# NRC Publications Archive <br> Archives des publications du CNRC 

## Development of a Digitally Programmable Signal Conditioner. Zhao, Feng

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

## Publisher's version / Version de l'éditeur: <br> https://doi.org/10.4224/18227303 <br> Student Report; no. SR-2009-02, 2009-01-01

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=012d6f8a-182e-4f09-aa91-1d2257c9af0a https://publications-cnrc.canada.ca/fra/voir/objet/?id=012d6f8a-182e-4f09-aa91-1d2257c9af0a

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.
Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

# Development of a Digitally Programmable Signal Conditioner 

Zhao, F.

Zhao, F., 2009. Development of a Digitally Programmable Signal Conditioner. St. John's, NL : NRC Institute for Ocean Technology. Student Report, SR-2009-02.

## DOCUMENTATION PAGE



| National Research Council | Conseil national de recherches |
| :--- | :--- |
| Canada | Canada |
| Institute for Ocean | Institut des technologies |
| Technology | océaniques |

# DEVELOPMENT OF DIGITALLY PROGRAMMABLE SIGNAL CONDITIONER PROTOTYPE 

Feng Zhao

April 2009

## ACKNOWLEDGEMENTS

The author would like to thank David Millan for his sponsorship, supervision, and mentoring throughout the term. Acknowledgements also go to Pete Hackett.
Thanks also to everyone at IOT.

## SUMMARY

This report covers the continuation of work started by Kevin Murrant on a digitally programmable signal conditioner. The signal conditioner is being developed as a replacement for older general-purpose models currently in use at IOT. An initial prototype identifying the basic parts of the system, and a single channel prototype were developed last term. In this report, that single channel prototype is assembled and tested. The report also shows analog input control, offset adjustment and digital filter design.

## TABLE OF CONTENTS

1.0 INTRODUCTION ..... 1
1.1 Existing Signal Conditioning ..... 1
1.2 Digitally Programmable Signal Conditioner ..... 2
2.0 PROTOTYPE ..... 3
3.0 TESTING ..... 5
3.1 Hardware Test ..... 5
3.2 Software Test ..... 5
4.0 DESIGN ..... 7
4.1 Power Supply ..... 7
4.2 Software ..... 8
4.3 Relay Control ..... 8
4.4 Offset Adjustment ..... 9
4.5 Digital Filter ..... 10
5.0 Results ..... 12
6.0 Continuation ..... 15
LIST OF FIGURES
Figure 1. Schematic ..... 3
Figure 2. Image of Completed Board ..... 4
Figure 3. Menu Layout. ..... 5
Figure 4. QF1D512-DK Digital Filter Development kit ..... 6
Figure 5. Power Supply Circuit Diagram ..... 7
Figure 6. Power Supply Layout ..... 7
Figure 7. Autozero Circuit. ..... 9
Figure 8. Software Controllable Offset. ..... 10
Figure 9. Functional Block Diagram of Digital Filter Section. ..... 11
Figure 10. Flow Chart of Operation Menu for Single Channel Prototype ..... 12
Figure 11. FFT and Time-domain output data ..... 13
Figure 12. FFT and Time-domain output data ..... 13
Figure 13. FFT and Time-domain output data ..... 14
LIST OF TABLES
Table 1. Relay Truth Table. ..... 8
Table 2. Relay Setting for Signal Switching ..... 9
APPENDICESAPPENDIX A: Cubloc Interface Software Documentation

## DEVELOPMENT OF DIGITALLY PROGRAMMABLE SIGNAL CONDITIONER

### 1.0 INTRODUCTION

Within the Institute for Ocean Technology (IOT) exists several facilities for conducting scale model tests under various ocean environments and conditions. These facilities include an ice tank, cold room, offshore engineering basin, cavitation tunnel, and towing tank. Generally, a scale model is constructed of the design under study, the model is placed in the environment of interest, and data is recorded.

Test data is acquired via various transducers that convert the physical property of interest into an electric signal. Common transducers include pressure sensors, temperature sensors, strain gauges, wind gauges, wave height probes, etc. In practice, many transducers may be used in a single experiment in order to gather all required data.

The signal produced by a transducer is usually quite small and is subject to interference from a variety of environmental sources. These sources include radio frequency (RF) interference, electromagnetic interference, and electrostatic discharge. This interference is obviously unwanted and steps are taken to reduce the effects of these sources on the signal of interest.

Signal conditioning is used to amplify the signal, filter out interference, and produce an output that is suitable for measurement or digitization. This conditioning is performed in stages and varies based on the type of signal being used. Precision and accuracy are integral in the model testing performed at IOT. Therefore, the signal conditioning must be very precise and allow as little interference as possible.

### 1.1 Existing Signal Conditioning

Several signal conditioning systems are currently in use at IOT. Many of these are specific implementations that are required depending on the project. However, a general purpose signal conditioner exists that is used in most data acquisition situations.

The existing general purpose signal conditioner is based around a single chip that provides most of the necessary components. This chip is the Analog Devices 1B31 strain gauge signal conditioner. Configuration of the chip is accomplished via external jumpers, resistor values, and capacitor values. A single chip is required for each channel of signal conditioning. 16 channels exist in the current system.

Configuration requires external components, and a technician must manually set up each channel for each test. This method is susceptible to configuration error, either by placing a component with an incorrect value or by varying tolerances within components. Therefore, repetition of a specific test configuration is not always possible.

However, despite drawbacks, the current signal conditioner fulfills the requirements for most general purpose signal conditioning needs at IOT. The current problem is that the units are breaking down with use, and the 1B31 chip they are based on has been discontinued. This makes repair of the units expensive and difficult.

### 1.2 Digitally Programmable Signal Conditioner

The existing signal conditioner will be replaced by a new design and will have digital programmability as a requirement; however, why we still need a new digitally programmable signal conditioner since several signal-conditioning systems are currently used at IOT?

The new design is intended to be more modular, allowing replacement of components as new technology becomes available, or if an existing component is discontinued. This will prevent the repair problem of the previous system and allow the new unit to serve for a longer period of time.

The new system should at least serve the same functionality of the existing unit. The addition of digital programmability will eliminate the need for manual configuration, reducing set up time and improving repeatability. The new design will also address certain mechanical limitations of the previous system. The transducer cable connectors were previously soldered directly to the circuit board, placing strain on the solder connections and the board when connecting/disconnecting cables. The new connectors should have some strain relief to prevent this from happening.

### 2.0 PROTOTYPE

A full schematic was created for the single-channel prototype including all of the features mentioned in the previous section. Once this schematic was completed, the parts required for assembly were ordered for proceeding to a PCB layout. The parts were required to assist in the selection of footprints for each component. Below is the full schematic.


Figure 1. Schematic
The prototype board is designed for a single channel test. Once the board was completely assembled, the software could be downloaded to the CUBLOC processor by the RS-232 connector, so that the codes for the processor could be updated and the function of the board could be tested and troubleshot. An image of the completed board is shown below.


Figure 2. Image of completed board
A LCD and keypad are supplied by COMFILE as part of their system, and the processor has built in interfaces to communicate with these devices. The LCD screen shows all the operation menus for the prototype. By using the input keypad, users can select different functions of the prototype. This report will show how the operation menus work after the development and testing was finished.

### 3.0 TESTING

Once the software was downloaded to the CB220, the first troubleshooting processes could take place. Some of the problems encountered are documented below.

### 3.1 Hardware Test

The power supply for the prototype has not been designed. So far the prototype uses four wires connected between to two voltage generators and the power junctions on the prototype board. Initially, the board was drawing too much current and the power supply was being current limited. This was eventually found to be due to the +/-5V regulators being used on the board. These were removed and replaced with higher current devices which were attached by soldering wires to the board and gluing the regulators to the back of the board. 5 out of 8 relays were working correctly except relays 1 , 2 , and 3 . Functions for those three relays would be tested. At the beginning of the test, the interface was working for the majority of the features, except parts of the relay control, offset adjustment, and digital filtering.

### 3.2 Software Test

The code for the interface and control was written in BASIC programmed with the COMFILE CUBLOC studio. The software uses a user interface menu organized in the following way.


Figure 3. Menu layout

Some compiling issues were noticed for the codes for CB220 at the beginning. Some of the functions haven't been coded yet, such as analog inputs control, calibration. So that would cause the LCD to not display all the option menus, therefore some functions could not be tested at that time.

A communication error occurred when downloading the code to the CB220. That could be the problem of the RS-232 connector or the chip itself had been damaged during previous use. By removing the CB220 onto another study board, the code was successfully downloaded to the chip, which means the cable for the RS-232 connector might have been broken.

Since it is not possible to determine whether the subroutine for downloading coefficients to the filter is working correctly, further tests for the prototype would simply by pass the filter section using the pin headers on the board. The QUICKFILTER QF1D512-DK development kit was used for testing and filter design instead of the digital filter that was the by-pass on the prototype board.


Figure 4. QF1D512-DK digital filter development kit

### 4.0 DESIGN

When all the problems occurred when testing the prototype were fixed, the design process to complete all functions for the prototype could take place.

### 4.1 Power Supply

The power supply must be designed to provide a variety of bi-polar voltages to the variety of components to use, such as the microcontroller, which requires +/12 V and $+/-5 \mathrm{~V}$ DC. The power supply must introduce as little noise as possible to the system, and effort must be exerted in keeping separate the signal from the power supply interface. The power supply was designed to support $+/-15 \mathrm{~V}$ and $+/-5 \mathrm{~V}$ DC inputs for the prototype, and the circuit diagram and layout are shown below.


Figure 5 Power supply circuit diagram


Figure 6 Power supply layout

### 4.2 Software

Subroutines have been written to interface to the various IC's. These subroutines provide an easy to use way of sending serial data in the correct format to each component. For example, to switch the relay on port 1 to on, the command would be:

RelaySet 1,1
Subroutines such as this have been written for each programmable device. See Appendix A for a code listing.

### 4.3 Relay Control

There are 8 relays used in the prototype board for signal switching and gain setting. The test before shows that the relay control for input signal switching has not finished yet. This section will show how to control the relays by using the microprocessor.

The previous tests have shown 3 relays related to the input signal control, and the number of these relays could be found by schematic, which are number 1,2 , and 3 . The table below shows the list of three relays with their different states.

| Relay | Relay state |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| LS1 | ON | ON | ON | ON | OFF | OFF | OFF | OFF |  |
| LS2 | ON | ON | OFF | OFF | ON | ON | OFF | OFF |  |
| LS3 | ON | OFF | ON | OFF | ON | OFF | ON | OFF |  |

Table 1. Relay truth table.
With this table above, a test could be made for testing 8 different relay statuses. When relay 2 stays ON, no matter what the other two relays switch ON or OFF, both of the input signals will be sent into the AD624. However, when relay 2 switches OFF, and relay 3 switches ON, one of the input signals will be grounded. That will separate differential and single ended statuses for the instrumentation amplifier AD624. A +15VDC input passing through a voltage divider is controlled by relay 1 . If relay 1 stays ON and relays 2 and 3 stays OFF, the 10 m VDC steady output will be sent into the analog devices. The sine wave generator is an analog devices AD9833 signal generator IC capable of frequency sweep, which would be used to verify the frequency response of the system. Since all of the relays 1,2 , and 3 switch OFF, this analog device would communicate with the AD624 and start to verify the frequency response. The table below summarizes all the results of the analog input control tests.

| LS2: ON | Differential inputs |
| :---: | :---: |
| $\begin{aligned} & \text { LS2: OFF } \\ & \text { LS3: ON } \end{aligned}$ | Single Ended |
| $\begin{aligned} & \text { LS1: ON } \\ & \text { LS2 \& LS3: OFF } \end{aligned}$ | DC input |
| LS1, LS2, \& LS3: OFF | Frequency response |

Table 2. Relay setting for signal switching.

### 4.4 Offset Adjustment

The initial design of the programmable signal used a hardware solution for offset adjustment. The Autozero Circuit for the hardware solution shows below.


Figure 7. Autozero Circuit
After integrating all components into the final prototype, the hardware solution for offset adjustment was no longer used. To provide very accurate data in high gain configurations, a software solution would support programmable controllability for offset adjustment. A CMOS DAC operating in the bipolar mode and connected to the reference terminal provides software controllable offset adjustments.


Figure 8. Software Controllable Offset
In the prototype schematic of the single channel signal conditioner, an analog device AD711AQ low noise op-amp is used for the D/A to operate in bipolar mode. Then, Analog Devices AD44X series are used for D/A reference. The AD5542 defines the output, which is using 16-bit serial interface.

Subroutine for offset adjustment has been written. See Appendix A for offset adjustment code.

### 4.5 Digital Filter

The frequencies that normally IOT is dealing with are less than 1 KHz ; therefore, the filter should be designed as low pass filter with varying cut off frequencies. A Clock Oscillator provides a clock signal with 100 KHz to the Bipolar Programmable Input ADC (analog-to-digital converter), Analog Device Bipolar Voltage Output AD5542, and the digital filter. The analog filters, such as the AntiAliasing filter has a fixed signal bandwidth of 25 KHz . The block diagram of this section is shown below.


Figure 9. Functional block diagram of digital filter section
The digital filter was designed by using the QFPRO filter design software. As mentioned in previous sections, the QUICKFILTER QF1D512-DK development kit in use for designing and testing the digital filter section instead of the digital filter built in the prototype board, which has been by-passed. All the filters designed for testing the prototype was low-pass windowed SINC BlackmanHarris 7 -term, with orders of 8 . With such a low order of 8 , the designed low-pass filter would not perform a very sharp drop, however, that could avoid phase shifting problems during the test. Some filters were designed for testing the results with cut of frequencies of $100 \mathrm{~Hz}, 50 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 1 Hz with orders of 8 , and the results of them will be shown in the results section. Later, a low-pass filter with 512 orders, and a cut-off frequency of 110 Hz was designed as well.

### 5.0 RESULTS

After downloading the complete software into the processor, the interface and board control could be navigated by pressing a key of the input keypad, which corresponding to a number next to each option menu. Currently, all features shown below are working fine, except the Bode section.


Figure 10. Flow Chart of Operation Menu for Single Channel Prototype

The best method to show the digital filter performance is FFT (Fast Fourier Transform) and Time-Domain data. The digital filter results are available through the QFPRO filter design software. However, the data can be transferred in raw format to a file for saving, and the data also can be processed by another software. The filter coefficients of the low pass filter designed with 512 orders have been successfully downloaded into the microcontroller CB220. Below shows three filters testing results, as previously discussed, however, the result for 1 Hz filter is not included. To test the 1 Hz filter, an input signal was sent in with frequency of 0.5 Hz , amplitude of 10 mV , and a gain of 100 . The test was failed to separate the spectrum in FFT and capture the output signal in Time-Domain. All the data was tested in single channel.


Figure 11. FFT and Time-domain output for 100 Hz filter. Input is 80 Hz sine wave, amplitude of 10 mV , with gain of 1 .


Figure 12. FFT and Time-domain output for 50 Hz filter. Input is 40 Hz sine wave, amplitude of 10 mV , with gain of 100


Figure 13. FFT and Time-domain output for 10 Hz filter. Input is 5 Hz sine wave, amplitude of 10 mV , with gain of 100

### 6.0 CONTINUATION

Power supply should be added to the prototype, and that will make further application of the prototype more convenient. The digital filter section is not yet completed. Filter coefficients have been successfully downloaded to the processor, however, how to communicate between the microcontroller and the filter is still an unsolved problem. With the filter coefficients the processor should have a method to control the digital filter to perform as a varying cut-off frequencies low pass filter.

The function Bode is prepared for bode plot, and this part of work has not started yet. One general idea for this function is that the CUBLOC Studio might have a way to check the output; and another D/A could be added to sample the output; or find out where the digital output could be read before it reached the final D/A.

Multi-channel signal conditioning system could be started since all problem left so far would be done.

## References

[1] Analog Devices, Inc., "AD624 Precision Instrumentation Amplifier," Analog Devices, Inc., 1999. [Online]. Available: http://www.analog.com/UploadedFiles/Data_Sheets/AD624.pdf.
[2] Analog Devices, Inc., "AD603 Low Noise, 90 MHz Variable Gain Amplifier," Analog Devices, Inc., 2007. [Online]. Available: http://www.analog.com/UploadedFiles/Data_Sheets/AD603.pdf.
[3] Quickfilter Technologies, "QF1D512 Simple and versatile FIR engine," Quickfilter Technologies, June, 2008. [Online]. Available:
http://www.quickfiltertech.com

## Appendix A

## CUBLOC Interface Software Documentation

Set Display 2,0,0,128
Const Byte KEY_TABLE $=\left(0,0,1,2,3,10,0,0,0,0,4,{ }^{\prime}\right.$ 'Keypad conversion table $5,6,15,0,0,0,0,7,8,9$, $14,0,0,0,0,11,0,12,13)$

Const Integer FILTER_TABLE $=(0,2500)$ 'Table of available filter cutoffs
Const Long FIR_DATA $=(00000000,00000000,00000000,00000000,00000000,00000000$, $00000000,00000001,00000001,00000001,00000002,00000002,00000003,00000004,00000004$, $00000005,00000005,00000005,00000004,00000003,00000001, \quad$ FFFFFFFF, FFFFFFFB,
FFFFFFF7, FFFFFFF1, FFFFFFEA, FFFFFFE1, FFFFFFD8, FFFFFFCD, FFFFFFC2, FFFFFFB7, FFFFFFA3, 00000169 , 00000448 , 0 FFFFFDB6, FFFFFBA1, 0000041 B , 00 FFFFEB93, FFFFE7C5, 00001D85, 0000747 C , 00005271 , 0005271, 00003959, 000
FFFF3C9E, FFFF0914, FFFED66E, FFFE29E9, FFFF68FA 00036C37, FFFFDC99, 00055445 , 0004 E 0 CB , FFF3252D, FFF4356B, 000A53FA 00216B75, 0 0013C127,_


```
00007FE0,
0000377C,
FFFFF012,
FFFFE701,
FFFFF947,
```



```
FFFFFFF9, FFFFFFD2, FFFFFFB6, FFFFFFA3, FFFFFF98, FFFFFF93, FFFFFF94,
FFFFFF99, FFFFFFA2, FFFFFFAC, FFFFFFB7, FFFFFFC2, FFFFFFCD, FFFFFFD8,
FFFFFFE1, FFFFFFEA, FFFFFFF1, FFFFFFF7, FFFFFFFB, FFFFFFFF, 00000001, 00000003,
00000004, 00000005, 00000005, 00000005, 00000004, 00000004, 00000003,00000002, 00000002,
00000001,00000001, 00000001, 00000000, 00000000, 00000000, 000000000, 000000000, 000000000,
00000000)
Set Pad 0,1,2 'Mode 0, 1 Byte packet, 2 bytes of buffer
On Pad Gosub KEYIN_RTN
Dim KC As Integer
Dim KeyPress As Byte
Dim RelayState As Byte 'This byte stores the value (state) of each port on the relay
controller
Dim VarAmpValue As Long 'This is the variable gain DAC value
Dim OffsetValue As Long 'This is the offset DAC value
Dim FilterIndex As Integer 'This is the index of the filter data being accessed
OffsetValue = 0
VarAmpValue = 0
RelayState = &b11111111
KeyPress = 0
FilterIndex = 1
High 13 'Relay controller
High 12 'Function generator
High 11 'Gain control DAC
High 10 'Offset control DAC
High 8 'CuNET LCD
High 9 '
High 0 'SPI Keypad
High 1 '
High 2 '
High 3 '
High 5 'Digital filter
High 4 'A/D Converter
InitialSetup 'Call initial setup routine
MAIN_FN:
    Cls
    Csroff
    Locate 0,0
    Print "MAIN MENU"
    Locate 0,2
    Print "1- Gain"
    Locate 10,2
    Print "2- Filter"
    Locate 0,3
    Print "3- Offset"
    Locate 10,3
    Print "4- Bode"
    RelaySet 1,1 'Relay defaults should be on
    RelaySet 2,1
    RelaySet 3,1
    RelaySet 4,1
    RelaySet 5,1
    RelaySet 6,1
    RelaySet 7,1
    RelaySet 8,1
    Do
```

```
                If (KeyPress = 1) Then
                    KeyPress = 0
                    If (KC = 1) Then Gain_Menu
                            If (KC = 2) Then Filter_Menu
                    If (KC = 3) Then Offset_Menu
                    If (KC = 4) Then Bode
                    Goto MAIN_FN
                    Endif
    Loop
KEYIN_RTN:
    KC = Getpad(1) 'Read 1 Byte from Pad receive buffer (Scan code value)
    KC = 31-KC
    KC = KEY_TABLE(KC)
    KeyPress = 1
Return
Sub Gain_Menu ()
GAIN_RTN:
    Cls
    Csroff
    Locate 0,0
    Print "SELECT GAIN DEVICE"
    Locate 0,2
    Print "1- IN-AMP"
    Locate 10,2
    Print "2- VARGAIN"
    Locate 0,3
    Print "3- ATT."
    Locate 10,3
    Print "4- VERIFY"
    Do
                If (KeyPress = 1) Then
                KeyPress = 0
                If (KC = 1) Then Inamp_GainSelect
                        If (KC = 2) Then Varamp_GainSelect
                If (KC = 3) Then Atten_Toggle
                If (KC = 4) Then Verify_GGain
                If (KC = 11) Then Exit Sub
                Goto GAIN_RTN
            Endif
    Loop
End Sub
Sub Inamp_GainSelect ()
INAMP_RTN:
    Cls
    Csroff
    Locate 0,0
    Print "SELECT INAMP GAIN"
    Locate 0,1
    Print "Current: "
    Locate 10,1
    If Not(RelayState And &B00001000) Then
    Print "100"
    Elseif Not(RelayState And &B00010000) Then
    Print "200"
    Elseif Not(RelayState And &B00100000) Then
    Print "500"
    Else
    Print "1"
    Endif
    Locate 0,2
    Print "1- 1"
    Locate 10,2
    Print "2- 100"
    Locate 0,3
```

```
    Print "3- 200"
    Locate 10,3
    Print "4- 500"
    Do
        If (KeyPress = 1) Then
        KeyPress = 0
        If (KC = 1) Then
                                RelaySet 4, 1
                                RelaySet 5, 1
                                    RelaySet 6, 1
        Endif
        If (KC = 2) Then
                        RelaySet 4, 0
                RelaySet 5, 1
                RelaySet 6, 1
        Endif
        If (KC = 3) Then
                        RelaySet 4, 1
                                RelaySet 5, 0
                RelaySet 6, 1
Endif
If (KC = 4) Then
                                    RelaySet 4, 1
                                    RelaySet 5, 1
                                    RelaySet 6, 0
Endif
If (KC = 11) Then
                                    KC = 0
                                    Exit Sub
                                    Endif
                                    Goto INAMP_RTN
            Endif
    Loop
End Sub
Sub Varamp_GainSelect ()
VARAMP_RTN:
    Cls
    Csroff
    Locate 0,0
    Print "SELECT VARAMP GAIN"
    Locate 0,2
    Print "Current: "
    Do
            Delay }10
            Locate 10,2
            Print Dec VarAmpValue , " dB"
            If (KeyPress = 1) Then
                            KeyPress = 0
                            If ((KC = 15) And (VarAmpValue < 20)) Then
                                    VarAmpValue = VarAmpValue + 1
    Endif
    If ((KC = 14) And (VarAmpValue > -18)) Then
                VarAmpValue = VarAmpValue - 1
                            Endif
                            If ((KC = 11) Or ( }KC=10)) The
                            KC = 0
                        Exit Sub
                                Endif
                                VarAmpSet
                                Goto VARAMP_RTN
            Endif
    Loop
End Sub
Sub Atten_Toggle ()
ATTEN_RTN:
    Cls
    Csroff
```

```
    Locate 0,0
    Print "TOGGLE ATTEN."
    Locate 0,1
    Print "Value: "
    Locate 10,1
    If Not(RelayState And &B10000000) Then
    Print "On"
    Else
    Print "Off"
    Endif
    Locate 0,3
    Print "1- On"
    Locate 10,3
    Print "2- Off"
    Do
                If (KeyPress = 1) Then
                    KeyPress = 0
                        If (KC = 1) Then
                                    RelaySet 8, 0
    Endif
    If (KC = 2) Then
                                    RelaySet 8, 1
    Endif
        If (KC = 11) Then
                                    KC = 0
                                    Exit Sub
    Endif
    Goto ATTEN_RTN
                Endif
    Loop
```

End Sub
Sub Verify_Gain ()
VERIFY_RTN:
Cls
Csroff
Locate 0,0
Print "1-Differential"
Locate 0,1
Print "2-Single Ended"
Locate 0,2
Print "3-DC Input"
Locate 0,3
Print "4-Freq Response"
Do
If (KeyPress = 1) Then
KeyPress=0
If ( $K C=1$ ) Then
RelaySet 2,1
Endif
If (KC=2) Then
RelaySet 2, 0
RelaySet 3, 1
Endif
If ( $K C=3$ ) Then
RelaySet 1, 1
RelaySet 2, 0
RelaySet 3, 0
Endif
If ( $K C=4$ ) Then
RelaySet 1, 0
RelaySet 2, 0
RelaySet 3, 0
Endif
If $(K C=11)$ Then

```
                    KC=0
                    Exit Sub
                        Endif
                    Goto VERIFY_RTN
                    Endif
    Loop
End Sub
Sub Filter_Menu ()
FILTER_RTN:
        Cls
        Csroff
        Locate 0,0
        Print "FILTER MENU"
        Locate 0,2
        Print "-6 dB @ "
        Do
            Delay 100
            Locate 10,2
            Print Dec FILTER_TABLE(FilterIndex) , " Hz"
            If (KeyPress = 1) Then
                            KeyPress = 0
                            If ((KC = 15) And (FilterIndex < 1)) Then
                            FilterIndex = FilterIndex + 1
    Endif
    If ((KC = 14) And (FilterIndex > 1)) Then
                    FilterIndex = FilterIndex - 1
    Endif
    If ((KC = 11) Or ( }\textrm{KC}=10)) The
                    KC = 0
                            Exit Sub
                        Endif
                            FilterSet
                            Goto FILTER_RTN
                Endif
    Loop
End Sub
Sub Offset_Menu ()
OFFSET_RTN:
    Cls
    Csroff
    Locate 0,0
    Print "ADJUST OFFSET"
    Locate 0,2
    Print "Value: "
    Do
            Delay 100
            Locate 10,2
            Print Dec OffsetValue , "/10 mV"
            If (KeyPress = 1) Then
                            KeyPress = 0
                            If ((KC = 15) And (OffsetValue < 1000)) Then
                            OffsetValue = OffsetValue + 5
            Endif
                            If ((KC = 14) And (OffsetValue > -1000)) Then
                    OffsetValue = OffsetValue - 5
                        Endif
                            If ((KC = 11) Or (KC = 10)) Then
                    KC = 0
                            Exit Sub
                        Endif
                        OffsetSet
                        Goto OFFSET_RTN
            Endif
    Loop
```

End Sub
Sub Bode ()
End Sub
Sub RelaySet (RelayPort As Integer, Value As Byte)
Low 13
If (Value = 1) Then RelayState = RelayState Or (2^(RelayPort-1))
If (Value = 0) Then RelayState = RelayState And ((2^(RelayPort-1)) Xor \&B11111111)
Shiftout 15, 14, 1, RelayState, 8
High 13
End Sub

Sub VarAmpSet ()
Dim GainOutVal As Integer
GainOutVal = 26214 + 345* (VarAmpValue+18)
Low 11
Shiftout 15, 14, 1, GainOutVal, 16
High 11
End Sub
Sub OffsetSet ()
Dim OffsetOutVal As Integer
OffsetOutVal $=31457+1.311 *($ OffsetValue+100)
Low 10
Shiftout 15, 14, 1, OffsetOutVal, 16
High 10
Delay 100
End Sub

Sub FilterSet ()
FilterConfig $0 \times 82,0 \times 03,0 x 00$ 'Put in Configuration Mode
FilterConfig $0 \times 82,0 \times 05,0 \times 03$ 'Enable Averaging of down-sampled data
FilterConfig 0x82,0x08,0x40 'Enable 64x down-sampling rate
Dim Counter As Integer
Counter $=512$
Do While (Counter > 0)
FilterConfig 0x86, Counter,FIR_DATA(Counter)
Counter $=$ Counter - 1
Loop
End Sub
Sub FilterConfig (OpCode As Byte, Address As Byte, ConfigData As Byte)
Dim DontCare As Byte
Low 5
Shiftout 15, 14, 1, OpCode, 8
Shiftout 15, 14, 1, Address, 14
Shiftout 15, 14, 1, DontCare, 2
Shiftout 15, 14, 1, ConfigData, 8
High 5
End Sub
Sub ADConfig () 'Send config data to A/D
Dim ConfigByte As Byte
ConfigByte $=\& B 11000010$ 'Control byte.
Start=1, Bipolar=1, Ten=0, PowerDown=0, X, X, StraightBinary=1, X
Low 4
Shiftout 15, 14, 0, ConfigByte, 8
High 4
Delay 100
End Sub
Sub InitialSetup () 'For initial set up of system ADConfig
FilterSet
End Sub

