
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings of the 11th ACM SIGKDD International Conference onKnowledge
Discovery and Data Mining (KDD 2005) [Proceedings], 2005

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=fc7a6465-83c8-44db-b4ad-6edaf6fa383d

https://publications-cnrc.canada.ca/fra/voir/objet/?id=fc7a6465-83c8-44db-b4ad-6edaf6fa383d

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Learning to Predict Train Wheel Failures
Yang, Chunsheng; Létourneau, Sylvain

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Learning to Predict Train Wheel Failures *

Yang, C., and Létourneau, S.
August 2005

* published in The Proceedings of the 11th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD 2005). Chicago, Illinois, USA.

August 21-22, 2005. NRC 48130.

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

Learning to Predict Train Wheel Failures

Chunsheng Yang
National Research Council of Canada

Ottawa, Ontario, K1A 0R6 Canada
Tel: 1-613- 991-5499

chunsheng.yang@nrc-cnrc.gc.ca

Sylvain Létourneau
National Research Council of Canada

Ottawa, Ontario, K1A 0R6 Canada
Tel: 1-613- 990-1178

sylvain.letourneau@nrc-cnrc.gc.ca

ABSTRACT

This paper describes a successful but challenging application of

data mining in the railway industry. The objective is to optimize

maintenance and operation of trains through prognostics of wheel

failures. In addition to reducing maintenance costs, the proposed

technology will help improve railway safety and augment

throughput. Building on established techniques from data mining

and machine learning, we present a methodology to learn models

to predict train wheel failures from readily available operational

and maintenance data. This methodology addresses various data

mining tasks such as automatic labeling, feature extraction, model

building, model fusion, and evaluation. After a detailed

description of the methodology, we report results from large-scale

experiments. These results clearly show the great potential of this

innovative application of data mining in the railway industry.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications– data

mining; I.2.6 [Artificial Intelligence]: Learning- concept

Learning; H.4.2 [Information Systems Applications]: Types of

Systems -- Decision support; I.5.2 [Pattern Recognition]: Design

Methodology-Classifier design and evaluation

General Terms

Algorithms, Performance, Reliability, Experimentation

Keywords,
Data Mining, Machine Learning, Methodology, Model Building,

Model Evaluation, Model Fusion, Wheel Failure Prediction

1. INTRODUCTION
Wheel failures, which account for half of all train derailments,

cost billions of dollars to the global rail industry [24]. Wheel

failures also accelerate rail deterioration, sometimes causing the

rail to break prematurely. All major railways suffer thousands of

rail breaks every year. These breaks are dangerous and very

expensive to repair. Moreover, the risk for wheel failures and rail

breaks is increasing as global competitiveness pushes railways to

use larger and heavier cars. To minimize rail breaks and help

avoid catastrophic events such as derailments, railways are now

closely monitoring the performance of wheels and trying to

remove them before they start badly affecting the rails. The data

comes from “Wheel Impact Load Detectors” (WILD) [16]

installed at strategic locations on the rail network. These

detectors measure the vertical force or impact of each passing

wheel. A central system receives the data in real-time and advises

the staff when the impact of a given wheel is too high. The action

proposed by the system depends on the actual WILD

measurement. In particular, whenever a wheel’s impact reaches

140kips 1 or more, the train is immediately stopped and then

allowed to crawl slowly to the nearest siding, where the car with

the defective wheel is uncoupled from the train and is left until a

work crew comes to replace the wheel. This process allows the

railway to avoid operating with problematic wheels but it

introduces other problems: it delays the offending train and

potentially many other trains, it disrupts the overall schedule, and

it reduces the railway’s throughput capacity. Meanwhile the

cargo in the car remains undelivered with potentially negative

consequences to the customer.

To avoid these problems, railways look for a prognostic

approach to predict high impact wheel events sufficiently in

advance so that remedial actions can be taken before loading the

car and sending it for delivery. This paper proposes such an

approach, which we developed in collaboration with a major

Canadian railway. Our solution is a comprehensive KDD

methodology to generate models for predicting high impact wheel

events. The methodology offers innovative solutions to key KDD

tasks such as automatic labeling, data selection, model fusion, and

model evaluation. As we show through extensive experimental

results, the models produced can successfully predict most

140kips events while maintaining a relatively low rate of false

alerts. Accordingly, these results demonstrate the potential of the

proposed approach to help reduce the number of high impact

events during operation.

Some aspects of the methodology described have been first

proposed in our related work on predicting aircraft component

failures [17]. This paper introduces extensions in the areas of

data representation and model fusion, and it details results for a

novel application with potential for considerable economical

impact in the railroad industry. The techniques could also be

1 A kip is a unit of weight equal to 1,000 pounds. A 140kips

wheel impact load is a combined static and dynamic force of

140,000 pounds exerted by an individual wheel at the wheel/rail

interface when the freight car passes over the WILD site.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

KDD’05, August 21–24, 2005, Chicago, Illinois, USA.

Copyright 2005 ACM 1-59593-135-X/05/0008...$5.00.

applied in other areas since the proposed methodology relies on

commonly available data and requires a minimal amount of

domain specific information. For examples, the environmental,

medical, industrial, and transportation domains provide several

opportunities to exploit and extend the proposed methodology.

This paper has five additional sections. Section 2 further

describes the application and data used. Section 3 details the

proposed methodology for building models while Section 4

presents the experimental methodology and results. Section 5

discusses the results and some open issues. Section 6 concludes

this paper.

2. APPLICATION AND DATA

2.1 WILD Data
WILD systems are expensive and therefore only installed at

strategic locations on the rail network. For instance, there are

about twenty-four WILD sites in Canada; most of them are

located on the main rail lines crossing the country. Figure 1 shows

an example of the WILD system. When a train passes over a

WILD site, special strain-gauges measure the impact of each

wheel on the rail. An automatic tagging system reads the Id of the

car as it goes over the WILD site and determines the location of

the wheel being measured. A wheel’s location is specified by an

axle number (1, 2, …, number of axles on the car) and the side of

the wheel on the axle (right or left). The system also records

additional information such as train speed, train direction, the

nominal weight of the car, the name of the WILD site, and the

time of the measurement. The WILD system constructs one

message for each car and sends it in real-time to a central

monitoring system. Table 1 shows the contents of such a message

for a car with 12 axles. The monitoring system will alert the staff

if one or more wheel impact measurements exceed 140kips. The

monitoring system may implement additional rules to trigger

alerts but, by industry standards, a 140kips event always requires

immediate action.

 For this project, we use WILD data collected over a period of 17

months for a fleet of 804 large cars with 12 axles each. The

dataset contains 200,808 observations like the one showed in

Table 1.

Table 1. WILD data for a car with 12 axles.

Attribute Description
Date/time Date and time of measurement
SiteName The WILD site’s name
Dir Direction of the train (S, N, E, W)
Speed Average speed of train
CarID The ID of the car
NomLoad Nominal load of the car
L01 Impact for wheel on left side of axle 1
R01 Impact for wheel on right side of axle 1
L02 Impact for wheel on left side of axle 2
R02 Impact for wheel on right side of axle 2

… …
L12 Impact for wheel on left side of axle 12
R12 Impact for wheel on right side of axle 12

2.2 Maintenance Data
 Most railways keep in a database detailed descriptions of all

maintenance actions performed on their trains. Our partner has

such a database and they provided us with a subset that contains

all entries related to the fleet and period considered in this study.

This subset has more than 20700 entries with a small fraction

related to wheel failures. Table 2 lists the information provided in

case of wheel replacements. The CarId and WheelID (axle

number and axle side) identify the faulty wheel and allow us to

link the failure events to corresponding WILD data. The most

common types of failures as reported by the WhyMadeCode

attribute are: tread shelled, flange defects, and out-of-round

wheels. Tread shelled means that one or several chunks of metal

(usually the size of small grape) fell out of the running surface of

the wheel. The thickness and/or the height of the flange may

become out of regulated limits, which will force the replacement

of the wheel. Finally the out-of-round code indicates that the

circumference of the wheel is not perfectly round anymore (a very

small imperfection will suffice to order a wheel replacement).

Wheels on a given axle are always replaced in pairs; when one

fails, the other wheel on the same axle is also replaced regardless

of its state. As a result, several wheels are changed without

having any defect. This is noted in the database by a special

WhyMadeCode attribute value. In terms of failure distribution, we

observe that most wheel failures in Canada happen in winter.

This is due to the fact that the accumulations of snow on the track

tend to significantly accelerate the deterioration of wheels.

Table 2. Maintenance data.

Attribute Description
Date/time Date & time of wheel replacement
JobCode Repair work completed
CarID Car Id on the train
WheelID Wheel position on the car
WhyMadeCode Reason for repair
Description Job description
Cost Cost of repair

Figure 1. Illustration of a WILD system.

WILD

Site

 Before sending a train on a trip, most railways will perform a

visual inspection of the wheels. Experts evaluate that these

inspections catch about 75% of the wheel failures in a timely

fashion. Most of the remaining 25% will be discovered during

operation by WILD systems but some will go undetected with all

the potential consequences mentioned in introduction.

2.3 Constructing Relevant Dataset for Data

Mining
For successful data mining, we need to gather relevant data and

put it in a format that is appropriate for the target problem. In our

case, the most relevant data is the one that relates to the events

that we want to predict. Accordingly, we first describe how we

retrieve information on past occurrences of wheel failures. Then

we discuss a suitable re-organization of the WILD data and the

selection of relevant subsets based on past failure occurrences.

Identification of failure events

Although it is acceptable that the new approach identifies

failures already covered by the visual inspections (e.g., for

validation purposes), the main benefits are in the identification of

failures missed by current processes. Accordingly, we focus on

prediction of high impact events. There are two ways to declare a

high impact event. The first one, which we already discussed, is

when a wheel impact measurement exceeds 140 kips. The second

approach relies on a computed value (noted WildCal) that takes

into account the nominal weight of the car, the train speed, and

the impact measurement (WILDPEAK) as shown by the following

equation:

Speed

WILDPEAK
NomLoadWildCal

×+= 50

 The monitoring system used by our partner computes this value

as it receives the information from the WILD systems. A

WildCal value greater than 170Kips will trigger the same

procedure as described for the 140 kips event. Using these two

definitions, we searched the collected WILD dataset and found

216 occurrences of high impact events.

 We used the wheel maintenance records to validate these events

by checking the time difference between wheel failure event time

tw (when high impact event occurred) and its repair time tm (when

the defective wheel was replaced). We found 6 cases for which

the difference between these two times was greater than 3 days.

In some of 6 cases, we even observed additional WILD

measurements between the high impact event and the actual repair.

Being unable to really understand what happened with these cases,

we decided to disregard them and focus on the 210 validated cases.

Re-representation and selection of relevant data

To maximize benefits and performance of the approach, we

need to carefully select the target event to predict. In general,

predicting specific events is more difficult than predicting blurred

events but clear-cut predictions tend to be more valuable. For

instance, in a medical application one may try to predict a specific

illness or try to predict the future health of a patient. The former

is likely to be more challenging but it will also produce more

helpful information to the medical staff. The same reasoning

applies in our application. We may predict potential for failure

for each individual wheel or we may predict potential for a wheel

failure for each car, or even for the whole train. The best trade off

maximizes usefulness of information for the target organization

and the performance of the approach (false errors, rate of

detection, etc.) After discussion with target users, we decided to

select the axle level for prediction; the model will predict if a

given axle is likely to suffer a wheel failure or not. Individual

wheel level predictions are not required since both wheels on a

given axle are replaced at the same time, as discussed above.

More global predictions at the car or train level are not suitable

either as the staff would have to manually find which axle(s)

presents a problem.

Each observation in the initial WILD dataset (Table 1) provides

information for all wheels on a given car. Since we decided to

focus on the axle level, we derived a new data representation

which is shown in Table 3. The first six attributes are taken from

the original representation. The attribute AxleNum specifies the

axle for the given observation. These seven attributes allow us to

link the new representation to the initial one. The next five

attributes (MaxMeas, MaxMeasPos, MinMeas, DiffMeas,

AvgMeas) provide a generic way to record information on the

impact from the two wheels on the same axle. Axles are installed

in pairs to a platform (named a truck), which is fixed underneath

the car. Due to physical propagation of impacts, it is expected

that a wheel failure on a given axle will affect the behavior of the

wheels on the other axle on the same truck. Such information

may help predict failure so we try to capture the behavior of the

wheels on the other axle of the same truck through attributes

AvgMeasOAST, AvgMeasWithOASC, and DiffAvgMeasOAST.

Table 3. New WILD data representation for axle-based

prediction along with time series information.

Attribute Description
Date/time Date and time of measurement
SiteName The WILD site’s name
Dir Direction of the train (S, N, E, W)
Speed Average speed of train
CarID The ID of the car
NomLoad Nominal load of the car
AxleNum Axle number in the car
MaxMeas Maximal WILD impact measured among

the two wheels on the axle
MaxMeasPos Position that a wheel has higher impact

(Right, Left)
MinMeas Minimal WILD impact measured among

the two wheels on the axle
DiffMeas Difference between impacts from the two

wheels on the axle
AvgMeas Average of two wheels’ impact

measurements
AvgMeasOAST Average of impacts from other axle on

same truck
AvgMeasWithOASC Average of all four wheels on the same

truck
DiffAvgMeasOAST Difference between AvgMeasOAST and

AvgMeas
SequenceID Sequence ID for each wheel failure event
WithinSeqID Instance ID in a sequence
TimeToFailure The time to wheel failure

The new representation can be seen as time series data, with

one series for each axle. During the analysis, we use the

SequenceID attribute to distinguish the series. Once the wheels

on an axle are replaced, we generate a new SequenceID value as

to avoid mixing data from various axles (old and new one).

Figure 2 illustrates this process for an axle with two wheel failure

events at time tw1 and tw2, respectively. For this example, the

segmentation produces three sequences (s1, s2, and s3), each of

them will have a unique SequenceID value. The attribute

WithinSeqID identifies each observation within a given

sequence. Finally, we also compute an additional attribute named

TimeToFailure to record the time between the current

observation and the next wheel failure on the given axle (if any).

This attribute is useful for automatic labeling and model

evaluation (Section 3).

 One observation in the initial WILD data format represents

12 instances in the new representation (one for each axle).

Accordingly, the re-representation process converted the initial

200,808 instances into a new dataset with 2,409,696 instances.

This new dataset contains 9906 distinct sequences. For building

the predictive models, we consider as relevant the data collected

around the high impact events. We observed that the longest

time-series available in the new representation has 410

observations with an average length of 240 observations.

Therefore, we decided to limit the “relevance zone” to 150

observations or instances. Since we have validated 210 failures,

the resulting dataset has 31500 instances. In the following

sections, we use WS to refer to this dataset.

3. LEARNING METHDOLOGY
After obtaining WS, we can start building models to predict

when to fix or replace a wheel. These models must accurately

recognize the particular data patterns or trends that indicate

upcoming wheel failures. The methodology we propose to build

the predictive models from WS builds on established techniques

from data mining and machine learning [10,17, 18,21]. Table 4

summarizes the notations used while Table 5 presents the pseudo

code of the proposed methodology.

 The methodology consists of five main processes: labeling

(Label (ijx , tw)), feature extraction (()xF), model building

(BuildModel()), model evaluation (TestingAndRankingModels()), and

model fusion (Stacking()). The following sections describe these

processes.

3.1 Labeling
We cast the wheel failure prediction problem as a binary

classification task with two class values: going to fail (positive)

and not going to fail (negative). Many supervised learning

techniques can be used to address this task but they require that

each instance in WS is pre-assigned to one of the class values.

Since manual labeling of instances by domain experts is not

feasible, we proceed with the automated approach introduced in

[17]. The idea behind this technique is that the observable states

of a physical component should be abnormal before a failure

occurs. These abnormal states should be labeled as “positive”

(class value 1) and the normal states as “negative” (class value 0).

Precisely, we add a class attribute (ijc) to each instance (ijx) in

WS using the following equation:

wtif

wtif

ij

w

w

c

≤

>

=
1

0

 (1)

 where w is constant that we fix after considering two factors.
The first is the amount of time suitable between a failure
prediction and the actual failure. This period should be long
enough to allow the staff to perform the predictive maintenance
action but not too long to avoid removing components too early
(which may lead to life usage reduction). In the case of wheel
failure predictions, a period of one day to three-week is deemed
appropriate. The second factor is the balance between the number
of positive instances and the number of negative instances in the
learning dataset. Without a minimal proportion of positive
instances, it could be difficult for the algorithms to infer accurate
models.

Table 4. The notations used in the paper.

i, j, k Counters

WS WILD dataset used for developing models

is The i th sequence in WS;

ijx The j th instance in the sequence is

ijc Class value or label for instance ijx

ijm A base-level model built from Ai subset and the jth

algorithm

km
ijc , km

ijcf

Class value and its confidence identified by base-level

model mk for the instance ijx ; (km
ijc , km

ijcf)= mk (ijx)

c
im Meta-model for combining base-level models

a
r

 The attribute vector in WS. ...}...,{ 21 iaaaa ⊇
r

x
f

a
r

 The vector of the feature F x

Α Attribute space in WS, ...},,{ 21 x
f

x
f

aaaA
rrr

⊇

Ai The ith subset of the attribute space

tw Date/Time for instance ijx

W The window size for labeling data.

Wf
 The window size of feature generation

Score The score for models

sci Reward score for alerts (true positive)

tw

tw1 tw2 s1 s2 s3

Figure 2. An example of data segmentation.

Wheel Failure

Event 1

Wheel Failure

Event 2

3.2 Feature Extraction
As in all challenging data mining applications, the quality of

the representation is a key factor. While designing the WS

dataset, we tried to manually craft useful features but it is possible

that automated approaches could help further improve the data

representation. Accordingly, we rely on constructive induction to

create new powerful features that combine the initial ones [11,

19]. We also perform time-series processing to extract potentially

relevant time-series characteristics. For instance, to help

characterize short-term trends for each axle, we augment the

representation shown in Table 3 with a new feature named

MaxMeasAvg that stores the moving average of the five most

recent measurements of MaxMeas from the given axle (i.e., same

CarID and AxleNum as the current instance). In addition to

moving averages, we also apply linear regression and Fast Fourier

Transforms. We run these techniques in batch mode to generate

new features and then add them to the representation. Finally, we

apply feature selection on the augmented data representation to

automatically remove correlated or irrelevant features [9, 13].

Table 5. Learning methodology.

Input: WS; (split into training dataset (S) & testing dataset (T))

Output : models (ijm and c
im)

Process:

 For all ijx in WS {

 ijc = Label (ijx , tw) } /* labeling data */

 For selected attribute ai from a
r

{

x
f

a
r

= xF (ai, , w
f
) } /* extracting features */

 For each Ai in Α {
 For adopted algorithm j {

 mij = BuildModel(Ai, algorith j, S) /* building models*/
 } }

 For all mij {

 TestingAndRankingModels (mij , T) /* evaluating models */

 }

 Φ='s /* creating a new training dataset */

 For all ijx in S {

 For selected base-level models mk {

 (km
ijc , km

ijcf)= mk (ijx)

 },,{'' ij
m

ij
m
ij ccfcss kkU=

 } }

 For specified classifier algorithm i {

 c
im = Stacking(algorithm i, S’)

 } /* building meta-level models for model fusion*/

 For all c
im {

 TestingAndRankingModels (c
im , T)

 }

OutResult (c
im , ijm)

3.3 Model Building
To build models, many algorithms are available including

Instance-Based learning (IBk), TFIDF classifier [8], Naïve Bayes,

Support Vector Machine (SVM) [12], Decision Trees, and Neural

Networks. In our experiments, we tend to prefer simple

algorithms such as Decision Trees and Naïve Bayes over more

complex ones because they are quick and produce models that we

can easily explain to our partners. We systematically apply the

same algorithm several times with varying attribute subsets and

cost information to obtain a set of heterogeneous but

complementary base-level models. For instance, in the

experimentation reported in Section 4, we selected a number of

attribute subsets (noted iA for i=1, 2,…) from the full set of

attributes (note A) and then ran the Decision Trees and Naïve

Bayes classifiers using each subset. We then introduced cost-

information and re-ran the above algorithms with the various

attribute subsets. This process generates a number of models that

will be combined in the model fusion stage (Section 3.5).

3.4 Model Evaluation
In practical applications such as ours, results must be properly

evaluated. Such evaluations must fairly estimate the model's

performance on new data and account for important domain-

specific requirements. There are several approaches for computing

the expected performance, including hold-out validation, cross-

validation, and bootstrapping [7, 14]. Unfortunately, none of

these approaches is adequate for our application. These

approaches rely on random sampling to select instances from the

population. The problem with random sampling is that it

implicitly assumes that the instances are independent. Whenever

this assumption generally holds, repeated analysis methods such

as cross-validation and bootstrapping would probably lead to

reasonably good results. However, with our application, the

assumption of instance independence is simply not viable.

Because of variations in system construction, operation, and

maintenance, any two instances from a given system are not as

independent as any two instances from two different systems.

Thus, if we use data from the same wheel for training and

validation, success is much more likely than if we validate using

data from a different wheels.

Similarly, two instances from a particular problem (same

SequenceId) will be more related than two instances from

different problems. Given that the number of failures is

significantly less than the total number of instances, random

sampling is very likely to generate training and validation sets that

contain data related to the same wheel failure event. The end

result is thus an overly optimistic evaluation of the model's

performance. We solve this problem by splitting the data so that

training and validation instances come from different subgroups

of failure events. Precisely, we ensure that all of data with a given

SequenceID value will go either as part of training data or as

part of the testing data but never split between the two.

We also need an adequate performance criterion for the

problem at hand. In machine learning research, classifier

reliability is often summarized by either error-rate or accuracy.

The error rate is defined as the expected probability of

misclassification: the number of classification errors over the total

number of test instances. The accuracy is 1 minus the error-rate.

Because some errors can be more costly than others, it's

sometimes desirable to minimize the misclassification cost rather

than the error-rate. The ROC method [23], AUC (Area Under

ROC Curve) [20], and cost curve [4] are very popular in practical

applications since they allow the user to evaluate models based on

the proportions of positive instances. Other related metrics from

the information-retrieval community are precision and recall. In

this context, recall is defined as the ratio of relevant documents

retrieved for a given query over the number of relevant database

documents; precision is the ratio of relevant documents retrieved

over the total number of documents retrieved.

Unfortunately, these metrics fail to capture two important

aspects of our application. The first aspect is that the usefulness of

a prediction is a function of the time between the prediction and

the actual replacement. Warning too early about a potential failure

leads to non-optimal component use; warning too late makes

proper repair planning difficult. We need an evaluation method

that takes alert timeliness into account. The second aspect relates

to coverage of potential failures. Because the learned model

classifies each report into one of two categories (replace

component; don't replace component), a model might generate

several alerts before the component is actually replaced. More

alerts suggest a higher confidence in the prediction. However, we

clearly prefer a model that generates at least one alert for most

component failures over one that generates many alerts for just a

few failures. That is, the model's coverage is very important to

minimizing unexpected failures. Given this, we need an overall

scoring metric that considers alert distribution over the various

failure cases. We shall now introduce a reward function to take

into account the first aspect (timeliness of the alerts) and then we

will present a new scoring metric that addresses the second aspect

(coverage of failures).

 We define a reward function for predicting the correct instance

outcome. The reward for predicting a positive instance is based on

the number of days between instance generation and the actual

failure. Figure 3 shows a graph of this function. The maximum

gain is obtained when the model predicts the failure one to twenty

days prior to a high wheel impact event. Outside this target period,

predicting a failure can lead to a negative reward threshold, as

such a prediction corresponds to misleading advice. Accordingly,

false-positive predictions (predictions of a failure when there is no

failure) are penalized by a reward of -1.5 in comparison to a 1.0

reward for true-positive predictions (predictions of failure when

there is a failure).

 The reward function in Figure 3 follows a piecewise, linear

model. Such a model is convenient because it is comprehensible

to the maintenance staff and is sufficiently complex to capture the

relevant information. There are several ways to improve the

reward function's precision. One possibility is to use higher-order

polynomials instead of straight lines. Another possibility is to try

to smooth the overall function. However, according to domain

experts, increased complexity is rarely needed.

Our reward function accounts for alert timeliness; to evaluate

model coverage we must look at alert distribution over the

different failure cases. The overall performance metric we propose

to evaluate a model is as follows.

∑
=

=

p

i

i

Sign

sc
NbrofCases

NbrDtected
score

1

 (2)

 where:

• p is the number of positive alerts in a given testing

dataset;

• NbrDetected is the number of wheel failure events

which contain at least one positive alert in the

target interval (e.g. -20 and -5);

• NbrofCase is total number of wheel failure events

in a given testing dataset;

• Sign is the sign of ∑
=

p

i

isc

1

. When Sign <0 and

NbrDetected=0, score is set to zero; and

• sci is calculated with the reward function above.

3.5 Model Fusion
One way to enhance performance is to combine multiple

heterogeneous base-level models/classifiers into a multiple

classifier system (MCS) [15]. Many research results have shown

that an MCS improves the performance over a single base-level

model [2, 3, 5, 6, 22, 26]. Several methods exist for combining

multiple models, including Bagging, Boosting, Randomization

[3], Voting [26], Stacking, Rule-based [5], and others [5]. In

our experiments, we focused on Stacking [2] as it allows efficient

and simple combinations of heterogeneous models.

In stacking, we rely on meta-models to combine multiple base-

level models. The first step is to select several base-level models

(kmmm ,..., 21) from the developed heterogeneous models by

ranking them with our evaluation approach. In the second step, we

generate a dataset that contains the predictions of all selected

models kmmm ,..., 21 for each instance { ijX , ijc } in the training set.

We note these predictions km
ij

m
ij

m
ij ccc ..., 21 . We also add to the new

dataset the confidence factors for these predictions (noted

km
ij

m
ij

m
ij cfcfcf ..., 21) plus the initial label (ijc). Accordingly, the new

dataset (noted 's) has the following attributes { km
ij

m
ij

m
ij ccc ..., 21 ,

km
ij

m
ij

m
ij cfcfcf ..., 21 , ijc }. We then use 's as a training dataset to learn

meta-models. We use Decision Trees and Naïve Bayes to learn the

meta-models but other algorithms could also be suitable. Finally,

we rank the meta-models by evaluating their performance on the

testing data. We select the meta-model with the highest score to

form a MCS capable of combining several base-level models to

predict train wheel failures.

Reward thresholds for positive predictions over time from replacement

Figure 3. The reward function for positive predictions.

0

1

-1.5

Reward

-5 -20

1

-30

Time from

replacement

4. EXPERIMENTS
In this section, we discuss a large-scale experiment using the

proposed methodology. We first describe the parameter settings

and then discuss the actual experiment along with the results. For

this experiment, we used SAS to implement data generation,

model evaluation, and result analysis. The WEKA system was

used to construct the models.

4.1 Parameter settings
The methodology proposed has a number of key parameters. In

this section, we describe the settings of these parameters as well

as the process leading to the chosen values.

• The size of the target window for data labeling

We carried out simplified experiments by varying only the

size of the target window for labeling (w). We

investigated window sizes from 15 to 30 and found that

w=20 (i.e., predictions up to 20 days prior to failures)

offers the best compromise. This value leads to an

adequate balance between positive and negative examples

and is perfectly acceptable for railways.

• The window size for feature extraction

For simplicity, we added only two types of new features:

moving average features (mvF) and generalized linear

regression features (glF). The computation of both mvF

and glF requires a window size value (wf) that specifies

the length of the sub-sequence to consider when

computing a new feature value. For instance, wf = 8

means that any new feature value depends on the past 7

observations plus the current one. We conducted feature

extraction experiments using different window sizes (wf =

8, 12, 16, 20, 24…) and concluded that the most suitable

window sizes for mvF and glF are 8 and 16,

respectively. We only extracted features for a few of the

key attributes such as MaxMeas and AvgMeas.

• The attribute subsets and attribute selection

To optimize performance, we evaluated various subsets of

attributes using the training data. We kept the four most

promising subsets (noted 4321 ,,, AAAA) with different

number of attributes. We applied the selected learning

algorithms on these four subsets to construct a set of

heterogeneous base-level models.

• The cost information

To obtain an adequate balance between false positive and

false negative errors, we decided to also build models with

non-default cost information. The decision trees (J48) and

naïve Bayes implementations provided in the WEKA

system can take cost information into account when

building the models. The user provides the cost

information through a cost-matrix that specifies the

penalty for false positives and false negatives.

Unfortunately, we had to identify the cost-matrix ourselves

since the domain experts could not easily provide us with

such information. After several experiments, we decided

to use the following cost-matrix since it leads to a fairly

low false positive rate without significant negative effect

on the detection of failures:

=

1

2

01

10
cos tMatrix

This matrix gives penalty 2 for false positives and 1 for

false negative.

4.2 Model-building Experiment
We divided WS into training and a testing datasets noted S and

T, respectively. S contains 22083 instances associated to 145

wheel failure events or sequences. T has 9337 instances for 65

sequences. After setting the parameters as explained above, we

learned the heterogeneous base-level models and then built meta-

models to combine the low-level models.

4.2.1 Building heterogeneous base-level models
 As shown in Figure 4, 16 heterogeneous base-level models (mij

with i=1,2,3,4 and j=1,2,3,4) were built by applying different

algorithms to different datasets formed from 4321 ,,, AAAA .

We computed the performance of each model using Equation 2

and then ranked the models for each subset of attributes. Table 6

shows the results. Since the testing dataset contains 9337

instances and 65 sequences, the potential score values are from -

9500 to 1200. The higher the score is, the better the performance

of a model is. We also report false positive rate and problem

detection rate. The problem detection rate is the number of

failures detected over the 65 wheel failures events contain in the

testing dataset T. The false positive rate is calculated based on the

confusion matrix from each model. Highlighted lines in Table 6

identify the best models within each group.

Attribute

Space

(Α)

A1

A2

A4

A3

Decision Trees

Naïve Bayes

Decision Trees

with costMatrix

Naïve Bayes

with costMatrix

mi1

mi2

mi3

mi4

i = 1, 2, 3, 4

Figure 4. Building the base-level models.

4.2.2 Building meta-models
To build the meta-models, we selected the best 4 base-level

models from Table 6 (i.e., m11, m21, m34 and m44). We applied

these models to all instances {Xij} in S to generate

44342111 ,,,
m
ij

m
ij

m
ij

m
ij cccc and 44342111 ,,,

m
ij

m
ij

m
ij

m
ij cfcfcfcf , and to create a new

training dataset ⊇'s { 44342111 ,,,
m
ij

m
ij

m
ij

m
ij cccc , 44342111 ,,,

m
ij

m
ij

m
ij

m
ij cfcfcfcf , ijc }.

Then we applied the two versions (with and without cost) of

decision trees and naive Bayes on S’ to build meta-models. Like

what we did to evaluate the base-level models, we computed the

score of each meta-model and then ranked them. Table 7 shows

the result. Finally, we selected the meta-model cm
1

(since it has

the highest score) to form a MCS that combines four base-level

models for wheel failure predictions. Figure 5 shows the

architecture of the MCS obtained.

Table 6. Ranking of base-level models.

Model

Name
Version of Algorithms

Model

Score

False

Positive

Rate

Problem

Detection

Rate

m11 Decision Trees 315.58 0.11 0.97

m13 Decision Trees with costMatrix 290.86 0.04 0.95

m14 Naïve Bayes with costMatrix 198.69 0.12 0.97

m12 Naïve Bayes 164.51 0.13 0.97

m21 Decision Trees 295.29 0.10 0.97

m23 Decision Trees with costMatrix 290.48 0.06 0.95

m24 Naïve Bayes with costMatrix 188.81 0.15 0.97

m22 Naïve Bayes 155.21 0.15 0.97

m34 Naïve Bayes with costMatrix 290.45 0.14 0.97

m32 Naïve Bayes 273.39 0.16 0.98

m33 Decision Trees with costMatrix 161.51 0.12 0.91

m31 Decision Trees 138.08 0.15 0.94

m44 Naïve Bayes with costMatrix 382.42 0.15 0.98

m43 Decision Trees with costMatrix 362.34 0.13 0.92

m42 Naïve Bayes 349.60 0.16 0.98

m41 Decision Trees 160.20 0.13 0.82

Table 7. Ranking of meta-models.

Meta-

Model

Name

Version of Algorithms
Model

Score

False

Positive

Rate

Problem

Detection

Rate

cm
1

 Decision Trees 698.49 0.08 0.97

cm
2

 Decision Trees with costMatrix 650.94 0.08 0.97

cm
3

 Naïve Bayes with costMatrix 643.35 0.12 0.98

cm
4

 Naïve Bayes 622.67 0.13 0.98

We are now developing a real-time wheel-monitoring prototype

based on the constructed MCS. We plan to evaluate this

prototype through a field trial. The monitoring system receives

the WILD data in real-time and transforms it into our

representation. Feature extraction is also applied to the selected

attributes. Each base-level model is provided with the attributes it

requires (a subset among 4321 ,,, AAAA) and returns prediction on

failure along with confidence. All base-level model outputs

(1111, m

ij

m
ij cfc , 2121, m

ij

m
ij cfc , 3434,

m

ij
m
ij cfc , 4444,

m

ij
m
ij cfc) are given as input to the meta-

model cm
1

. The monitoring system will use the output of the

meta-model (our MCS) to decide when to alert staff of upcoming

wheel failures.

5. DISCUSION AND OPEN ISSUES
To the best of our knowledge, this paper describes the first

application of KDD for prognostics of train wheel failures. The

lack of comparable work prevents us from contrasting our results

with ones from other researchers. Instead, we evaluate the

significance of our work by assessing the benefits over the most

advanced use of WILD data in the railway industry.

Many railways have recently started to use the WILD data and

threshold-based approach [25] for predictive maintenance of

wheels. This approach uses a set of pre-determined thresholds to

alert staff of potential for future 140kips events. Commonly used

thresholds are 65kips, 80kips, and 90kips. In practice, most

railways will start looking for a suitable time to replace a wheel

once it has exceeded the 90kips level a couple of times.

Depending on schedule, shop’s work load, and the availability of

new wheels, it may take several days or even weeks before the

wheel gets replaced. A high number of 90kips alerts will increase

priority on the repair while 80kips and 65kips alerts will often be

ignored.

Since the railway was not applying the above procedure during

the period of time considered in this project, we have been able to

use the available data to study the ability of the 90kips threshold-

based approach to prevent 140kips events during operation. We

found two major problems with this approach. First, we observed

that a large number of 90kips events never lead to 140kips events

or wheel replacements (even after several months). For all of

these cases, the 90kips threshold-based approach would have

generated false alerts and potentially cause the replacement of

many good wheels. Second, focusing on the cases for which we

actually observed a 140kips event, we found that the time it takes

from a 90kips event to a 140kips event varies so much that it

becomes impossible to determine how long the organization has

to perform the repair. For examples, we found a number of cases

for which a 140kips event immediately follows the corresponding

M11

M21

M34

M44

cm
1

A1

A2

A3

A4

1111, m

ij

m
ij cfc

2121, m

ij

m
ij cfc

3434,
m

ij
m
ij cfc

4444,
m

ij
m
ij cfc

cc m

ij

m
ij cfc ,

Figure 5. An MCS constructed using

a meta-model and 4 base-level models.

ijX

90kips event while in other cases the delay between the two

events was greater than a year. This means that for some cases,

the 90kips alerts are raised too late to allow any predictive

maintenance actions while in other cases they were way too early.

Our approach resolves this issue through sophisticated data

mining models that closely match the various failure patterns and

raise alerts in a timely manner. Indeed, as shown in Table 7, the

proposed methodology detected more than 97% of all wheel

failures in the test data by raising warnings during the selected

time-frame (i.e., from 1 day to 20 days in advance). The false

alert rate was curbed at a relatively low level (less than 8%).

Comparing results in Table 6 with the ones in Table 7, we

observed that the meta-model boosted the performance of base-

level models through a much higher score and a lower false alert

rate.

The experimental results demonstrated that the developed

methodology is capable of building high-quality models for

predicting train wheel failures but there are still a number of open

problems:

• Alternative approach to trade-off failure detection and

false alert rates

An ideal model or classifier should detect all failures without

generating any false alert. In real-world applications, such a

model is rarely feasible. In general, when we try to increase the

detection rate, we obtain a higher false alert rate. For instance,

both m42 and the m44 in Table 6 have the highest detection

accuracy (98%), but they also generate more false alerts than the

other models (15% of false positives). In our approach we used

cost information as a way to balance the failure detection rate and

the false alerts but alternative techniques are suitable. In

particular, it would be useful to have a technique that could

automatically optimize the trade-off without requiring a cost-

matrix.

• Improvement of data quality

Data quality includes the quality of operational data and the

quality of maintenance data. The operational data comes from the

WILD systems. To build the models, we assumed that all WILD

data was reliable but further analysis suggested that some of the

WILD sites were not properly calibrated. To enhance performance,

additional efforts should be deployed to ensure adequate precision

in data acquisition. Our methodology could also be expended

with automatic data validation techniques to monitor data quality

before learning the models.

The quality of the maintenance data directly affects the

identification of the wheel failure events, which in turn determine

the data to be used for building the models. In this particular

application, it was sometimes difficult to identify the exact

location of the wheel that has been replaced. The cars on train

have 12 axles for a total of 24 wheels. To identify a particular

wheel location, the maintenance staff enters the number of the

axle (1 to 12) and the side of the faulty wheel (right or left) in free

form text. Unfortunately, we found many inconsistencies and

errors in this text. For instance, technicians used many symbols to

refer to the axle number 10 such as: `a', `10', `x', `0x'. The same

problem also exists for other axles above 10. Moreover, we found

that the staff sometime entered the wrong axle number (e.g., 6 or 8

instead of 7) or wrong side (left instead of right). These errors can

negatively influence the modeling process by making it construct

failure models that fit non-failing wheel data. We try to deal with

errors in wheel location through extensive manual validation.

When the ambiguity is too high, we generally ignored the case

and ensured that potentially related sensor data was not included

in the model-building experiments. To ensure good predictions, it

is desirable that the technicians are aware of the potential

consequences of errors in maintenance data and are provided with

proper validation tools to ensure consistency.

• Cost-based analysis of the developed models

Our model evaluation approach takes the timeline of the

alerts and problem coverage into consideration but it does not

compute the potential business value of a given model to predict

wheel failures. Ideally, we would like an extension of the current

method that takes into accounts the various costs (undetected

failures, early replacement, false alerts, and implementation of the

models) and returns the expected gain in dollars. However, this

may not be practical as organizations may be unable to adequately

evaluate these costs. We should therefore also investigate other

alternatives.

6. CONCLUSIONS
 In this paper, we introduced a comprehensive KDD

methodology to build models to predict high impact wheel events

before they disrupt operation. The proposed methodology

innovates in key data-mining areas such as data representation,

automatic labeling, model fusion, and model evaluation. Most of

the steps are generic and can be reused in other circumstances

such as in medical and environmental applications. We evaluated

the feasibility of the methodology through a large-scale

experiment in which we build a set of the heterogeneous base-

level models and a set of meta-models to implement model fusion.

After combining four base-level models, we have successfully

constructed a Multiple Classifier System (MCS) capable of

predicting 97% of wheel failures while maintaining a reasonable

false alert rate (8%). Such results clearly show the great potential

of this innovative application of data mining in the railway

industry. Our future work includes a field trial to further evaluate

the usefulness of the technology developed and additional

research on the open issues discussed.

7. ACKNOWLEDGMENTS
Many people at National Research Council have contributed to

this project. Special thanks go to Bob Orchard, Chris Drummond,

Marvin Zaluski, Elizabeth Scarlett, George Forester, Jon Preston-

Thomas, and Mike Krzyzanowski for their support, valuable

discussions and suggestions.

8. REFERENCES
[1] Aha, D., Kibler D. and Albert, M., Instance-based learning

algorithm. Machine Learning, Vol.6, 2004, 37-66

[2] Conversano, C., Siciliano, R. and Mola, F. , Supervised

Classifier Combination through Generalized Additive Multi-

model, The Proceeding of International Workshop in

Multiple Classifier Systems (MCS2000), 2000, 167-176

[3] Dietterich, T., An experimental Comparison of three methods

for Constructing Ensembles of Decision Trees: Bagging,

Boosting and Randomization, Machine Learning, Vol. 40,

2000, 139-158

[4] Drummond, C. and Holte, R., Explicitly Representing

expected cost: an alternative to ROC representation,

Proceedings of the 6th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, New

York, 2000, 198-207

[5] Duin, R. and Tax, D., Experiments with Classifier

Combining Rules, The Proceeding of International

Workshop in Multiple Classifier Systems (MCS2000), 2000,

16-29

[6] Dzeroski, S. and Zenko, B., Is Combining Classifiers with

Stacking Better than Selecting the Best One?, Machine

Learning, Vol.54, 2004, 255-273

[7] Efron, B., Estimating the Error Rate of a Prediction Rules:

Improvement on Cross Validation, J of American Statistical

Association, Vol. 78, 1983, 316-331

[8] Grossman, D. and Frieder, O., Information Retrieval:

Algorithm and Heuristics, Kluwer Academic, 1998

[9] Hall, M., Correlation-based Feature Selection for Discrete

and Numeric Class Machine Learning, Proceedings of the

17th International Conference on Machine Learning, 2000,

359-366

[10] Han, J. and Kamber, M., Data Mining: Concepts and

Techniques, Morgan Kaufmann Publishers, 2001

[11] Harries, M., Sammut,C. and Horn, K., Extracting Hidden

Content, Machine Learning, Vol. 32, 1998, 101-126

[12] Joachima, T., Text Categorization with Support Vector

Machine: Learning with Many Relevant Features,

Proceedings of the 10th European Conference on Machine

Learning, 1998, 487-494

[13] Kira, K. and Rendell, L., A Practical Approach to Feature

Selection, Proceedings of the 9th International Conference

on Machine Learning, 1992, 249-256

[14] Kubat, M., Holte, R.C. and Matwin, S., Machine Learning

for the Detection of Oil Spills in Satellite Radar Images,

Machine Learning, Vol. 30, 1998, 195-215

[15] Lam, L., Classifier Combinations: Implementations and

Theoretical Issues, The Proceeding of International

Workshop in Multiple Classifier Systems (MCS2000), 77-86

[16] Lechowicz, S. and Hunt, C., Monitoring and Managing

Wheel Condition and Loading,

http://www.ntsb.gov/events/symp_rec/proceedings/authors/le

chowicz.pdf

[17] Létourneau, S., Famili, F., Matwin, S. Data mining for

prediction of aircraft component replacement. IEEE

Intelligent Systems Journal, Special Issue on Data Mining.

December 1999. 59-66

[18] Létourneau, S. Data Mining for Maintenance of Complex

Systems, SIGART/AAAI Doctoral Consortium, Proceedings

of the National Conference on Artificial Intelligence (AAAI).

Madison, Wisconsin, USA. July 27, 1998.

[19] Létourneau, S., Identification of Attribute Interaction and

Generation of Globally Relevant Continuous Feature in

Machine Learning, Ph.D thesis, School of Information

Technology and Engineering, University of Ottawa, 2003

[20] Ling, C.X., Huang, J., Zhang, H. AUC: a Statistically

Consistent and more Discriminating Measure than Accuracy,

Proceedings of IJCAI 2003, 519-524

[21] Mitchell, T.M., Machine Learning, WCG McGraw-Hill,

1997

[22] Opitz, D. and Maclin, R., Popular Ensemble Methods: An

Empirical Study, Journal of Artificial Intelligence Research

Vol. 11, 1999, 169-198

[23] Provost F.,Fawcett, T. Analysis and Visualization of

Classifier Performance: Combination under Imprecise Class

and Cost Distributions, Proceedings of International

Conference on Knowledge Discovery and Data Mining

(KDD97), 1997

[24] Salient Systems Inc., Preventing Train Derailment,

http://www.salientsystems.com

[25] Technical report, Advanced Technology Safety Initiative:

Equipment Health Management System, Association of

American Railroads, August 24, 2004

[26] Tsoumakas, G., Katakis, I., and Blahavas I., Effective Voting

of Heterogeneous Classifiers, Proceedings of the 15th

European Conference on Machine Learning (MCML2004),

Pisa, Italy, 465-476

[27] Witten, I. And Frank, E., Data mining: Practical machine

learning tools and techniques with Java implementations,

Morgan Kaufmann, San Francisco, CA, 2000

