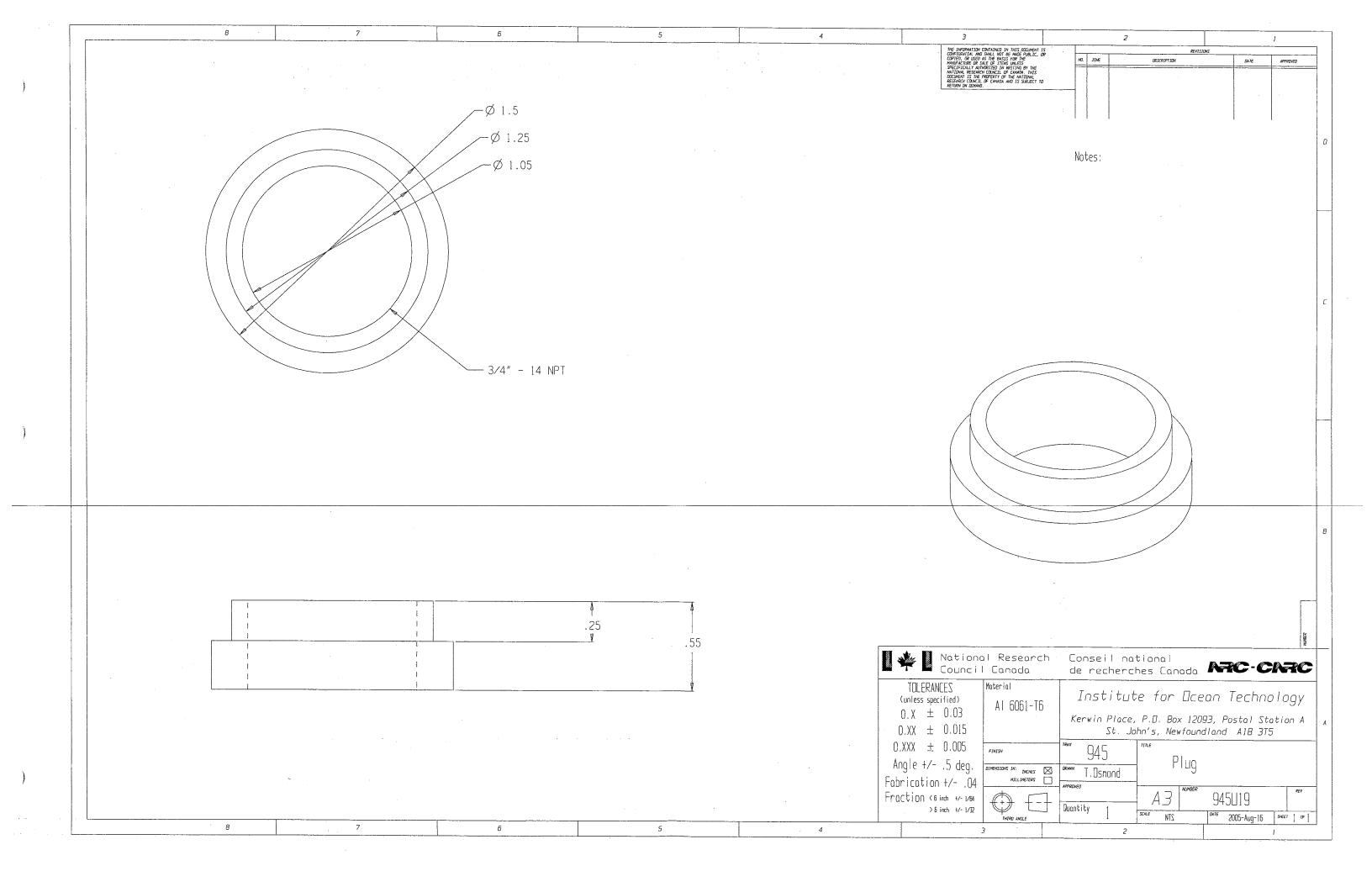
			1
1 15	2 1 Revisions		
T 15 . DR	ND. ZONE . DESCRIPTION DATE APPROVED		
70			
		D	
	Notes:		
	All welds to be water tight		
		С	
		в	
ch	Foosail patienal		
<u> </u>	de recherches Canada ARC-CARC		
6	Institute for Dcean Technology		
	Kerwin Place, P.D. Box 12093, Postal Station A	A	
	St. John's, Newfoundland A1B 3T5		
	184X 945 Top Enome Full According		
\boxtimes	Top Frame Full Assembly		
	APPR/1VED		
	A3 945U11		
	Quantity] Scale NTS [2017 2005-July-28 [See] or [
	2		




	2	,				
UMENT IS BLIC, DR	ND. ZOHE		EVISIONS	DATE	1 APPROVED	
THE NIS NI ECT TO						
					1	
	Notes:					D
		nal welds flat	with			
		allow for pla		eal		
	~					
	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$					
			\longrightarrow			
			//			
						В
		~				
					A DOG P	
rch	Conseil n de recher	ational ches Canado		C-C		
6 AI	Institu	ite for Da	tean T	echn	ology	
ואע	Kerwin Plac St.	e, P.O. Box 12 John's, Newfol	2093, Po. Indlarid	stal St A1B 31	ation A 5	A
	^{TRAX} 945	117LE				
	APPROVED		ane Ma		<u>ч</u>	
]	Buantity 1	A3	9451		REV	
	2	scale NTS	DATE 20	05-June-21	SHEET DF	
	2				1	

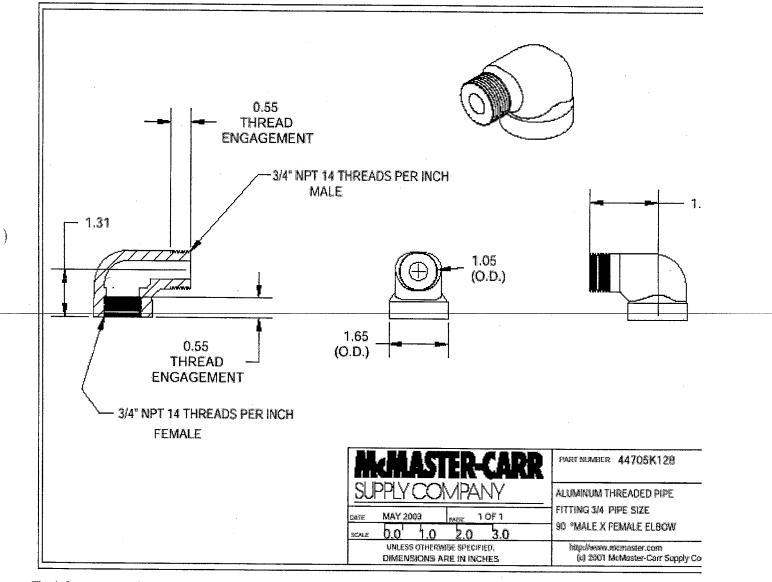



		2			1	-
THIS DOCUMENT IS 5 MADE PUBLIC, DR FOR THE UNLESS	. NO. ZON€	DESCRIPTION	REVISIONS	DATE	APPROVED	-
UNLESS RITING BY THE CANADA. THIS THE NATIONAL NO IS SUBJECT TO						1
	Notes:					0
	NUVED					
	Deburr -	Remove All Sharp	Edges			
						<u> </u>
						C
						В
f thic	s piece	e is not	nerec	sar.	/	
ecideo	í fo pi	e is not ut in all	equi	pmer	1+	
ime	3		I	I		
					RINDER	
search	[nnsei]	national				\vdash
nada	de rech	erches Canad	ia MA	C-C	rac	
1		tute for G				
6016-T6					0,	
		lace, P.[]. Box John's, Newfo				A
	^{rrax} 945	TITLE				
IN: INCHES	94J Irahw T.Osmor	Incli	nometer	Platf	orm	
INCHES	I . USNO(IBER		REV	
» {-}	Quantity 1	<i>A 3</i>	9451]]4	KEV	
RD ANGLE		SCALE NTS	DATE 20)05-July-28	SHEET] OF]
		2			1	

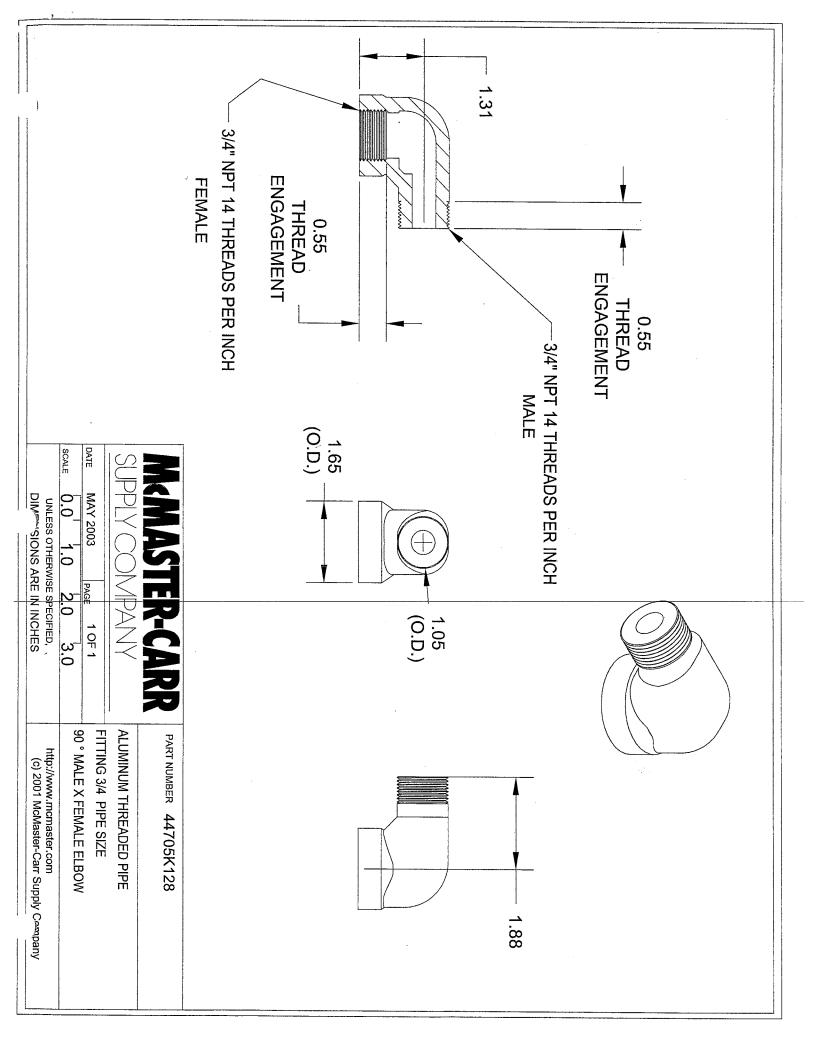


	2 1	
IHIS DUCUMENT IS MADE PUBLIC, DR WR THE MLESS ITING BY THE AMADA. THIS E MATIDNAL D IS SUBJECT TO	NO. ZDNE DESCRIPTION QATE APPROVED	
Ŧ	Notes:	O
	Deburr - Renove All Sharp Edges	
2.00	Base Plate - Al 6061-T6 Support Plate - Al 6061-T6 Pads - Al 6061-T6 Pipe - Al McMaster Carr 44705K128	
	Fillet weld all pads Do not weld on outer edges of pads, edges nearest the base plate edges Pipe is NPT x NPT 3/4" 14 TPI	C
		4
Θ		
		В
		В
Search	Conseil national	
Search ada	Conseil national de recherches Canada RFC-CRFC	
ada	Conseil national de recherches Canada RFC-CAFC Institute for Ocean Technology Kerwin Place, P.O. Box 12093, Postal Station A St. John's, Newfoundland A1B 3T5	
	Conseil national de recherches Canada RAC-CRARC Institute for Ocean Technology Kerwin Place, P.O. Box 12093, Postal Station A	

IN THIS DEFINENT TO	2 1 REVISIONS							
IN THIS DOCUMENT IS BE HADE PUBLIC, OR IS FOR THE IS UNLESS WRITING BY THE	ND. ZONE	DESCRIPTION	DATE	APPROVED				
WRITING BY THE WE CANADA. THIS THE NATIONAL AND IS SUBJECT TO								
			-					
					٥			
	Notes:		•					
	Material	thickness O.	125″ - 0.37	5″				
					Γ			
					B			
				[
				MUNBER				
esearch nada	Conseil de reche	national rches Canada	NAC-C	-N A C				
al D	Instit	ute for Oc	ean Techn	ology				
		ace, P.O. Box 120 John's, Newfour			A			
,	TRAX 945	TITLE						
	T.Osmond							
MILLIMETERS	- APPROVED			REV				
HIRD INGLE	Quontity 1	STALE NTS	945U18 [DATE 2005-AUg-5	SHEET DF				
AND MALE	·	6191	2003-889-3	1 1 1	1			


July 27th, 2005 Page 1 of 1

<u>Pipe Fittings</u> > <u>Shape</u> > <u>Elbow Type Pipe to Pipe</u> > <u>Pipe Size</u>


Aluminum Pipe Fittings and Pipe

This item matches all of your specifications.

	Part Number <u>44705K128</u>	\$8
「「」	Shape	Elbow
	Elbow Type Pipe to Pipe	Male x Female 90° Elbow
N Y M	Pipe Size	3/4"
	Pipe to Pipe Connection	NPT × NPT
V	Maximum Pressure (psi)	150
	Specifications Met	ANSI B1.20.1

The information in this technical drawing is provided for reference only. Details

Designation: F 593 – 02^{€2}

Standard Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs¹

This standard is issued under the fixed designation F 593; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

€¹	Note—Table 2 was editorially corrected in February 2004.
€ ²	Note-Section 4.2 was editorially corrected in October 2004.

1. Scope

1.1 This specification covers the requirements for stainless steel bolts, hex cap screws, and studs 0.25 to 1.50 in., inclusive, in nominal diameter in a number of alloys in common use and intended for service applications requiring general corrosion resistance.

1.2 Seven groups of stainless steel alloys are covered, including twelve austenitic, two ferritic, four martensitic, and one precipitation hardening.

Group 1	Alloys ^A 304, 305, 384, 304 L, 18-9LW, 302HQ ^D	Condition [®] (CW) cold worked ^C
2	316, 316 L	(CW) cold worked ^C
3	321, 347	(CW) cold worked ^C
4	430 [∉]	(CW) cold worked ^C
5	410 ^{<i>F</i>}	(H) hardened and tempered
6	431	(H) hardened and tempered
7	630	(AH) age hardened

^A Unless otherwise specified on the inquiry and order, the choice of an alloy from within a group shall be at the discretion of the fastener manufacturer (see 6.1). ^B See 4.2 for options.

^c Sizes 0.75 in. and larger may be hot worked and solution annealed.

 D When approved by the purchaser, Alloys 303, 303Se, or XM1 may be furnished.

^E When approved by the purchaser, Alloy 430F may be furnished.

^F When approved by the purchaser, Alloys 416 or 416Se may be furnished.

1.3 Supplementary requirements of an optional nature are provided, applicable only when agreed upon between the manufacturer and the purchaser at the time of the inquiry and order.

1.4 Suitable nuts for use with bolts, hex cap screws, and studs included in this specification are covered by Specification F 594. Unless otherwise specified, all nuts used on these fasteners shall conform to the requirements of Specification F 594, shall be of the same alloy group, and shall have a specified minimum proof stress equal to or greater than the specified minimum full-size tensile strength of the externally threaded fastener.

2. Referenced Documents

2.1 ASTM Standards: ²

- A 262 Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels
- A 276 Specification for Stainless Steel Bars and Shapes
- A 342/A 342M Test Methods for Permeability of Feebly Magnetic Materials
- A 380 Practice for Cleaning, Descaling, and Passivation of Stainless Steel Parts, Equipment, and Systems
- A 484/A 484M Specification for General Requirements for Stainless Steel Bars, Billets, and Forgings
- A 493 Specification for Stainless Steel Wire and Wire Rods for Cold Heading and Cold Forging
- A 555/A 555M Specification for General Requirements for Stainless Steel Wire and Wire Rods
- A 564/A 564M Specification for Hot-Rolled and Cold-Finished Age-Hardening Stainless Steel Bars and Shapes
- A 582/A 582M Specification for Free-Machining Stainless Steel Bars
- A 751 Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products
- A 967 Specification for Chemical Passivation Treatments for Stainless Steel Parts
- D 3951 Practice for Commercial Packaging
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- F 594 Specification for Stainless Steel Nuts
- F 606 Test Methods for Determining the Mechanical Properties of Externally and Internally Threaded Fasteners, Washers, and Rivets
- F 1470 Guide for Fastener Sampling for Specified Mechanical Properties and Performance Inspection
- 2.2 ASME Standards;³
- B1.1 Unified Inch Screw Threads

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

Copyright by ASTM Int'l (all rights reserved);

¹ This specification is under the jurisdiction of ASTM Committee F16 on Fasteners and is the direct responsibility of Subcommittee F16.04 on Nonferrous Fasteners.

Current edition approved April 10, 2002. Published May 2002. Originally published as F 593 - 78. Last previous edition F 593 - 01.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

³ Available from Global Engineering Documents, 15 Inverness Way, East Englewood, CO 80112.

B18.2.1 Square and Hex Bolts and Screws, Including Hex Cap Screws

3. Ordering Information

3.1 Orders for bolts, hex cap screws, and studs under this specification shall include the following:

3.1.1 Quantity (number of pieces of each item and size),

3.1.2 Name of item (bolt, hex cap screw, stud, etc.),

3.1.3 Size (nominal diameter, threads per inch, length; see Section 9),

3.1.4 Alloy group number (see 6.1), and

3.1.5 Condition (see 4.2).

3.2 Orders for bolts, hex cap screws, and studs under this specification may include the following optional requirements:

3.2.1 Forming (see 4.1.2),

3.2.2 Rolled or cut threads (see 4.1.3),

3.2.3 Composition (see 6.2),

3.2.4 Corrosion Resistance (see 8.1),

3.2.5 Finish (see 10.3),

3.2.6 Rejection (see 16.1), and

3.2.7 Test report (see 17.2).

3.2.8 Supplementary requirements, if any, to be specified on the order (see S1 through S8), and

3.2.9 ASTM specification and year of issue. When year of issue is not specified, fasteners shall be furnished to the latest issue.

NOTE 1—*Example* 10 000 pieces, Hex Cap Screw, 0.250 in. -20×3.00 in., Alloy Group 1, Condition CW, Furnish Test Report, Supplementary Requirement S3.

4. Manufacture

4.1 Manufacture:

4.1.1 Specifications A 276, A 493, A 564/A 564M, and A 582/A 582M are noted for information only as suitable sources of material for the manufacture of bolts, hex cap screws, and studs to this specification.

4.1.2 *Forming*—Unless otherwise specified, the fasteners shall be cold formed, hot formed, or machined from suitable material at the option of the manufacturer.

4.1.3 *Threads*—Unless otherwise specified, the threads shall be rolled or cut at the option of the manufacturer.

4.2 Condition—The fasteners shall be furnished in the following conditions, unless specified to be furnished in one of the optional conditions:

	Condition Furnished Unless	Optional Conditions (must
Alloy Group	Otherwise Specified	be specified)
1, 2, 3	CW	AF, A, SH
4	CW	A
5	н	нт
6	н	нт
/	AH	none

A— Machined from annealed or solution-annealed stock thus retaining the properties of the original material; or hot-formed and solution annealed.
AF— Headed and rolled from annealed stock and then reannealed.

AH— Solution-annealed and age-hardened after forming.

CW-- Headed and rolled from annealed stock thus acquiring a degree of cold

work. Sizes 0.75 in. and larger may be hot-worked and solutionannealed.

H- Hardened and tempered at 1050°F (565°C) minimum.

HT-- Hardened and tempered at 525°F (274°C) minimum.

SH— Machined from strain-hardened stock or cold-worked to develop the specific properties.

5. Heat Treatment

5.1 Alloy Groups 1, 2, and 3 (Austenitic Alloys 303, 303Se, 304, 304 L, 305, 316, 316 L, 321, 347, 384, XM1, 18-9LW, and 302HQ):

5.1.1 Condition A—When Condition A is specified, the austenitic alloys shall be heated to $1900 \pm 50^{\circ}$ F (1038 $\pm 28^{\circ}$ C), at which time the chromium carbide will go into the solution, be held for a sufficient time, and then be cooled at a rate sufficient to prevent precipitation of the carbide and to provide the specified properties.

5.1.2 Condition CW—When Condition CW is specified, the austenitic alloys shall be annealed in accordance with 5.1.1, generally by the raw material manufacturer and then cold worked to develop the specified properties.

5.1.3 Condition AF—When Condition AF is specified, the austenitic alloys shall be annealed in accordance with 5.1.1 after all cold working (including heading and threading) has been completed.

5.2 Alloy Group 4 (Ferritic Alloys 430 and 430F):

5.2.1 Condition A—The ferritic alloys shall be heated to a temperature of $1450 \pm 50^{\circ}$ F (788 $\pm 28^{\circ}$ C), held for an appropriate time, and then air cooled to provide the specified properties.

5.2.2 Condition CW—When Condition CW is specified, the ferritic alloys shall be annealed in accordance with 5.2.1, generally by the raw material manufacturer and then cold worked to develop the specified properties.

5.2.3 Condition AF—When Condition AF is specified, the ferritic alloys shall be annealed in accordance with 5.2.1 after all cold working (including heading and threading) has been completed.

5.3 Alloy Group 5 (Martensitic Alloys 410, 416, and 416Se):

5.3.1 Condition H—When Condition II is specified, the Martensitic Alloys 410, 416, and 416Se shall be hardened and tempered by heating to $1850 \pm 50^{\circ}$ F (1010 $\pm 28^{\circ}$ C) sufficient for austenitization, held for at least $\frac{1}{2}$ h and rapid air- or oil-quenched, and then reheating to 1050° F (565°C) minimum for at least 1 h and air cooled to provide the specified properties.

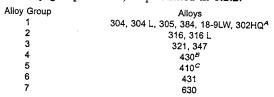
5.3.2 Condition HT—When Condition HT is specified, the Martensitic Alloys 410, 416, and 416Se shall be hardened and tempered by heating to $1850 \pm 50^{\circ}$ F ($1010 \pm 28^{\circ}$ C) sufficient for austenitization, held for at least $\frac{1}{2}$ h and rapid air- or oil-quenched, and then reheating to 525° F (274° C) minimum for at least 1 h and air cooled to provide the specified properties.

5.4 Alloy Group 6 (Martensitic Alloy 431):

5.4.1 *Conditions H and HT*—Martensitic Alloy 431 shall be hardened and tempered in accordance with 5.3.1 and 5.3.2 as applicable.

5.5 Alloy Group 7 (Precipitation Hardening Alloy 630):

5.5.1 Condition AH—Precipitation Hardening Alloy 630 shall be solution annealed and aged by heating to $1900 \pm 25^{\circ}$ F (1038 $\pm 14^{\circ}$ C) for at least ½ h and rapid air- or oil-quenched to 80°F (27°C) maximum, then reheating to a temperature of $1150 \pm 15^{\circ}$ F (621 $\pm 8^{\circ}$ C) for 4 h and air cooled to provide the specified properties.


Copyright by ASTM Int'l (all rights reserved);

2

Reproduction authorized per License Agreement with Claude Lariviere (GLOBALLINK SERVICE NRCCISTI); Wed Jun 22 11:42:14 EDT 2005

6. Chemical Composition

6.1 *Alloy Groups*—It is the intent of this specification that fasteners shall be ordered by alloy group numbers, which include alloys considered to be chemically equivalent for general purpose use. The alloy groupings are shown as follows. The purchaser has the option of ordering a specific alloy, in stead of an alloy group number, as permitted in 6.2.2.

⁴ When approved by the purchaser, Alloys 303, 303Se, or XM1 may be furnished.

^B When approved by the purchaser, Alloy 430F may be furnished.

^c When approved by the purchaser, Alloys 416 or 416Se may be furnished. 6.2 *Chemical Composition Limits*:

6.2.1 Ordering by Alloy Group—Unless otherwise specified on the inquiry and order (see Supplementary Requirement S4), the choice of an alloy from within a group shall be at the discretion of the fastener manufacturer as required by his method of fastener fabrication and material availability. The specific alloy used by the fastener manufacturer shall be clearly identified on any certification required by the order and shall have a chemical composition conforming to the requirements of Table 1 for the specific alloy.

6.2.2 Ordering by Specific Alloy—When ordered by a specific alloy number, the fasteners shall conform to the chemical composition limits of Table 1 for the specific alloy.

6.3 Product Analysis:

6.3.1 When performed, product analysis to determine chemical composition shall be performed on at least one fully manufactured finished fastener representing each lot. The chemical composition thus determined shall conform to the requirements of Table 1 for the specified alloy or alloy group as appropriate, subject to the Product Analysis Tolerance in Specifications A 484/A 484M and A 555/A 555M.

6.3.2 In the event of discrepancy, a referee chemical analysis of samples from each lot shall be made in accordance with 14.1.

7. Mechanical Properties

7.1 The finished fasteners shall meet the applicable mechanical property and test requirements of Table 2 and Table 3 as appropriate for the specified alloy group and condition and shall be tested for conformance to the mechanical property requirements as specified herein.

7.2 Fasteners having a nominal thread diameter-length combination as follows:

Thread Diameter, in.	Thread Length, in.
0.75 or less	2.25 D or longer
Over 0.75	3 D or longer

and a breaking load of 120 000 lbf (535 kN) or less shall be tested full size and shall meet the full-size tensile (minimum and maximum) and yield strength requirements in Table 2 for the specified alloy.

7.3 Fasteners having a nominal thread diameter-length combination in accordance with 7.2 and a breaking load exceeding 120 000 lbf (535 kN) shall be tested full-size and shall meet the full size tensile (minimum and maximum) and yield strength properties in Table 2. When equipment of sufficient capacity for such tests is not available, or if excessive length of the fasteners makes full-size testing impractical, use of standard or

TABLE 1 Chemical Requirements

Alloy	UNS Designa-	Alloy	•				Comp	osition, % max	kimum except as	shown		
	tion		Carbon	Manga- nese	Phos- phorus	Sulfur	Silicon	Chromium	Nickel	Copper	Molybdenum	Others
·							Auste	nitic Alloys				
1	S30300	303	0.15	2.00	0.20	0.15 min	1.00	17.0 to 19.0	8.0 to 10.0		0.60 max ⁴	
1	S30323	303 Se		2.00	0.20	0.060	1.00	17.0 to 19.0	8.0 to 10.0			Se 0.15 min
	S30400	304	0.08	2.00	0.045	0.030	1.00	18.0 to 20.0	8.0 to 10.5	1.00	•••	
	S30403	304 L	0.03	2.00	0.045	0.030	1.00	18.0 to 20.0	8.0 to 12.0	1.00	•••	
	S30500	305	0.12	2.00	0.045	0.030	1.00	17.0 to 19.0	10.5 to 13.0	1.00	•••	•••
	S38400	384	0.08	2.00	0.045	0.030	1.00	15.0 to 17.0	17.0 to 19.0		0.50A	• • •
	S20300	XM1	0.08	5.0 to 6.5	0.040	0.18 to 0.35	1.00	16.0 to 18.0	5.0 to 6.5	1.75 to 2.25	0.50 max ^A	•••
	S30430	18–9LW	0.10	2.00	0.045	0.030	1.00	17.0 to 19.0	8.0 to 10.0	3.0 to 4.0	• • •	
	S30433	302HQ	0.03	2.00	0.045	0.030	1.00	17.0 to 19.0	8.0 to 10.0	3.0 to 4.0		• • •
	S31600	316	0.08	2.00	0.045	0.030	1.00	16.0 to 18.0	10.0 to 14.0			•••
	S31603	316 L	0.03	2.00	0.045	0.030	1.00	16.0 to 18.0	10.0 to 14.0	•••	2.00 to 3.00	•••
	S32100	321	0.08	2.00	0.045	0.030	1.00	17.0 to 19.0	9.0 to 12.0	•••	2.00 to 3.00	•••
	S34700	347	0.08	2.00	0.045	0.030	1.00	17.0 to 19.0	9.0 to 12.0	•••	• • •	Ti 5×Cmin Cb+Ta 10×Cmir
						· ·	Ferri	ic Alloys		•••	•••	
	S43000	430	0.12	1.00	0.040	0.030		······				· ·····
	S43020	430F	0.12	1.25	0.060	0.030 0.15 min	1.00 1.00	16.0 to 18.0 16.0 to 18.0	• • • •	•••	0.60 max ^A	、 ···
							Marten	sitic Alloys	·			
	S41000	410	0.15	1.00	0.040	0.030	1.00	11.5 to 13.5			· · · · · · · · · · · · · · · · · · ·	
	S41600	416	0.15	1.25	0.060	0.15 min	1.00	12.0 to 14.0	• • •	• • •		
	S41623	416Se	0.15	1.25	0.060	0.060	1.00	12.0 to 14.0			0.60 max ^A	
	S43100	431	0.20	1.00	0.040	0.030	1.00	15.0 to 17.0	1.25 to 2.50			Se 0.15 min
								Hardening Allo				
	S17400	630	0.07	1.00	0.040	0.030		15.0 to 17.5	3.0 to 5.0	3.0 to 5.0	····	Cb+Ta 0.15-0.45

At manufacturer's option, determined only when intentionally added

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with Claude Lariviere (GLOBALLINK SERVICE NRCCISTI); Wed Jun 22 11:42:14 EDT 2005

F 593 – 02^{€2}

TABLE 2 Mechanical Property Reguir	irements ^A
------------------------------------	-----------------------

			TADLE 2 Meet	nanical Property						
Stain-		Alloy Mechanical	Nominal		Full-Size Te	SIS	Machined Specimen Tests			
less Al- loy Group	Condition ^B	Property Marking	Diameter, in.	Ten <u>sile</u> Strength ksi ^C	Yield Strength, ksi ^{D,C}	Rockwell Hardness	Tensile Strength ksi ^C	Yield Strength, ksi ^{D,C}	Elon- gation in 4 <i>D</i> , %	
				Austenitic Alloys			· · · · · · ·	· · · · ·		
	AF	F593A	1/4 to 11/2, incl	65 to 85	20	B85 max	60	20	40	
1 .		F593B	1/4 to 11/2, incl	75 to 100	30	B65 to 95	- 70	30	30	
(303, 304,	CW1	_ F593C	1⁄4 to 5∕8 , incl	100 to 150	65	B95 to C32	95	60	20,	
304 L, 305,	CW2	F593D	3/4 to 11/2, incl	85 to 140	45	B80 to C32	80	40	25	
384,	SH1	<u>F593A</u>	1/4 to 5/8, incl	120 to 160	95	C24 to C36	115	90	12	
XM1, 18-9LW,	SH2	F593B	3/4 to 1, incl	110 to 150	75	C20 to C32	105	70	15	
302HQ, 303Se) -	SH3	<u>F593C</u>	11/8 to 11/4 , incl	100 to 140	60	B95 to C30	95	55	20	
,	SH4	F593D	1¾ to 1½ , incl	95 to 130	45	B90 to C28	90	40	28	
	AF	F593E	1/4 to 11/2, incl	65 to 85	20	B85 max	60	20	40	
	A	F593F	1/4 to 11/2, incl	75 to 100	30	B65 to 95	70	30	30	
	CW1	F593G	. ¼ to 5⁄8, incl	100 to 150	65	B95 to C32	95	60	20	
2 .	CW2	F593H	3/4 to 11/2, incl	85 to 140	45	B80 to C32	- 80	40	25	
(316,	SH1	<u>F593E</u>	1/4 to 5/8, incl	120 to 160	95	C24 to C36	115	90	12	
316L) -	J SH2	F593F	3/4 to 1, incl	110 to 150	75	C20 to C32	105	70	15	
	SH3	<u>F593G</u>	11/a to 11/4, incl	100 to 140	60	B95 to C30	95	55	20	
	SH4	<u>F593H</u>	13/8 to 11/2 , incl	95 to 130	45	B90 to C28	90	40	28	
	AF	F593J	1/4 to 11/2, incl	65 to 85	20	B85 max	60	20	40	
	A	F593K	1⁄4 to 11⁄2 , incl	75 to 100	30	B65 to 95	70	30	30	
3	CW1	F593L	1⁄4 to 5∕8, incl	100 to 150	65	B95 to C32	95	60	20	
(321, 347)	CW2	F593M	3/4 to 11/2, incl	85 to 140	45	B80 to C32	80	40	25	
	SH1	<u>F593J</u>	¼ to % , incl	120 to 160	95	C24 to C36	115	90	12	
	SH2	F593K	34 to 1, incl	110 to 150	75	C20 to C32	105	70	15	
	SH3	F593L	11/8 to 11/4, incl	100 to 140	60	B95 to C30	95	55	20	
	SH4	<u>F593M</u>	13% to 11/2, incl	95 to 130	45	B90 to C28	90	40	28	
				Ferritic Alloys						
4	AF	F593X	1/4 to 11/2, incl	55 to 75	30	B85 max	50	25		
430, 430F)	A	F593N	1/4 to 11/2, incl	55 to 75	30	B85 max	50	25		
	CW1	F593V	1/4 to 5/8, incl	60 to 105	40	B75 to 98	55	35	· · · · · · · · · · · · · · · · · · ·	
·	CW2	F593W	3/4 to 11/2, incl	55 to 100	30	B65 to 95	50	25	•••	
				Martensitic Alloys						
	H	F593P	1/4 to 11/2 , incl	110 to 140	90	C20 to 30	110	90	18	
(410, 416, 416Se)	HT	F593R	1/4 to 11/2, incl	160 to 190	120	C34 to 45	160	120	12	
6	H	F593S	1/4 to 11/2, incl	125 to 150	100	C25 to 32	125	100	15	
(431)	HT	F593T	1/4 to 11/2 , incl	180 to 220	140	C40 to 48	180	140	10	
7	AL2	F 50211		pitation Hardening A						
(630)	AH	F593U	1/4 to 11/2, incl	135 to 170	105	C28 to 38	135	105	16	

^A Minimum values except where shown as maximum or as a range.

^B Legend of conditions:

A---Machined from annealed or solution-annealed stock thus retaining the properties of the original material, or hot-formed and solution-annealed.

AF-Headed and rolled from annealed stock and then reannealed.

AH-Solution annealed and age-hardened after forming.

CW-Headed and rolled from annealed stock thus acquiring a degree of cold work; sizes 0.75 in. and larger may be hot worked and solution-annealed.

H-Hardened and tempered at 1050°F (565°C) minimum.

HT-Hardened and tempered at 525°F (274°C) minimum.

SH-Machined from strain hardened stock or cold-worked to develop the specified properties.

^C The yield and tensile strength values for full-size products shall be computed by dividing the yield and maximum tensile load values by the stress area for the product size and thread series determined in accordance with Test Methods F 606 (see Table 4). ^D Yield strength is the stress at which an offset of 0.2 % gage length occurs.

round specimens that meet the "machined specimen test tensile properties" in Table 2 is permitted. In the event of discrepancy or dispute between test results obtained from full-size finished fasteners and standard or round specimens, the referee method shall be tests performed on full-size finished fasteners.

7.4 Fasteners that are too short (lengths less than that specified in 7.2 (see Test Methods F 606 and Table 4); have insufficient threads for tension; or have drilled or undersized heads, drilled or reduced bodies, and so forth, that are weaker than the thread section, shall not be subject to tension tests but

Copyright by ASTM Int'l (all rights reserved);

4

Reproduction authorized per License Agreement with Claude Lariviere (GLOBALLINK SERVICE NRCCISTI); Wed Jun 22 11:42:14 EDT 2005

F 593 – 02^{€2}

TABLE 3 Mechanical Test Requirements for Bolts and Studs^A

Item	Nominal Length		Tensile Load, Ibf		Full-Si	Machined Specimen Tests				
	Diameters ¾ in. and Less	Diameters Over ¾ in.	-	Wedge Tensile Strength	Axial Tensile Strength	Yield Strength	Rockwell Hardness	Tensile Strength	Yield Strength	Elongation
Square and hex bolts and hex cap screws	less than 2¼ <i>D</i> 2¼ <i>D</i> and longer	less than 3D 3D and longer	all 120 000 max over 120 000	Option A mandatory Option A	Option B 8 8	в mandatory Option A	Option C B B	в в Option B	в В Option B	в Оption B
Studs and other bolts	iess than 2¼ D 2¼ D and longer	less than 3 <i>D</i> 3 <i>D</i> and longer	ali 120 000 max over 120 000	B B B	Option A mandatory Option A	в mandatory Option A	Option B B B	в в Option B	в в Option B	в в Option B
Specials ^C	ali	all	all	B	₿	в	mandatory	В	B	В

Where options are given, all the tests under an option shall be performed. Option A, Option B, and Option C indicates manufacturer may perform all Option A (full-size), all Option B (machined specimen), or all Option C tests whichever is preferred. Option A tests should be made whenever feasible. ^B Tests that are not mandatory.

^C Special fasteners are those fasteners with special configurations including drilled heads, reduced body, etc., that are weaker than the threaded section. Special fasteners having full-size heads shall be tested as specified for studs and other bolts.

TABLE 4	Tensile	Stress	Areas	and	Threads	per	Inch
---------	---------	--------	-------	-----	---------	-----	------

Nominal Size, in. (D)	Coarse Threads-UNC		Fine	Threads-UNF	Thread Series-8 UN		
	Threads/in.	Stress Area ⁴ , in. ²	Threads/in.	Stress Area ^A , in. ²	Threads/in.	Stress Area ^A in. ²	
1⁄4 (0.250)	20	0.0318	28	0.0364			
⁵ ⁄16 (0.3125)	18	0.0524	24	0.0580	•••	• • •	
3⁄18 (0.375)	16	0.0775	24	0.0878	•••		
7/16 (0.4375)	14	0.1063	20	0.1187	•••	• • •	
1⁄2 (0.500)	13	0.1419	20	0.1599	• • •	•••	
⁹ ⁄16 (0.56 25)	12	0.1820	18	0.2030	•	-	
⁵ ∕8 (0.625)	11	0.2260	18	0.2560	•••	•••	
34 (0.750)	10	0.3340	16	0.3730	•••		
7⁄a (0.875)	9	0.4620	14	0.5090		· • • •	
1.000	8	0.6060	12	0.6630	• • •	••••	
11⁄8 (1.125)	7	0.7630	12	0.8560	0		
1¼ (1.250)	7	0.9690	12	1.0730	8	0.790	
1¾ (1.375)	6	1.1550	12		ō	1.000	
11⁄2 (1.500)	6	1.4050	12	1.3150 1.5810	8 8	1.233 1.492	

Tensile stress areas are computed using the following formula:

$$A^{s} = 0.7854 \left[D - \frac{0.9743}{n} \right]^{2}$$

where:

As tensile stress area, in.²

D = nominal size (basic major diameter), in., and

number of threads per inch. n =

shall conform to the hardness (minimum and maximum) requirements of Table 2.

8. Corrosion Resistance

8.1 Carbide Precipitation:

8.1.1 Rod, bar, and wire in the austenitic Alloy Groups 1, 2, and 3, except the free-machining grades, 303 and 303Se, used to make fasteners in accordance with this specification shall be capable of passing the test for susceptibility to intergranular corrosion as specified in Practice E of Practices A 262.

8.1.2 As stated in Practice A 262, samples may be subjected to the faster and more severe screening test in accordance with Practice A. Failing Practice A, specimens shall be tested in accordance with Practice E and be considered satisfactory if passing Practice E.

9. Dimensions

9.1 Bolts and Hex Cap Screws:

9.1.1 Unless otherwise specified, the dimensions shall be in accordance with the requirements of ASME B18.2.1 for hex cap screws (finished hex bolts).

9.1.2 When specified, the dimensions of bolts shall be in accordance with the requirements of ASME B18.2.1 (type as specified), or such other dimensions shall be specified.

9.2 Studs-Dimensions of studs including double-end clamping and double-end interference shall be as specified by the purchaser.

9.3 Threads-Unless otherwise specified, the bolts, cap screws, and studs shall have Class 2A threads in accordance with ASME B1.1.

9.4 *Points*—Unless otherwise specified, the points shall be flat and chamfered or rounded, at the option of the manufacturer.

10. Workmanship and Finish

10.1 *Workmanship*—The fasteners shall have a workmanlike finish, free of injurious burrs, seams, laps, irregular surfaces, and other defects affecting serviceability.

10.2 Cleaning and Descaling—The fasteners shall be descaled or cleaned, or both, in accordance with Specification A 380.

10.3 *Protective Finishes*—Unless otherwise specified, the fasteners shall be furnished without an additive chemical or metallic finish.

11. Sampling

11.1 A lot, for the purposes of selecting test specimens, shall consist of not more than 100 000 pieces offered for inspection at one time having the following common characteristics:

11.1.1 One type of item (that is, bolts, hex cap screws, studs, etc.),

11.1.2 Same alloy and condition,

11.1.3 One nominal diameter and thread series,

11.1.4 One nominal length,

11.1.5 Produced from one heat of material, and

11.1.6 Heat treated under the same conditions as to time and temperature.

12. Number of Tests and Retests

12.1 Number of Tests:

12.1.1 Mechanical Tests—The mechanical requirements of this specification shall be met in continuous mass production for stock. The manufacturer shall make sample inspections as specified below to ensure that the product conforms to the specified requirements. When tests of individual shipments are required, Supplementary Requirement S1 must be specified in the inquiry and order.

Number of Pieces in Lot	Acceptance Criteria		
	Number of	Acceptance	Rejection
	Tests	Number	Number
2 to 50	2	0	1
51 to 500	3	0	1
501 to 35 000	5	õ	1
35 001 to 100 000	8	ō	1

12.1.2 Corrosion Resistance Tests:

)

12.1.2.1 Unless otherwise specified, inspection for corrosion resistance shall be in accordance with the manufacturer's standard quality control practices. No specific method of inspection is required, but the fasteners shall be produced from suitable raw material and manufactured by properly controlled practices to maintain resistance to corrosion. When corrosion tests are required, Supplementary Requirement S7 must be specified in the inquiry and order, except as noted in 12.1.2.2.

12.1.2.2 Products that have been hot worked shall be solution annealed and tested to determine freedom from precipitated carbides. Not less than one corrosion test shall be made from each lot. Corrosion tests shall be performed in accordance with Practice A 262, Practices A or E as applicable. 12.2 *Retests*: 12.2.1 When tested in accordance with the required sampling plan, a lot shall be subject to rejection if any of the test specimens fail to meet the applicable test requirements.

12.2.2 If the failure of a test specimen is due to improper preparation of the specimen or to incorrect testing technique, the specimen shall be discarded and another specimen substituted.

13. Significance of Numerical Limits

13.1 For the purposes of determining compliance with the specified limits for properties listed in this specification, an observed value or calculated value shall be rounded in accordance with Practice E 29.

14. Test Specimens

14.1 *Chemical Tests*—When required, samples for chemical analysis shall be taken by drilling, sawing, milling, turning, clipping, or other such methods capable of producing representative samples.

14.2 Mechanical Tests:

14.2.1 Specimens shall be full size or machined in accordance with 7.2 through 7.4. Machined specimens, when required, shall be machined from the fastener in accordance with Test Methods F 606.

14.2.2 The hardness shall be determined on the finished fastener in accordance with Test Methods F 606.

14.3 Corrosion Resistance—Test specimens shall be prepared in accordance with Practices A 262.

15. Test Methods

15.1 *Chemical Analysis*—The chemical composition shall be determined in accordance with Test Methods A 751.

15.1.1 The fastener manufacturer may accept the chemical analysis of each heat of raw material purchased and reported on the raw material certification furnished by the raw material producer. The fastener manufacturer is not required to do any further chemical analysis testing provided that precise heat lot traceability has been maintained throughout the manufacturing process on each lot of fasteners produced and delivered

15.2 Mechanical Tests:

15.2.1 When full-size tests are to be performed, the yield strength and wedge tensile strength or axial tensile strength, as required by Section 7, shall be determined on each sample in accordance with the appropriate methods of Test Methods F 606.

15.2.2 Full-size bolts and hex cap screws subject to tension tests shall be tested using a wedge under the head. The wedge shall be 10° for bolts 0.750-in. nominal diameter and less and 6° for bolts over 0.750-in. diameter.

15.2.3 When machined specimen tests are necessary (see Section 7), the yield strength, tensile strength, and elongation shall be determined on each sample in accordance with Test Methods F 606.

15.2.4 The hardness shall be determined in accordance with Test Methods F 606. A minimum of two readings shall be made on each sample, each of which shall conform to the specified requirements.

15.3 Corrosion Resistance-When specified on the purchase order or inquiry, corrosion tests to determine freedom from precipitated carbides shall be performed in accordance with Practice A 262, Practice A or E as applicable.

16. Rejection and Rehearing

16.1 Unless otherwise specified, any rejection based on tests specified herein and made by the purchaser shall be reported to the manufacturer within 30 working days from the receipt of the product by the purchaser.

17. Certification and Test Reports

17.1 Certificate of Compliance—Unless otherwise specified in the purchase order, the manufacturer shall furnish certification that the product was manufactured and tested in accordance with this specification and the customer's order and conforms to all specified requirements.

17.2 Test Reports—When specified on the order, the manufacturer shall furnish a test report showing the chemical analysis of the fasteners and the results of the last completed set of mechanical tests for each lot of fasteners in the shipment.

17.3 All certification shall indicate the purchase order number and the applicable requirements of Section 3.

18. Product Marking

18.1 Individual Products—All products except studs 3/8 in. in diameter and smaller shall be marked with a symbol identifying the manufacturer. In addition, they shall be marked with the alloy/mechanical property-marking in accordance with Table 2. The manufacturer may at his option add the specific stainless alloy designation from Table 1. However, marking of the stainless alloy designation does not signify compliance with this specification. The marking shall be raised or depressed at the option of the manufacturer.

19. Packaging and Package Marking

19.1 Packaging:

19.1.1 Unless otherwise specified, packaging shall be in accordance with Practice D 3951.

19.1.2 When special packaging requirements are required by the purchaser, they shall be defined at the time of inquiry and order.

19.2 *Package Marking*—Each shipping unit shall include or be plainly marked with the following:

19.2.1 ASTM specification,

19.2.2 Alloy number,

19.2.3 Alloy/mechanical property marking,

19.2.4 Size,

19.2.5 Name and brand or trademark of manufacturer,

19.2.6 Number of pieces,

19.2.7 Country of origin,

19.2.8 Date of manufacture,

19.2.9 Purchase order number, and

19.2.10 Lot number, if applicable.

20. Keywords

20.1 bolts; general use; hex cap screws; stainless; studs

SUPPLEMENTARY REQUIREMENTS

One or more of the following supplementary requirements shall apply only when specified by the purchaser in the inquiry and order (see Section 3). Supplementary requirements shall in no way negate any requirement of the specification itself.

S1. Shipment Lot Testing

S1.1 When Supplementary Requirement S1 is specified on the order, the manufacturer shall make sample tests on the individual lots for shipment to ensure that the product conforms to the specified requirements.

S1.2 The manufacturer shall make an analysis of a randomly selected finished fastener from each lot of product to be shipped. Heat or lot control shall be maintained. The analysis of the starting material from which the fasteners have been manufactured may be reported in place of the product analysis.

S1.3 The manufacturer shall perform mechanical property tests in accordance with this specification and Guide F 1470 on the individual lots for shipment.

S1.4 The manufacturer shall furnish a test report for each lot in the shipment showing the actual results of the chemical analysis and mechanical property tests performed in accordance with Supplementary Requirement S1.

S2. Additional Tests

S2.1 When additional tests of mechanical properties are desired by the purchaser, the test(s) shall be made as agreed upon between the manufacturer and the purchaser at the time of the inquiry or order.

S3. Source Inspection

S3.1 When Supplementary Requirement S3 is specified on the inquiry and order, the product shall be subject to inspection by the purchaser at the place of manufacture prior to shipment. The manufacturer shall afford the inspector all reasonable facilities to satisfy that the product is being furnished in. accordance with this specification. All inspections and tests shall be so conducted so as not to interfere unnecessarily with the operations of the manufacturer.

Copyright by ASTM Int'l (all rights reserved);

S4. Alloy Control

S4.1 When Supplementary Requirement S4 is specified on the inquiry and order, the manufacturer shall supply that alloy specified by the customer on his order with no group substitutions permitted without the written permission of the purchaser.

S5. Heat Control

S5.1 When Supplementary Requirement S5 is specified on the inquiry or order, the manufacturer shall control the product by heat analysis and identify the finished product in each shipment by the actual heat number.

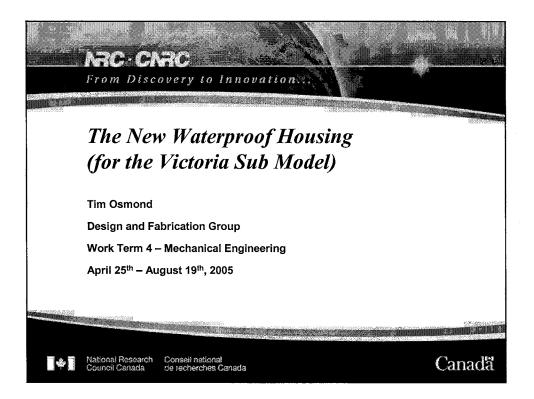
S5.2 When Supplementary Requirement S5 is specified on the inquiry and order, Supplementary Requirements S1 and S4 shall be considered automatically invoked with the addition that the heat analysis shall be reported to the purchaser on the test reports.

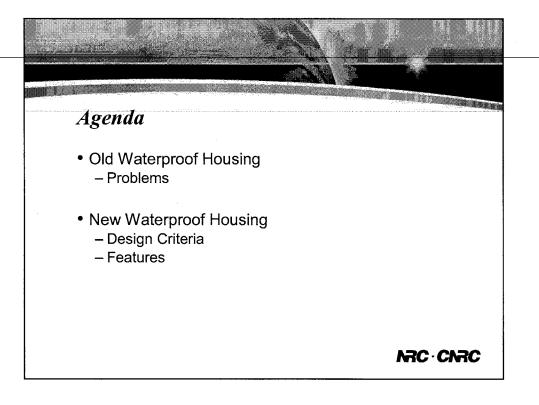
S6. Permeability

S6.1 When Supplementary Requirement S6 is specified on the inquiry and order, the permeability of bolts, hex cap screws, and studs of Alloy Groups 1, 2, and 3 in Conditions A or AF shall not exceed 1.5 at 100 oersteds when determined in accordance with Test Methods A 342.

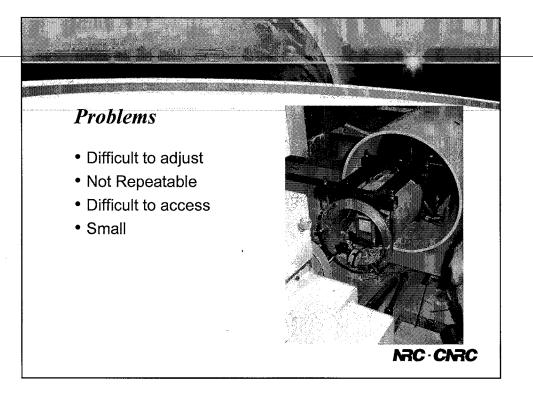
S7. Corrosion Resistance Tests

S7.1 When Supplementary Requirement S7 is specified on the inquiry and order, corrosion test(s) shall be performed as agreed upon between the manufacturer and the purchaser at the time of the inquiry or order.


S8. Passivation


S8.1 When Supplementary Requirement S8 is specified on the inquiry or order, the finished product shall be passivated in accordance with Practice A 380 or Specification A 967 at the option of the manufacturer.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.


This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).

