
https://doi.org/10.4224/8914267

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien

DOI ci-dessous.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Addressing the Problem of Finding a Single Vital Edge in a Maximum

Flow Graph
Barton, Alan

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=033a53c8-1641-405b-af69-ce51ac53cab4

https://publications-cnrc.canada.ca/fra/voir/objet/?id=033a53c8-1641-405b-af69-ce51ac53cab4

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Addressing the Problem of Finding a Single

Vital Edge in a Maximum Flow Graph*

Barton, A.
November 2005

* published as NRC/ERB-1129. 4 pages. NRC 48305.

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Addressing the Problem of

Finding a Single Vita l Edge in

a Maximum Flow Graph

Barton, A.
November 2005

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

ERB-1129

NRC 48305

Addressing the Problem of
Finding a Single Vital Edge in a Maximum Flow Graph

∗

Alan J. Barton
†

Integrated Reasoning Group
Institute for Information Technology
National Research Council Canada

Ottawa, Canada, K1A 0R6

alan.barton@nrc-cnrc.gc.ca

ABSTRACT
A first attempt is made to understand some of the theoreti-
cal considerations in the design of a solution to the problem
of finding a vital edge in a flow graph G. Examples are used
to conjecture the existence of four equivalence classes for
the set of all possible flow graphs; both of which (counter
examples and partitions) are presented in sufficient detail
as to allow the possibility of potentially deriving a specific
algorithm and hence implementation.

Keywords
vital edge, maximal flow, algorithm design

1. INTRODUCTION
The maximal flow problem [3] was formulated by T. Harris
as follows:

Consider a rail network connecting two cities by
way of a number of intermediate cities, where
each link of the network has a number assigned to
it representing its capacity. Assuming a steady
state condition, find a maximal flow from one
given city to the other.

Which states that a linear programming problem formula-
tion could be made [3], and thus solved (not necessarily most
efficiently in all cases) by the simplex method [2].

2. PROBLEM STATEMENT

∗Problem from Assignment 2 for the course COMP5703 en-
titled Design and Analysis of Algorithms at Carleton Uni-
versity
†Master of Computer Science (in progress)

This paper attempts to propose a solution to the problem
as stated by Prof. Maheshwari: Assume that we have a
network flow graph G = (V, E) with positive capacities on
each of the edges and two specified vertices s and t. Suggest
an efficient algorithm to find an edge in E, such that setting
its capacity to zero (i.e. deleting this edge) will result in
the largest decrease in the maximum flow in the resulting
graph.

2.1 Related Problems
It was found after the assignment submission, that i) the
search for an optimal arc can be restricted to one of the
n − 1 arcs in any maximal spanning tree[1] and ii) in the
network inhibition problem[5], we wish to find the most cost-
effective way to reduce the ability of a network to transport
a commodity. Potential applications include disabling pol-
luting pipe systems, military supply lines, and illicit drug
networks. We wish to compute a fixed-budget attack strat-
egy which will maximally inhibit a network’s capability.

Further, a related problem to the one of vital edge deletion,
is one of vital node deletion[4], which can be stated more
formally [4] as follows: In an undirected, 2-node connected
graph G=(V,E) with positive real edge lengths, the distance
between any two nodes r and s is the length of a shortest
path between r and s in G. The removal of a node and its
incident edges from G may increase the distance from r to
s. A most vital node of a given shortest path from r to s is
a node (other than r and s) whose removal from G results
in the largest increase of the distance from r to s.

3. CONSIDERATIONS
Four cases will be considered, from simple, to more complex,
in the design of a solution for the stated problem. Counter
examples will be used in an attempt to justify the consid-
eration of more complex scenarios in the design. All cases
and examples will be fully explicated to the best of the au-
thor’s ability under the constraints imposed by the scope
and duration of the course.

In all descriptions, there exist unique nodes s and t, called
the source and sink respectively, where flow (measured as
the quantity fi) emanates from s and is attracted to t. The
restriction is imposed that not too much flow can move at
any given time along an edge ei; which is called the capacity
(ci) of ei.

s t

f1/c1

f2/c2

fn/cn

e1

e2

en

Figure 1: Case 1: Flow comes out of the source s
and moves to the sink t. As soon as the flow splits to
one of the incident edges, it never joins again until
t is reached.

s t

f1/c1

f2/c2

fn/cn

e1

e2

en

Figure 2: Case 2: Flow emanates from s and moves
towards t, but may join or split with other flow zero
or more times after leaving s.

3.1 Case I: No Cycles, Disjoint Paths
Case I is the simplest case in which all paths from s to t are
disjoint, as can be seen in Fig-1. For the i-th path between s
and t (call it Pi) the flow fi will be equal to the mine∈P {ce},
where ce represents the capacity of the edge e on the path Pi.
Intuitively, this is due to the fact that no more flow than the
smallest capacity edge along the path can be pushed from s
to t.

This leads to the possibility that not all edges need to be con-
sidered when attempting to determine the vital edge ev for
deletion. Perhaps, only those incident to s are the only po-
tential vital edges because if such an incident edge is deleted,
then necessarily the flow must decrease by the capacity of
that edge. This leads to the following algorithm:

Find-A-Vital-Edge(G = (V, E) and s, t ∈ V)

1 Find the outgoing edge e of s with largest flow
2 Return e as the vital edge ev

3.2 Case II: No Cycles, Overlapping Paths
Case II relaxes the restriction that paths must be disjoint;
Fig-2 provides a visual representation of this case.

When Fig-3 is used as input for Find-A-Vital-Edge, it can
be clearly seen to be incorrect. A modified version of the al-
gorithm could be constructed in order to take this new exam-
ple into account. The new version, Find-A-Vital-Edge

(2),
is as follows:

Find-A-Vital-Edge
(2)(G = (V, E) and s, t ∈ V)

1 Find the outbound edge es of s with largest flow
2 Find the inbound edge et of t with largest flow
3 Return the larger flow of es and et as the vital edge ev

However, Find-A-Vital-Edge
(2) performs incorrectly when

s t

1/1

1/1

1/1

1/1

2/2

e1

Figure 3: Counter Example: Find-A-Vital-Edge

cannot find the vital edge e1 because it is not in-
cident to s and participates in two paths simultane-
ously, breaking the assumption of Case I.

s t

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

2/2
e1

Figure 4: Counter Example: Find-A-Vital-Edge
(2)

cannot find the vital edge e1 because it is neither
incident to s nor t. In this case e1 has the highest
capacity of all edges, but it need not. For example,
change the capacity of one of the incident edges to
s to 3 and the flow of G will be the same, but e1 will
now not have maximum capacity over G.

Fig-4 or Fig-5 is given as input. The observation is that if
there exists a path from s to t that goes through one edge,
then certainly that one edge would be a candidate for dele-
tion. In the case of Fig-5, two such vital edges exist (e1

and e2) that would both reduce the maximum flow by two
and that are both not incident to either s or t. The intu-
ition is that the disjoint parts of the paths are being ignored
with only the paths as a whole being considered, thereby,
in some sense, reducing this example to one that could fit
into the Case I analysis. Put another way, we need to some-
how collapse Case II down to Case I via equivalence classes,
and we can do this when they share an edge. This leads to
Find-A-Vital-Edge

(3):

Find-A-Vital-Edge
(3)(G = (V, E) and s, t ∈ V)

1 Find all paths from s to t
2 Put all paths into the same equivalence class if they

share edge ei

3 Return the equivalence class with highest flow as
the vital edge ev (break ties arbitrarily)

When Find-A-Vital-Edge
(3) is given Fig-6 as input, it

would fail, because e1 would be reported as the vital edge
but e1 or e2 are certainly vital edges. What is different be-
tween e1 and e2 that makes deletion of e1 have no effect
on the maximum flow of the graph G? The capacity of e1

is 3, which is the same as the in-degree of the node at the
start of the edge e1 (i.e. a difference of 0). The capacity of
e2 is 4, which is the same as the in-degree of the node at
the start of the edge e2 (i.e. again, a difference of 0). But
we notice that if e1 is deleted, then all of the flow can be
re-routed to e2, and have no net change on the maximum

s t

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

2/2

e1

2/2

e2

Figure 5: Counter Example: Find-A-Vital-Edge
(2)

cannot find one of the vital edges e1 or e2 because
both are not incident to either s or t.

s t

1/1

1/1

1/1

1/1

1/1

1/1

0/1

0/1

0/1

3/3

e1

1/4

e2

1/1
e3

Figure 6: Counter Example: deletion of e1 would
not disrupt the maximum flow, whereas deletion of
e2 or e3 would certainly decrease the flow by 1. In
this case, the vital edge is not the highest flow edge,
but is the highest capacity edge.

flow of G. How do we know that the edges e1 and e2 have
such a re-routing property? Certainly our initial, somewhat
näıve algorithm Find-A-Vital-Edge would be guaranteed
to reduce the flow in these cases, but the reduction in flow
would not necessarily be the maximum achievable.

And what about if the paths shared a vertex, rather than an
edge? Fig-7 shows that the vital edges in G are dependant
on the flow and the capacity, because changing the capacity
values for the edges, changes whether the edges are vital or
not.

One conjectured way to simplify G, when multiple edges
enter and leave a vertex, would be to split off a new vertex
v, and attach a subset of the incoming and outgoing edges to
v as is illustrated in Fig-8. This new artificially constructed
vertex, may (hypothesis) help simplify the analysis of the
resultant graph G′. More specifically when referring to Fig-
8, if fi = f ′

j then we can construct a new node v to form
a new, simpler graph G′ when attempting to find a vital
edge ev. In general, we may need l in-edges with flow fp

i ,
for p ∈ [1..l] to match (i.e. equal sum flow totals) with k

u

x

y

v

1/1

1/1

1/1

1/1

2/c1

2/c2

2/c3

2/c4

1/1

1/1

1/1

1/1

Figure 7: Observation: The edges ux, uy, xv and yv
may or may not be vital edges, because they depend
on the capacity values c1, c2, c3 and c4. For example,
if c1 = c2 = c3 = c4 = x and x = 2 then the edges will
be vital, but if x = 4 then no one edge is vital.

u u

vf1/c1

f2/c2

f3/c3

fn/cn

f ′

1/c′1

f ′

2/c′2

f ′

3/c′3

f ′

m/c′m

{fi/ci}

f1/c1

f2/c2

fn′/cn′

{f ′

j/c′j}

f ′

1/c′1

f ′

2/c′2

f ′

m′/c′m′

Figure 8: Idea: Construct a new node in order to
simplify the paths.

out-edges with flow f ′q

j , for q ∈ [1..k].

A specific example of simplifying G is given in Fig-9. The
idea is to collapse paths p1 = {e1, e3} and p2 = {e2, e4}
between nodes u and v because they all have the same flow
and so none of the edges will be a unique vital edge. That
is, collapse paths if and only if the max flow along each path
between two vertices is equal. This could also be stated as
collapsing triangles composed of k vertices.

3.3 Case III: Cycles, Disjoint Paths

u

x

y

v

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

2/2 ev

1/1
e1

1/1
e2

1/1
e3

1/1
e4

Figure 9: Simplification Conjecture: Collapse u v
into one node when two distinct paths exist between
u and v that all have the same flow.

s t

1/1

e1

1/1

e2

Figure 10: Case 3: The addition of cycles onto dis-
joint paths.

u v
ei ej

Figure 11: Idea: Entering (ei) and exiting (ej) edges
are vital edge candidates.

The addition of cycles on a path from s to t means that
there is still exactly one edge entering the cycle and one
edge leaving the cycle, as in, for example, Fig-10, where e1

enters and e2 exits the cycle. This is a generalization from
that of entering (exiting) a set of nodes through one edge,
as is depicted in Fig-11, which was the key observation for
Case I.

3.4 Case IV: Cycles, Overlapping Paths
The most complex flow graph has vertex and edge sharing
on overlapping paths containing cycles. The cumulative de-
scriptions given, may help derive an algorithm for Case IV,
as depicted, simplistically, in Fig-12.

4. CONCLUSIONS
The simplification of the problem of determining the most
vital edge in an input graph G through the construction of
equivalence classes (partitions) on the set of all possible in-
put graphs has been proposed. The specific graph G may be
transformed through simplification transformations in order
to determine its equivalence class. Such simplifications may
aid the more efficient determination (rather than the näıve
brute force approach) of a vital (not necessarily unique) edge

s t

1/1
e1

1/1 e2

1/1
e3

1/1
e4

Figure 12: Case 4: e1, e2, e3, and e4 are the only edges
that would definitely cause flow to decrease. This
example could also be viewed as having two edges
incident to a cycle, both entering and leaving.

of G. Detailed analysis and practical implementation, in-
cluding specifying algorithms for cycle and path overlap de-
tection, are left for future work. A generalization of the
presented problem (suggested briefly by Prof. Maheshwari)
would be to find k vital edges that maximally reduce the
maximum flow of the graph G.

5. ACKNOWLEDGMENTS
The author would like to thank i) Prof. Maheshwari for
teaching the course, ii) NRC-IIT-IR group for supporting
attendance at this course, in particular, the following people
from NRC: Julio J. Valdés, Bob Orchard and Fazel Famili,
and iii) CISTI for supplying research materials.

6. REFERENCES
[1] Y. P. Aneja, R. Chandrasekaran, and K. P. K. Nair.

Maximizing residual flow under an arc destruction.
Networks, 38(4):194–198, November 2001.

[2] G. B. Dantzig. Maximization of a linear function of
variables subject to linear inequalities: Activity
analysis of production and allocation. 1951. Cowles
Commission.

[3] L. Ford and D. Fulkerson. Maximal flow through a
network. Canadian Journal of Mathematics,
8(3):399–404, 1956.

[4] E. Nardelli, G. Proietti, and P. Widmayer. Finding the
most vital node of a shortest path. Theoretical
Computer Science, 296(1):167–177, 2003.

[5] C. A. Phillips. The network inhibition problem. In
STOC ’93: Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, number
ISBN:0-89791-591-7, pages 776–785, New York, NY,
USA, 1993. ACM Press. Sponsored by SIGACT: ACM
Special Interest Group on Algorithms and
Computation Theory.

