NRC Publications Archive Archives des publications du CNRC

Fire performance of FRP-strengthened concrete systems Bénichou, N.

This publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur.

Publisher's version / Version de l'éditeur:

Short Course on Response of Materials and Structures to Fires [Proceedings], pp. 1-49, 2009-05-20

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=ff824db8-35e3-4365-bcba-fda15481e61e https://publications-cnrc.canada.ca/fra/voir/objet/?id=ff824db8-35e3-4365-bcba-fda15481e61e

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Short Course
Response of Materials and Structures to Fires
May 20 - 22, 2009
Carleton University, Ottawa, Ontario

Fire Performance of FRP-Strengthened Concrete Systems

Noureddine Benichou National Research Council of Canada

Industrial Research Chair in Fire Safety Engineering
Department of Civil and Environmental Engineering

Outline

- Structural Fire Safety
- · Fire and FRP Materials
- Fire and FRP Structures
- Fire and FRP-Strengthened Concrete
- Recommendations for Design
- Application Cases
- Future Directions

Structural Fire Safety:

- The goal is to limit the probability of death, injury, and property loss in fire
- Modern codes place the emphasis on life-safety objectives
- Property protection is left to building owners
 - Ensure sufficient design consideration given to fire

This is rapidly becoming more important...

Structures in Fire: "Fire Resistance"

- Fire resistance is provided in selected members of a structure
 - Ensures that fire and smoke do not spread
 - Prevents structural collapse during fire
- Fire Resistance (FR)
 - Defined as the time to "failure" of a member when subjected to a "standard fire"
 - Evaluation of fire resistance
 - Fire testing
 - · Prescriptive methods
 - · Performance-based methods

What is "Failure"?

- Main failure criteria which define the fire resistance of structural members:
 - Loss of load-bearing capacity
 - Must resist expected loads in fire
 - 2. Loss of fire separation characteristics
 - 3. ASTM unacceptable temperature rise
 - Reinforcing/structural steel (temperature < 593°C)
 - 593°C is the critical temperature for steel (has approximately ½ its room temperature strength)
 - Unexposed surfaces (average rise < 140°C)

Fibre Reinforced Polymers (FRPs)

Fibres + Polymer Matrix = FRP

- Overall properties depend on:
 - Mechanical properties of matrix
 - Mechanical properties of fibres
 - Fibre volume fraction
 - Orientation of fibres
 - Fibre-matrix interaction
 - Method of manufacturing
 - Size of component
 - Environmental factors

Applications of FRPs in Construction

- Internal reinforcement of concrete
 - Bridge decks
 - Marine structures
 - Non-magnetic applications (medical, communication, etc.)

FRP characteristics at high temperature

- Organic nature of polymers → susceptible to combustion
- T_g: Glass transition temperature is commonly taken as the performance limit for the FRP - Typically 70 – 100°C

FRPs & Fire: Major Concerns

- Fire is recognized as a critical research need for FRP:
 - a primary factor preventing widespread application of FRPs in buildings
- Potential concerns during fire:
 - 1. Loss of strength and stiffness
 - 2. Loss of interaction (bond) w/ concrete
 - 3. Smoke generation and flame spread

Recent tests

- Differential scanning calorimetry (DSC)
 - Polymer resin and FRP composite
 - Determine T_a
- Tension tests on FRP specimens
 - Tension tests on FRP coupons
 - Tension tests on single-lap FRP-to-FRP bond
 - Pull-apart bond tests on FRP-to-concrete bond
- Compression tests on FRP-wrapped concrete cylindrical specimens

Results - strength

• Strength degradation

$$\frac{f}{f_o} = \left(\frac{1-a}{2}\right) \tanh\left(-b\left(T-c\right) + \left(\frac{1+a}{2}\right)\right)$$

Failure modes

86°C 200°C

FRP Structures under Temperatures

- All FRP structures
 - Thick elements can char and protect FRP
 - Cellular floors protected/cooled with circulating water
 - Fire resistance: 90 to 120 min with cooling & 60 min without cooling
- FRP prestressed concrete
 - FRP always under high stress
 - Could be a critical situation
 - 26 minutes fire resistance for thin panels 45 mm tick

FRP Structures under **Temperatures**

- FRP reinforced concrete
 - More concrete cover required than steel?
 - Often over-designed for strength

FRP-RC Slabs under Fire: Designed for strength

NRC-Queen's-ISIS Study

- Various member types:
 - FRP-strengthened RC slabs
 - FRP-wrapped RC columns
 - FRP-strengthened RC T-beams
- Experimental and numerical:
 - Intermediate and full-scale fire tests
 - Numerical thermal & structural responses
- Goals:
 - Understand fire behaviour
 - Provide fire-safe design guidance

Fire Test Results: Columns

Column w/ 57 mm Ins.
Immediately Before Testing

Column w/ 57 mm Ins. Immediately After Failure

Large-Scale T-Beams

- 4 tests in full-scale floor test furnace
 - CFRP for flexure
 - U-wrap GFRP anchorage
 - 4 supplemental insulation schemes
- Exposed to ASTM E119 standard fire
- Subjected to sustained service uniformly distributed load

Beam-Slab Assemblies - Before and after fire test

Beam before test

Beam after test and Failure

Key Findings

- FRP-strengthened and adequately-protected concrete systems can achieve 4-hour fire ratings
- Insulation system remained robust during fire and effectively protect FRP systems
- Numerical models have been developed to predict FR of FRP-strengthened concrete systems

Design Implications

Short Course – Response of Materials and Structures to Fires, May 20 – 22, 2009

Fire Design for FRP

- Base design on behaviour of member or structure not material only
- Ensure flame spread and smoke generation requirements are met
- Fire testing
 - too expensive
- Performance-based design
 - best approach

Performance-based fire design

- integrated testing and numerical modelling
- consider potential combustion of FRP
- incorporate external insulation
- numerical models validated against tests
- ensure external insulation stays in place throughout fire duration (testing)
- define critical temperature for FRP

Fire Safety Design Requirements

- FRP strengthened members require supplemental insulation to resist increased service loads during fire
- FRP strength could be used in a fire situation if and only if the temperature of the FRP is kept below a "critical" temperature
- The nominal strength at high temperature should at all times be greater than the strengthened service load on members
- NB: no requirement that temperatures remain below T_q!

*Important Note

Fireproofing for FRP strengthening systems is not necessarily

 Engineering checks are required to determine the fire rating of the existing structure with or without FRP and fire insulation

Application Cases: Manufacturing Plant - Denver

- Roof slab damaged by fire
- Repaired with 1 layer of CFRP sheets
- Insulation for 1 hour fire rating
 - Wire mesh
 - Spray applied

Application Cases: Bank Building - Vancouver

- Strengthening needed for increased loads
 - High-density filing system
- Repaired with 1 layer of CFRP sheets
- Insulation for 2 hour fire rating
 - Wire mesh
 - Spray applied

Future directions

- Material characteristics (particularly "critical" temperatures for FRPs)
- Improve FRP properties at high temperatures (e.g., increas of T_g)
- Numerical and experimental studies for nearsurface mounted (NSM) reinforcement systems
- Design guidelines for all types of systems
- Detailing
- · Sensing in fire

Acknowledgements

- The technical staff of Queen's University and the National Research Council
- Queen's University

ISIS Canada

National Research Council of Canada

- · Fyfe Co. LLC
- BASF

References

- Bisby, L.A. et al. "Fire endurance of fiber-reinforced polymer confined concrete columns", *ACI Structural Journal*, 102, 6, 2005, pp.883-891.
- Williams, B. et al. "Fire endurance of fiber-reinforced polymer strengthened concrete T-beams", *ACI Structural Journal*, 105, 1, 2008, pp. 60-67.
- Bénichou, N. et al. "Results of Fire Resistance Experiments on FRP-Strengthened Reinforced Concrete Slabs and Beam-Slab Assemblies -Report No. 2", Research Report, Institute for Research in Construction, National Research Council Canada, (234), pp. 65, 2007
- Bénichou, N. et al. "Results of Fire Resistance Experiments on FRP-Strengthened Reinforced Concrete Columns - Report No. 2", Research Report, Institute for Research in Construction, National Research Council Canada, (235), pp. 39, 2007

Questions?

