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PREFACE

One of the projects of the Fire Section of the Division
of Building Research concerns the development of a method
for calculating the fire endurance of bullding elements.

The main theoretical problem in this work is that the
classical solutions of the Fourler equation, based on con-
stancy of properties, cannot be used because of the wide
variations in temperature involved in this experimental
work.

Three papers by Masao Sawada that deal with problems
of the heat conduction encountered when the heat capacity
and thermal conductivity of the s0lid are varlable, have
been translated and issued as NRC Technical Translations
Nos. 895, 896 and 897. From the work of Sawada it is seen
that the more perfectly the mechanism of heat conduction
within the s0lid is approached, the more limited the ap-
Plicability of the method becomes, as far as the shape of
the so0lid or the boundary conditions are concerned.
Although the introduction of various numerical methods and
computer techniques largely reduce the practical value of
such analytical methods, there are certain fields where
they are indispensable,

Ottawa, R.F. Legget,
September 1960 Director
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ON THE GENERAL SOLUTION OF THE BASIC EQUATION
OF THERMAL EQUATION

Abstract

‘The present article deals first with a solution of
the general equation under the assumptions that heat
capaclty 1s a constant and that thermal conductivity is
a function of temperature. It also deals with Van Dusen's
solution in which thermal diffusivity and thermal con-
ductivity are assumed to be a constant and a function of
temperature, respectively. Further, 1t discusses the
solution of the fundamental equation of bodies with vary-
ing conductivities in infinite or semi-infinite bodies
and derives a solution for homogeneous bodies.

l. The Fundamental Equation of Thermal Conduction with Thermal

o) tiv as a Function of Temperature

(A). The fundamental equation of heat flow in which specific
heat, Y, density, P, or heat capacity, PY, are assumed to be con-
stant and in which thermal conductivity, A, is assumed to be a
function of temperature, takes the same form as the fundamental
equation in which A is assumed to be a ternary function. (More
precisely, A is a function of temperature and of three coordinates:
here it 18 a function of temperature only.)

Py dv/0t = 8 (ABv/ox)/ox + 8 (Wu/3y)/dy
+ 0 (ABy/8z2)/Bz +wrerrrersrrieraerrannan -

= 1/r-8 (Ar0uv/8r)/0r»
+ 1/»2.8 (A8v/86) /00 + 8 (A8v/0z2)/0z

= 1/#%9 (A»*90/0r)/0r
+ 1/7%sin 68 (4 sin 09v/80)/99
+ 1/77sin%0 8 (A80/89) /3¢ ++svveeee (12)
A= f(), v=f(x,¥, 2, 8), d= (84/8v) dv,
dv = (80/3x) dx + (3v/3y)dy + (8/3z) dz
+ (Bv/a0) dt.
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(B)e The fundamental equation, in which thermal diffusivity
A/PY = 302 is assumed to be a constant as in Van Dusen's thesis*
and M= f(v), is still identical in form with (1), (1,) and (1,).

v
Let/ Adv = u,

ay”? au/w: W £ (13)

= 1/78 (»0u/0r)/0r + 1/+%0%u/5%

F B)B2T e (1)
= 1/7% (»*u/3r)/0s

+ 1/7%sin 09 (sin 692/34) /06

+ 1/77sin200%/297 oo eeeneeaenn (1)

i.e., the same form as the fundamental equation in which p, ¥ and A

are assumed to be constants,.
(C). When the flow is constant, transform (A) by equating

8ufst=0, [av=uw or (B) by equating du/dt = 0. Then

(I W 4 T T (1e)
= 1/#3 (#9u/3r) /0y + 1/r20%u/36*
o B2 e (1)
= 1/¢% (#*9u/3s)/3r
+ 1/¥%sin 09 (sin 09x/90)/38
+ l/maﬁu/a?{ ..................... )

(D). Let the rate of radiation and the normal to the radiation

surface be € and N, respectively. Then

auforn = [iav)jan =8 [ iav)/o0
- 30/aN = 100/ON

l.e., the equation expresses the amount of heat flow through the
surface. In the case of natural cooling:

/AN * ev = By /ON x ev = 0------(1,)

* J. Soc. Mech. Engrs., Japan, 33 (161), Abstract 124, p. 329.
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Further, in an adilabatlic case:

/8N = Wu/aN =0 " BvfoN =0, 2 # 0,

2. A Solution of the Fundamental Equation with Thermal

Conductivity as a Function of Temperature

[1°] One dAimensional fundamental equation with pY = constant

and A = f(v), where m' = 0 (flat slab), m' = 1 (circular cylinder),

i

and m' = 2 (sphere)
Py /ot = r ™ 9 (Ar™ du/0r) /3y «ver(2)

(1) When the flow is constant

If A= ly+ 2,0° fldv = o+ 40" + 1,
and if A=y flﬂ"u =le"/n,
Example:

If l=)q+l|7/, 7/=2/u@r=ra, Z/-_—‘?}i@r:"‘

v=— 2o/l + ((do/2y + 2)* + (220/2
+ va + ) (25 — 2) ()

where S =(x — 2)/(xa — 2,)-+-- w = 0;
= log(;-/r‘)//log(r,/r‘) ...... m =1;
=/ =1/r)/Q/ri= 1/r)

Generally, since it 1s only necessary that A = f(v) be
integrable, and an arbitrary function in seeking a temperature under
a given boundary condition, there will be problems in which a
a graphlc solutlion 1s preferable to an algebralc solution.

Example:*
1=15@v=1,500°C, 1= 04 @ v = 100°C,

* M. ten Bosch: Wirmelibertragung, pp. 53-54. The formulation of
the equation on p. 53 is not correct,
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With a flat slab 0.5 m in thickness,

1=03214 + 1'1/1,400 - v

.. »=— 410 + 10 (206’1 + 33,880 22/0°5 )"
A —
],500_7-1.,”‘— T
[ 1.
r
1,000 :' ”‘
> r 7
soof~ -
B &
100_1 1+ Vil AN
Fig. 1
(11) When dufdt + 0, m' =0
Let §=*x1i1x— z'"ao’ﬂ’t, ao’ = lo/f’r' ilﬂ, = az,
then: "
dE = + iadx, di = — ifa’fdl,
From (2) .
2500/ 0E = 8 (A0 BE)/E +errereeet (2¢)
30038 = dov + a0, [ Vi +adv=E+a
where =0,
2=2 + 42"
If

logv + LW/ At /n=E+a

vealy"/ﬁ—o = Aexp. (xiax — *a.3p% -+ (23)

= exp. (— @) gy (B%),

If one lets av/0f = p, p = O or dp/dv + d log A/dv * p = A4/
loeo, P ()\ov + Co)/)\o
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If A is very small, expand the left side of (2,) and take
several terms. If A = 0, the solution reduces to the case of one
dimensional rectangular coordinate in which A = A, (constant).
Here exp(h,vn/ﬁ(;) is a correction term.

Next, if A = Koenv’
vexp.[nu'f--z%!l-y’-{-_iyii.;. ...... ]
= A exp. (x jax — l*ﬂogﬁ’l) ...... (2

(111) When av/ot $ O; m' =0, L and 2. If A=Arg XA v

the substitutions v = + No/Ay = PY/2(m' + 3N, ¢ r2/t -7, T =0

or a constant. In (2) make both sides equal, and hence one obtains
a type of particular solution.

[2° ] Equation in rectangular coordinates
Prov/ot = 8, (A0,w) + 8, (Byv) + 8, (102)

(1) Iet (Ol f'-’i"‘“nx+i"’a-.u'+i"w3z—i"a02pzt,
a = 2lpy, — it = (Man) + (Rag) + (hras)?
then,
Ad0/0F = 8 (JBu/3%)/0k,
Hence, if A= 2+ A
0" _ EXP, Erverererreerearinnietear e 21

_ . aPH cog cos
= Sin (alx) Sin (az}')

. cos {3 ST /
sin (as2), k=4 (2'7)
— a0’ oo cosh
=¢ sin (@) sinh (ay)
. ;101:}111 CON LI ")

= exp.[— VR (g + 2y + $32))
- €S (— VKBox + a’9°F%)

sin

. g?ns (— vEBty + ae:'8%)
“oin (= VBB + a's™),
T PN @)
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When A = )‘Oenr’ in each case, the right side becomes identical
with that of (2,); however, the left side takes the form of (2',).

If A= )\0 * A,v, the following solution is merely a particular

solution of (2,).
v=TF d/ly — /103, ((x — 2+ (y =)

. +(—2YWt—1
(11) When the flow is constant.

If we let u == fvla'y,
then V=0

f Ady = €05 (y/ ¥ | fix) ,giosﬁ(a])

sin

;:3;1‘1 (Bz)+ereeneminereiionnns (25)
Let U= sz + B},ﬂ :*' CZZ.
It A+ B8+ C=o,

then
Jidr=a(x—2y+80G-yy
+C(z—2)
=Ax+ A'x+ By + By
+ G+ Cz+ D,

In two dimensions,
fldv=gol(x+t'}')+¢-z(-t‘—i}')

[3° ] wnen YA = ad, A =/ (v),
S idv= ot €03 (ay) - S05 (ay )
’ ::): (ap); m' =0, B =deenen (20)
= exp. (= VA (hux + 90y + 42))
*oin (— V7bbx + ace’f0)
- S0 (= VTiwahly + ac'ss )
“oin (— VE#iz + aeFD),

wm! = 0, A== 3 ceeereninnae (210)
= exp.[— a® (a)® + a37) /j{; (/‘;l'.')

. cos cosh ., ’— =
sin ("a)sinh (a32), m'=1, k=14



-
= exp. (iay’a, %t — / Zayz)
[ﬁ}' v Talr):l :i(): (uw)
COS( 1/%“;2 + ﬂo.“lz/);

sin

= exp. (— aa%) [ ""/"“’ (al )]

-[(1 - #’)""IQ o (/1)]["95 (m)];

sin
w = 2, =4 rrveeninl, (.213)

= exp. (fa,a’) [,,-—1/2 Lus1p2 (VTar)]

I-n-1p2
-[(1 oy P"(,.)(#)J[ cos (m)]
M =0, B3 eeeerrerins (21)

where m and n are integers, and p = cos Q.
(11) wnhen dv/ot = 0, m' = 0.
let § = ia — *a,"3%, a,} = i/Py, */8* = a?

4= *iadry, di=—itatfidl,
From (2)
202/05 = 8 (190/08) /8% +-+rvvreen (25
100/08 =dv + @, [ ilv+ adz=¢E+

where =0,
Ir A=l + 4o

logv + 4/h-"/a=¢t+q

vt nag
ve Imao = A exp. (x jax — #235%)

=exp. (— vHax)
- COS (— V% B + agp),

sin

* If one lets dv/9E = p, p = O or dp/dv+dlog A/dv » p = Ao s

loeo. p = (hov + co)/ht
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If A, 1s very small, expand the left side of (2,) and take
several terms. If A, = 0, it reduces to the one dimensional
solution in rectangular coordinates when the conductivity is a

constant.

If A= koenv,

n . noa g
z/exp.[nv+ 221 »* + 331 2+ :l

= A exp. (£ dax — *a;’f) -+ (2's)

(111) Vhen d8v/ot # 0, m' = 0, 1 and 2.
Substituting in (2), we obtain
Pr/3 0T/t = 1/y™ 8 T#™ 8T/3r)/8r~(24)

When T = - py/2(m* + 3)A, « r3/t 1s substituted in (2,), both
sides of the equation become equal. Hence, the following solutlon

is a type of particular solution, but not the required solution.
v="TF do/d = Pr/6} (x — ')/l —=Teooneom’ =0

= 3 Ao/ — Pr/82, - PUE =T cevnreiennns nl =1
=:':10/)‘l—[7r/1—0.):.r3/[_1 ............ m' =2

[2°] Equation in rectangular coordinates.
Py dv/ot = 8, (A9,2) + 8, (29,2) + 9. (19:)
(1) If we let

§=dMar + gy + *agz — sradpY,
ag = Aoy, — ' = (F1a1)? + (Frap)? + (Fas)?

we obtain from (2,) the expression (22).

Hence, if A = ko + x1vn

z,elxv"/ﬂlo = . Ererrererererarineraniitieiiiinn (26)
— e—ao’ﬂ't cos

COS (o
sin (o) sin( V)

Ccos —
sin (“33)’ k=4

_ —ag*f* ¢osh cosh
=€ sinh (@) sinh (aw)
cosh —
'sinh (“33’)’ k=4

" =exp.(— VHB(hx + by + $2))
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,cos
sin

(— Vihtx + a6

,cos
sin

(— V%Bpy + a'e:*F°0)

. :?; (— V%B¢sz + ao’ss*5'D),
k=3
When A = Koenv, Ain each case, the right side is identical, but

the left .side takes the form of (2';)e If A = Ay + A v,
v="T=Xy/A, and A = A T; hence

20Y/\ 8T/0t = VZT2, (2,)

Now, if we let T = -a 2 (x® + y2 + 2?)/t, 8,2 = pY/mA,,
m=2(m'+ 3), m' =0, 1 and 2, and substitute them in (2,), both
sides become equal in one , two and three dimensional cases.
However, the following is merely a partlcular solution.

v=—pr/104 ((x — Y+ (y — ')

+ = YW= 7= dofhy e (20)
(11) When the flow is constant.
If we let v
u =.f Ady, Vi = 0.
hence [ ado =" (Ve FFx) o (@)
h -----------------
. :ionsh (Bz) creemmeeeens (25)

Next, let u = Ax> + By? + Cz3, IfA+B+C=0
[rdv=A(x=2Y+BC —y )Y+ C(z—7)
=Ax+ Ax+ B+ By+ G+ Cz2+ D
In two dimensions
[ldr=g:(x+ i)+ o1 (x = D)

[3°] When sa=ag= constant and a=/(v)

_ —ad’f eos cos
f My =¢e sin (x) sin (azy)

. cos

N ! — =
gin (%s2); m' =0, k=4

=exp.(— VRA(six + ¢y + $32)]
“oin (— VENBZ + oo )

*Cin (— VEaly + ac’s6%)
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(s::): (— v%e#:62 + ar’:60);

m =0 k=3

— eialfa;’t — A yas2 B?n (Wiayr )]

oo (18) % (= V Kz + ag’atr);

m=1 k=3
-, )
[a =B [ o )
=2 k=4
‘o -—
= R pon vTen)
. [(1 — Yy S:E:; (I‘)] [;’:’: (m)]:
m=2 k=3

where m and n are integers u = cos O.

3s Alternate Solution to Heat Flow Equation in Bodies
with Varying Conductivitles

In solving the fundamental heat flow equatlon 1in homogeneous
bodles in one dimension, trignometric function 1s used 1n the case
of a flat slab, cvlindrical function in the case of a circular
cylinder, and double trignometric or cylindrical function for a
sphere. In problems of constant heat flow algebralc functlons are
used. Further, in bodies wlth varying conductivitles, 1f the vary-
ing conductivities can be expressed in a simple power serles, a
solution can be obtained in the form of a double cylindrical
function. Even in thils case, if the flow 1s constant, a solution
can be obtained in many problems in the form of an algebrailc, a
logarithmic, or a trignometric function. In the following sections,
the writer wishes to cite examples of solutions 1n finlte bodies
by the use of a double cylindrical function, and to derive
solutions for infinite or semi-infinite bodles.

! st
[1°e] A= APt v = v, N/BYg = 8%,
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let m' =0, 1land 2, u' ~un=p -2, m' + u -1 =m,
and Z represent a cylinderical function. Then:

Py 80/8¢ = »~™ 3 (As™ Bu/0r)/0r---++ 3)

Solution:

(1)

v = exp.(— a2’ (Zn (2a v #yP))/ V™

Next, let
r
r=- ).of (M) Vdy = p="m;
ar=—rr-mdr, p+m %1, ad=almitis

L=.a%; (py[Ag) "W +h = q-2p1, g=—2-1n,

Then, from (3):

(11)
following
A = 4m:

79 00/3 = By/8y® crrrrreieinnn. (3s)

n o= exp. (= M) (Zn (20 Fr) vy

.................. (33)
= exp. (— a8 Zn (28v #+P))/V 7™,
Br=mma? i (30

m/p = n,

When v = ¢(t)exp[¥(r)/t] 1s substituted in (3,), the
solution is obtained, in which r = 0 or a constant and

Z/=EA (!-_ T)]—(1+q\/(2+4)
exp. (—»™*9(2 + gF(U— 1)) o s)
‘= Cae— 1')]_(1+”)
+exp. (— r"/;;’T!——r)] .................. (3¢)

=04U- ™% exp.C— r3/4(¢—1)J;
g=0, 7= —1p ereresercrnirnninn (37)

+ .
When m' = 0, let A = Ao(c + x)=H*, and pr =

(111)

In (1) if p + m' = 1, let

r=tof () dr=t0gr, dr=rdr, {=agt
then Lt g=p+m +1=p
/Rl = By Oyt e (3s)
v= (A" exp.(— e”‘/qTfj
= (Aay’t)~' exp. (— r"/ao’—p"t) ......... (39)

=Lﬂfxew(—57@) g=0,



-]3-

Solution: See (35). Or

(AartD)™ % exp. (—Clog » ¥ /dar™d +(310)
(1v) In the case of a homogeneous body:

MoPoTo = Bg s A = 4T

From equations (3), (3,), and (3;), and from solutions
and (3.) the following solution is easily obtalned:

Flat slab = (Aao’t)—% exp. (— (x — 2')/4a’t]
.................. (3:)
Circular cylinder = (A_t)”1 exp. (— &T/49)

- - *
= CAaD) " exp. (— r*/aast) -(3p2)
Sphere = ap  Mexp.c— YD

3

_ o *
= (Aa2t) 'exp.(— »*/da*)---(313)

]
[2°] when A= A e™, pv = pyve! X, m' = 0.

0

Let a® = do/Pore, W —m=2p, mfp=n, &=y,
z=y"/m, a=alm9, g=—2—1/n,
t=a" -

Then, from (3)

ao"e‘"’av/at =0d (emay/ax)/ax

or 2oy " 130/0¢ = 8 (_y‘*"'ay/a_y)/a_y

or #0/ot=¥2/38" the same form as (3,).

v = exp. (— *ap’p*a’t)

(Zn (2a /TPy e eenennininnns (ie)

= (A'a’)~ M exp. (— /a,’p*?),

»

Carslaw: Conduction of Heat, pp. 29, 30, 150 and 184.

(3,)
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[3°] when A= f(v), NMpY = 2 = constant; from (3,

2, ), (3)
and (3,,):

1 2
f Ady = (4xao’t)_% exp.(— (x — 2/)*/4a.’t),

D= | R R e PP P (310)

e -1 LY.
= (4xa,"t) exp.C— »*4a’), M =1

_SI
= (4rap’!)

Texp. C— #*/4ag), m' =2

Remarks: Solutions have been worked out theoretically by many
physicists on problems of heat conduction and of instantaneous heat
source in homogeneous bodies of infinite (- v =+ + v3) and semi-
infinite (0 + + v) length®*. 1In recent years, the works of Tamura**
and Yamagata*** may be cited in connection with the former field.

Conclusions

(1) wWhile a ternary solution in rectangular, cylindrical and
in polar coordinates is possible as in the case of a homogeneous
body, when thermal conductivity is a constant and thermal diffusivity
is a function of temperature, a solution of the fundamental
equation, in which thermal capacity is constant and thermal conduct-
ivity 1s a function of temperature, 1s limited generally to that
in rectangular coordinates except when the flow is constant.

(2) As a solution of the fundamental equation of bodies with
varying conductivities, we can obtain an ordinary solution (as
finite bodies). In addition we can also obtain solutions for homo-
geneous infinite and semi-infinite bodies.

December 25, 1931

* Carslaw: Conduction of Heat, pp. 29, 30, 150 and 184.
** J. Soc. Mech. Engrs. 32 (142): 69 and 33 (164): 762,

*** Paper presented at a meeting of the Society of Applied
Mechanics.



