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ABSTRACT 

This paper describes a successful but challenging application of 

data mining in the railway industry.  The objective is to optimize 

maintenance and operation of trains through prognostics of wheel 

failures.  In addition to reducing maintenance costs, the proposed 

technology will help improve railway safety and augment 

throughput.  Building on established techniques from data mining 

and machine learning, we present a methodology to learn models 

to predict train wheel failures from readily available operational 

and maintenance data.  This methodology addresses various data 

mining tasks such as automatic labeling, feature extraction, model 

building, model fusion, and evaluation.  After a detailed 

description of the methodology, we report results from large-scale 

experiments. These results clearly show the great potential of this 

innovative application of data mining in the railway industry. 

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications– data 

mining; I.2.6 [Artificial Intelligence]: Learning- concept 

Learning;   H.4.2 [Information Systems Applications]: Types of 

Systems -- Decision support; I.5.2 [Pattern Recognition]: Design 

Methodology-Classifier design and evaluation 

General Terms 

Algorithms, Performance, Reliability, Experimentation  

Keywords,  
Data Mining, Machine Learning, Methodology, Model Building, 

Model Evaluation, Model Fusion, Wheel Failure Prediction 

 

1. INTRODUCTION 
Wheel failures, which account for half of all train derailments, 

cost billions of dollars to the global rail industry [24].  Wheel 

failures also accelerate rail deterioration, sometimes causing the 

rail to break prematurely.  All major railways suffer thousands of 

rail breaks every year.  These breaks are dangerous and very 

expensive to repair.  Moreover, the risk for wheel failures and rail 

breaks is increasing as global competitiveness pushes railways to 

use larger and heavier cars.  To minimize rail breaks and help 

avoid catastrophic events such as derailments, railways are now 

closely monitoring the performance of wheels and trying to 

remove them before they start badly affecting the rails.  The data 

comes from “Wheel Impact Load Detectors” (WILD) [16] 

installed at strategic locations on the rail network.  These 

detectors measure the vertical force or impact of each passing 

wheel.  A central system receives the data in real-time and advises 

the staff when the impact of a given wheel is too high.  The action 

proposed by the system depends on the actual WILD 

measurement.  In particular, whenever a wheel’s impact reaches 

140kips 1  or more, the train is immediately stopped and then 

allowed to crawl slowly to the nearest siding, where the car with 

the defective wheel is uncoupled from the train and is left until a 

work crew comes to replace the wheel.  This process allows the 

railway to avoid operating with problematic wheels but it 

introduces other problems: it delays the offending train and 

potentially many other trains, it disrupts the overall schedule, and 

it reduces the railway’s throughput capacity.  Meanwhile the 

cargo in the car remains undelivered with potentially negative 

consequences to the customer. 

To avoid these problems, railways look for a prognostic 

approach to predict high impact wheel events sufficiently in 

advance so that remedial actions can be taken before loading the 

car and sending it for delivery.  This paper proposes such an 

approach, which we developed in collaboration with a major 

Canadian railway.  Our solution is a comprehensive KDD 

methodology to generate models for predicting high impact wheel 

events.  The methodology offers innovative solutions to key KDD 

tasks such as automatic labeling, data selection, model fusion, and 

model evaluation.  As we show through extensive experimental 

results, the models produced can successfully predict most 

140kips events while maintaining a relatively low rate of false 

alerts.  Accordingly, these results demonstrate the potential of the 

proposed approach to help reduce the number of high impact 

events during operation.  

Some aspects of the methodology described have been first 

proposed in our related work on predicting aircraft component 

failures [17].  This paper introduces extensions in the areas of 

data representation and model fusion, and it details results for a 

novel application with potential for considerable economical 

impact in the railroad industry.  The techniques could also be 

                                                                 

1 A kip is a unit of weight equal to 1,000 pounds. A 140kips 

wheel impact load is a combined static and dynamic force of 

140,000 pounds exerted by an individual wheel at the wheel/rail 

interface when the freight car passes over the WILD site. 
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applied in other areas since the proposed methodology relies on 

commonly available data and requires a minimal amount of 

domain specific information.  For examples, the environmental, 

medical, industrial, and transportation domains provide several 

opportunities to exploit and extend the proposed methodology. 

This paper has five additional sections.  Section 2 further 

describes the application and data used.  Section 3 details the 

proposed methodology for building models while Section 4 

presents the experimental methodology and results. Section 5 

discusses the results and some open issues.  Section 6 concludes 

this paper.  

2. APPLICATION AND DATA 

2.1 WILD Data 
WILD systems are expensive and therefore only installed at 

strategic locations on the rail network.  For instance, there are 

about twenty-four WILD sites in Canada; most of them are 

located on the main rail lines crossing the country. Figure 1 shows 

an example of the WILD system.  When a train passes over a 

WILD site, special strain-gauges measure the impact of each 

wheel on the rail.  An automatic tagging system reads the Id of the 

car as it goes over the WILD site and determines the location of 

the wheel being measured.  A wheel’s location is specified by an 

axle number (1, 2, …, number of axles on the car) and the side of 

the wheel on the axle (right or left).  The system also records 

additional information such as train speed, train direction, the 

nominal weight of the car, the name of the WILD site, and the 

time of the measurement.  The WILD system constructs one 

message for each car and sends it in real-time to a central 

monitoring system.  Table 1 shows the contents of such a message 

for a car with 12 axles. The monitoring system will alert the staff 

if one or more wheel impact measurements exceed 140kips.  The 

monitoring system may implement additional rules to trigger 

alerts but, by industry standards, a 140kips event always requires 

immediate action. 

   

   For this project, we use WILD data collected over a period of 17 

months for a fleet of 804 large cars with 12 axles each.  The 

dataset contains 200,808 observations like the one showed in 

Table 1. 

 

Table 1. WILD data for a car with 12 axles. 

Attribute Description 
Date/time Date and time of measurement  
SiteName The WILD site’s name 
Dir Direction of the train (S, N, E, W) 
Speed Average speed of train 
CarID The ID of the car 
NomLoad Nominal load of the car 
L01 Impact for wheel on left side of axle 1 
R01 Impact for wheel on right side of axle 1 
L02 Impact for wheel on left side of axle 2 
R02 Impact for wheel on right side of axle 2 

… … 
L12 Impact for wheel on left side of axle 12 
R12 Impact for wheel on right side of axle 12 

   

2.2 Maintenance Data 
    Most railways keep in a database detailed descriptions of all 

maintenance actions performed on their trains.  Our partner has 

such a database and they provided us with a subset that contains 

all entries related to the fleet and period considered in this study.  

This subset has more than 20700 entries with a small fraction 

related to wheel failures.  Table 2 lists the information provided in 

case of wheel replacements.  The CarId and WheelID (axle 

number and axle side) identify the faulty wheel and allow us to 

link the failure events to corresponding WILD data.  The most 

common types of failures as reported by the WhyMadeCode 

attribute are: tread shelled, flange defects, and out-of-round 

wheels.  Tread shelled means that one or several chunks of metal 

(usually the size of small grape) fell out of the running surface of 

the wheel.  The thickness and/or the height of the flange may 

become out of regulated limits, which will force the replacement 

of the wheel.  Finally the out-of-round code indicates that the 

circumference of the wheel is not perfectly round anymore (a very 

small imperfection will suffice to order a wheel replacement).  

Wheels on a given axle are always replaced in pairs; when one  

fails, the other wheel on the same axle is also replaced regardless 

of its state.  As a result, several wheels are changed without 

having any defect.  This is noted in the database by a special 

WhyMadeCode attribute value.  In terms of failure distribution, we 

observe that most wheel failures in Canada happen in winter.  

This is due to the fact that the accumulations of snow on the track 

tend to significantly accelerate the deterioration of wheels. 

Table 2. Maintenance data. 

Attribute Description 
Date/time Date & time of wheel replacement  
JobCode Repair work completed 
CarID Car Id on the train 
WheelID Wheel position on the car 
WhyMadeCode Reason for repair 
Description Job description 
Cost Cost of repair 

 

Figure 1. Illustration of a WILD system. 

WILD 

Site 



     Before sending a train on a trip, most railways will perform a 

visual inspection of the wheels.  Experts evaluate that these 

inspections catch about 75% of the wheel failures in a timely 

fashion.  Most of the remaining 25% will be discovered during 

operation by WILD systems but some will go undetected with all 

the potential consequences mentioned in introduction. 

2.3 Constructing Relevant Dataset for Data 

Mining 
For successful data mining, we need to gather relevant data and 

put it in a format that is appropriate for the target problem.  In our 

case, the most relevant data is the one that relates to the events 

that we want to predict.  Accordingly, we first describe how we 

retrieve information on past occurrences of wheel failures.  Then 

we discuss a suitable re-organization of the WILD data and the 

selection of relevant subsets based on past failure occurrences. 

Identification of failure events 

Although it is acceptable that the new approach identifies 

failures already covered by the visual inspections (e.g., for 

validation purposes), the main benefits are in the identification of 

failures missed by current processes.  Accordingly, we focus on 

prediction of high impact events.  There are two ways to declare a 

high impact event.  The first one, which we already discussed, is 

when a wheel impact measurement exceeds 140 kips.  The second 

approach relies on a computed value (noted WildCal) that takes 

into account the nominal weight of the car, the train speed, and 

the impact measurement (WILDPEAK) as shown by the following 

equation: 

Speed

WILDPEAK
NomLoadWildCal

×+= 50

 

    The monitoring system used by our partner computes this value 

as it receives the information from the WILD systems.  A 

WildCal  value greater than 170Kips will trigger the same 

procedure as described for the 140 kips event.  Using these two 

definitions, we searched the collected WILD dataset and found 

216 occurrences of high impact events. 

    We used the wheel maintenance records to validate these events 

by checking the time difference between wheel failure event time 

tw (when high impact event occurred) and its repair time tm (when 

the defective wheel was replaced).  We found 6 cases for which 

the difference between these two times was greater than 3 days.  

In some of 6 cases, we even observed additional WILD 

measurements between the high impact event and the actual repair.  

Being unable to really understand what happened with these cases, 

we decided to disregard them and focus on the 210 validated cases.  

 

Re-representation and selection of relevant data 

To maximize benefits and performance of the approach, we 

need to carefully select the target event to predict.  In general, 

predicting specific events is more difficult than predicting blurred 

events but clear-cut predictions tend to be more valuable. For 

instance, in a medical application one may try to predict a specific 

illness or try to predict the future health of a patient.  The former 

is likely to be more challenging but it will also produce more 

helpful information to the medical staff.  The same reasoning 

applies in our application.  We may predict potential for failure 

for each individual wheel or we may predict potential for a wheel 

failure for each car, or even for the whole train.  The best trade off 

maximizes usefulness of information for the target organization 

and the performance of the approach (false errors, rate of 

detection, etc.)  After discussion with target users, we decided to 

select the axle level for prediction; the model will predict if a 

given axle is likely to suffer a wheel failure or not.  Individual 

wheel level predictions are not required since both wheels on a 

given axle are replaced at the same time, as discussed above.  

More global predictions at the car or train level are not suitable 

either as the staff would have to manually find which axle(s) 

presents a problem. 

Each observation in the initial WILD dataset (Table 1) provides 

information for all wheels on a given car.  Since we decided to 

focus on the axle level, we derived a new data representation 

which is shown in Table 3.  The first six attributes are taken from 

the original representation.  The attribute AxleNum specifies the 

axle for the given observation. These seven attributes allow us to 

link the new representation to the initial one.  The next five 

attributes (MaxMeas, MaxMeasPos, MinMeas, DiffMeas, 

AvgMeas) provide a generic way to record information on the 

impact from the two wheels on the same axle.  Axles are installed 

in pairs to a platform (named a truck), which is fixed underneath 

the car.  Due to physical propagation of impacts, it is expected 

that a wheel failure on a given axle will affect the behavior of the 

wheels on the other axle on the same truck.  Such information 

may help predict failure so we try to capture the behavior of the 

wheels on the other axle of the same truck through attributes 

AvgMeasOAST, AvgMeasWithOASC, and DiffAvgMeasOAST.   

   

Table 3. New WILD data representation for axle-based 

prediction along with time series information. 

Attribute Description 
Date/time Date and time of measurement  
SiteName The WILD site’s name 
Dir Direction of the train (S, N, E, W) 
Speed Average speed of train 
CarID The ID of the car 
NomLoad Nominal load of the car 
AxleNum Axle number in the car 
MaxMeas Maximal WILD impact measured among 

the two wheels on the axle 
MaxMeasPos Position that a wheel has higher impact 

(Right, Left)   
MinMeas Minimal WILD impact measured among 

the two wheels on the axle 
DiffMeas Difference between impacts from the two 

wheels on the axle 
AvgMeas Average of two wheels’ impact 

measurements 
AvgMeasOAST Average of impacts from other axle on 

same truck 
AvgMeasWithOASC Average of all four wheels on the same 

truck  
DiffAvgMeasOAST Difference between AvgMeasOAST  and 

AvgMeas 
SequenceID Sequence ID for each wheel failure event 
WithinSeqID Instance ID in a sequence 
TimeToFailure The time to wheel failure  

 



The new representation can be seen as time series data, with 

one series for each axle.  During the analysis, we use the 

SequenceID attribute to distinguish the series.  Once the wheels 

on an axle are replaced, we generate a new SequenceID value as 

to avoid mixing data from various axles (old and new one).  

Figure 2 illustrates this process for an axle with two wheel failure 

events at time tw1 and tw2, respectively.  For this example, the 

segmentation produces three sequences (s1, s2, and s3), each of 

them will have a unique SequenceID value.  The attribute 

WithinSeqID identifies each observation within a given 

sequence.  Finally, we also compute an additional attribute named 

TimeToFailure to record the time between the current 

observation and the next wheel failure on the given axle (if any).  

This attribute is useful for automatic labeling and model 

evaluation (Section 3).   

       

   One observation in the initial WILD data format represents 

12 instances in the new representation (one for each axle).  

Accordingly, the re-representation process converted the initial 

200,808 instances into a new dataset with 2,409,696 instances.  

This new dataset contains 9906 distinct sequences.  For building 

the predictive models, we consider as relevant the data collected 

around the high impact events.  We observed that the longest 

time-series available in the new representation has 410 

observations with an average length of 240 observations.  

Therefore, we decided to limit the “relevance zone” to 150 

observations or instances.  Since we have validated 210 failures, 

the resulting dataset has 31500 instances. In the following 

sections, we use WS to refer to this dataset.  

3. LEARNING METHDOLOGY   
After obtaining WS, we can start building models to predict 

when to fix or replace a wheel.  These models must accurately 

recognize the particular data patterns or trends that indicate 

upcoming wheel failures.  The methodology we propose to build 

the predictive models from WS builds on established techniques 

from data mining and machine learning [10,17, 18,21].  Table 4 

summarizes the notations used while Table 5 presents the pseudo 

code of the proposed methodology. 

     The methodology consists of five main processes:  labeling 

(Label ( ijx , tw) ), feature extraction ( ()xF ), model building 

(BuildModel() ), model evaluation (TestingAndRankingModels() ), and 

model fusion (Stacking() ).  The following sections describe these 

processes.  

3.1 Labeling 
We cast the wheel failure prediction problem as a binary 

classification task with two class values: going to fail (positive) 

and not going to fail (negative).  Many supervised learning 

techniques can be used to address this task but they require that 

each instance in WS is pre-assigned to one of the class values.  

Since manual labeling of instances by domain experts is not 

feasible, we proceed with the automated approach introduced in 

[17].  The idea behind this technique is that the observable states 

of a physical component should be abnormal before a failure 

occurs. These abnormal states should be labeled as “positive” 

(class value 1) and the normal states as “negative” (class value 0). 

Precisely, we add a class attribute ( ijc ) to each instance ( ijx ) in 

WS using the following equation: 
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      where w is constant that we fix after considering two factors.  
The first is the amount of time suitable between a failure 
prediction and the actual failure.  This period should be long 
enough to allow the staff to perform the predictive maintenance 
action but not too long to avoid removing components too early 
(which may lead to life usage reduction).  In the case of wheel 
failure predictions, a period of one day to three-week is deemed 
appropriate.  The second factor is the balance between the number 
of positive instances and the number of negative instances in the 
learning dataset. Without a minimal proportion of positive 
instances, it could be difficult for the algorithms to infer accurate 
models. 

Table 4. The notations used in the paper. 

i, j, k Counters 

WS WILD dataset used for developing models 

is  The i th  sequence in WS;  

ijx  The j th  instance in the sequence is  

ijc  Class value or label for instance ijx  

ijm  A base-level model built from  Ai subset and the jth 

algorithm  

km
ijc , km

ijcf  

Class value and its confidence identified by base-level 

model mk for the instance ijx ; ( km
ijc , km

ijcf )= mk ( ijx )  

c
im  Meta-model for combining base-level models  

a
r

 The attribute vector in WS.  ...}...,{ 21 iaaaa ⊇
r

 

x
f

a
r

 The vector of the feature F x 

Α  Attribute space in WS, ...},,{ 21 x
f

x
f

aaaA
rrr

⊇  

Ai The ith subset of the attribute space 

tw Date/Time for instance ijx  

W The window size for labeling data.  

Wf
 The window size of feature generation 

Score The score for  models 

sci Reward score for  alerts (true positive)  

 

 

tw 

tw1 tw2 s1 s2 s3 

Figure 2. An example of data segmentation.
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3.2 Feature Extraction 
As in all challenging data mining applications, the quality of 

the representation is a key factor.  While designing the WS 

dataset, we tried to manually craft useful features but it is possible 

that automated approaches could help further improve the data 

representation.  Accordingly, we rely on constructive induction to 

create new powerful features that combine the initial ones [11, 

19].  We also perform time-series processing to extract potentially 

relevant time-series characteristics. For instance, to help 

characterize short-term trends for each axle, we augment the 

representation shown in Table 3 with a new feature named 

MaxMeasAvg that stores the moving average of the five most 

recent measurements of MaxMeas from the given axle (i.e., same 

CarID and AxleNum as the current instance).  In addition to 

moving averages, we also apply linear regression and Fast Fourier 

Transforms.  We run these techniques in batch mode to generate 

new features and then add them to the representation.  Finally, we 

apply feature selection on the augmented data representation to 

automatically remove correlated or irrelevant features [9, 13].   

Table 5. Learning methodology. 

Input: WS; (split  into training dataset (S) & testing dataset  (T) ) 

Output : models ( ijm  and c
im ) 

Process: 

    For  all ijx  in WS   { 

       ijc  = Label ( ijx , tw)   }                   /*  labeling data  */ 

   For  selected attribute ai from   a
r

{ 

x
f

a
r

= xF (ai, , w
f
 )        }                  /* extracting features */ 

    For each Ai in Α  {   
       For adopted  algorithm j {  

          mij = BuildModel(Ai, algorith j, S )  /* building models*/ 
    }  } 

   For all mij  { 

        TestingAndRankingModels (mij , T)         /* evaluating models */   

  }              

   Φ='s                                      /*  creating a new training dataset */ 

 For all ijx  in S { 

       For selected base-level models mk { 

           ( km
ijc , km

ijcf )= mk ( ijx )   

           },,{'' ij
m

ij
m
ij ccfcss kkU=  

  }  }     

  For specified classifier algorithm i {  

                 c
im  = Stacking(algorithm i, S’ ) 

  }                             /* building meta-level  models for model fusion*/  

    For all  c
im  { 

                 TestingAndRankingModels ( c
im  , T)  

   }    

                  

OutResult ( c
im , ijm  ) 

 

3.3 Model Building  
To build models, many algorithms are available including 

Instance-Based learning (IBk), TFIDF classifier [8], Naïve Bayes, 

Support Vector Machine (SVM) [12], Decision Trees, and Neural 

Networks.  In our experiments, we tend to prefer simple 

algorithms such as Decision Trees and Naïve Bayes over more 

complex ones because they are quick and produce models that we 

can easily explain to our partners.  We systematically apply the 

same algorithm several times with varying attribute subsets and 

cost information to obtain a set of heterogeneous but 

complementary base-level models.  For instance, in the 

experimentation reported in Section 4, we selected a number of 

attribute subsets (noted iA for i=1, 2,…) from the full set of 

attributes (note A) and then ran the Decision Trees and Naïve 

Bayes classifiers using each subset.  We then introduced cost-

information and re-ran the above algorithms with the various 

attribute subsets.   This process generates a number of models that 

will be combined in the model fusion stage (Section 3.5). 

3.4 Model Evaluation 
In practical applications such as ours, results must be properly 

evaluated. Such evaluations must fairly estimate the model's 

performance on new data and account for important domain-

specific requirements. There are several approaches for computing 

the expected performance, including hold-out validation, cross-

validation, and bootstrapping [7, 14]. Unfortunately, none of 

these approaches is adequate for our application. These 

approaches rely on random sampling to select instances from the 

population. The problem with random sampling is that it 

implicitly assumes that the instances are independent. Whenever 

this assumption generally holds, repeated analysis methods such 

as cross-validation and bootstrapping would probably lead to 

reasonably good results. However, with our application, the 

assumption of instance independence is simply not viable. 

Because of variations in system construction, operation, and 

maintenance, any two instances from a given system are not as 

independent as any two instances from two different systems. 

Thus, if we use data from the same wheel for training and 

validation, success is much more likely than if we validate using 

data from a different wheels.  

Similarly, two instances from a particular problem (same 

SequenceId) will be more related than two instances from 

different problems. Given that the number of failures is 

significantly less than the total number of instances, random 

sampling is very likely to generate training and validation sets that 

contain data related to the same wheel failure event. The end 

result is thus an overly optimistic evaluation of the model's 

performance.  We solve this problem by splitting the data so that 

training and validation instances come from different subgroups 

of failure events.  Precisely, we ensure that all of data with a given 

SequenceID value will go either as part of training data or as 

part of the testing data but never split between the two.   

We also need an adequate performance criterion for the 

problem at hand. In machine learning research, classifier 

reliability is often summarized by either error-rate or accuracy. 

The error rate is defined as the expected probability of 

misclassification: the number of classification errors over the total 

number of test instances. The accuracy is 1 minus the error-rate. 

Because some errors can be more costly than others, it's 



sometimes desirable to minimize the misclassification cost rather 

than the error-rate.  The ROC method [23], AUC (Area Under 

ROC Curve) [20], and cost curve [4] are very popular in practical 

applications since they allow the user to evaluate models based on 

the proportions of positive instances.  Other related metrics from 

the information-retrieval community are precision and recall. In 

this context, recall is defined as the ratio of relevant documents 

retrieved for a given query over the number of relevant database 

documents; precision is the ratio of relevant documents retrieved 

over the total number of documents retrieved. 

Unfortunately, these metrics fail to capture two important 

aspects of our application. The first aspect is that the usefulness of 

a prediction is a function of the time between the prediction and 

the actual replacement. Warning too early about a potential failure 

leads to non-optimal component use; warning too late makes 

proper repair planning difficult. We need an evaluation method 

that takes alert timeliness into account. The second aspect relates 

to coverage of potential failures. Because the learned model 

classifies each report into one of two categories (replace 

component; don't replace component), a model might generate 

several alerts before the component is actually replaced. More 

alerts suggest a higher confidence in the prediction. However, we 

clearly prefer a model that generates at least one alert for most 

component failures over one that generates many alerts for just a 

few failures. That is, the model's coverage is very important to 

minimizing unexpected failures. Given this, we need an overall 

scoring metric that considers alert distribution over the various 

failure cases. We shall now introduce a reward function to take 

into account the first aspect (timeliness of the alerts) and then we 

will present a new scoring metric that addresses the second aspect 

(coverage of failures). 

 

  We define a reward function for predicting the correct instance 

outcome. The reward for predicting a positive instance is based on 

the number of days between instance generation and the actual 

failure. Figure 3 shows a graph of this function. The maximum 

gain is obtained when the model predicts the failure one to twenty 

days prior to a high wheel impact event. Outside this target period, 

predicting a failure can lead to a negative reward threshold, as 

such a prediction corresponds to misleading advice. Accordingly, 

false-positive predictions (predictions of a failure when there is no 

failure) are penalized by a reward of -1.5 in comparison to a 1.0 

reward for true-positive predictions (predictions of failure when 

there is a failure).  

 

 The reward function in Figure 3 follows a piecewise, linear 

model. Such a model is convenient because it is comprehensible 

to the maintenance staff and is sufficiently complex to capture the 

relevant information. There are several ways to improve the 

reward function's precision. One possibility is to use higher-order 

polynomials instead of straight lines. Another possibility is to try 

to smooth the overall function. However, according to domain 

experts, increased complexity is rarely needed. 

Our reward function accounts for alert timeliness; to evaluate 

model coverage we must look at alert distribution over the 

different failure cases. The overall performance metric we propose 

to evaluate a model is as follows. 
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      where: 

• p is the number of positive alerts in a given testing 

dataset; 

• NbrDetected is the number of wheel failure events 

which contain at least one positive alert in the 

target interval (e.g. -20 and -5); 

• NbrofCase is total number of wheel failure events 

in a given testing dataset; 

• Sign is the sign of ∑
=

p

i

isc

1

. When Sign <0 and 

NbrDetected=0, score is set to zero; and 

• sci  is calculated with the reward function above. 

  

3.5 Model Fusion  
One way to enhance performance is to combine multiple 

heterogeneous base-level models/classifiers into a multiple 

classifier system (MCS) [15].  Many research results have shown 

that an MCS improves the performance over a single base-level 

model [2, 3, 5, 6, 22, 26]. Several methods exist for combining 

multiple models, including Bagging, Boosting, Randomization 

[3], Voting [26], Stacking, Rule-based [5], and   others [5].  In 

our experiments, we focused on Stacking [2] as it allows efficient 

and simple combinations of heterogeneous models.  

In stacking, we rely on meta-models to combine multiple base-

level models.  The first step is to select several base-level models 

( kmmm ,..., 21 ) from the developed heterogeneous models by 

ranking them with our evaluation approach. In the second step, we 

generate a dataset that contains the predictions of all selected 

models kmmm ,..., 21 for each instance { ijX , ijc } in the training set.  

We note these predictions km
ij

m
ij

m
ij ccc ..., 21 .  We also add to the new 

dataset the confidence factors for these predictions (noted 

km
ij

m
ij

m
ij cfcfcf ..., 21 ) plus the initial label ( ijc ).  Accordingly, the new 

dataset (noted 's ) has the following attributes { km
ij

m
ij

m
ij ccc ..., 21 , 

km
ij

m
ij

m
ij cfcfcf ..., 21 , ijc }.  We then use 's as a training dataset to learn 

meta-models.  We use Decision Trees and Naïve Bayes to learn the 

meta-models but other algorithms could also be suitable. Finally, 

we rank the meta-models by evaluating their performance on the 

testing data.  We select the meta-model with the highest score to 

form a MCS capable of combining several base-level models to 

predict train wheel failures.     

Reward thresholds for positive predictions over time from replacement 

Figure 3. The reward function for positive predictions.
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4. EXPERIMENTS  
In this section, we discuss a large-scale experiment using the 

proposed methodology.  We first describe the parameter settings 

and then discuss the actual experiment along with the results.  For 

this experiment, we used SAS to implement data generation, 

model evaluation, and result analysis.  The WEKA system was 

used to construct the models.   

4.1 Parameter settings 
The methodology proposed has a number of key parameters.  In 

this section, we describe the settings of these parameters as well 

as the process leading to the chosen values. 

• The size of the target window for data labeling 

We carried out simplified experiments by varying only the 

size of the target window for labeling (w).  We 

investigated window sizes from 15 to 30 and found that 

w=20 (i.e., predictions up to 20 days prior to failures) 

offers the best compromise.  This value leads to an 

adequate balance between positive and negative examples 

and is perfectly acceptable for railways. 

   

• The window size for feature extraction 

For simplicity, we added only two types of new features:  

moving average features ( mvF ) and generalized linear 

regression features ( glF ).  The computation of both mvF  

and glF  requires a window size value (wf ) that specifies 

the length of the sub-sequence to consider when 

computing a new feature value.  For instance, wf = 8 

means that any new feature value depends on the past 7 

observations plus the current one.   We conducted feature 

extraction experiments using different window sizes (wf = 

8, 12, 16, 20, 24…) and concluded that the most suitable 

window sizes for mvF and  glF  are 8 and 16, 

respectively.  We only extracted features for a few of the 

key attributes such as MaxMeas and AvgMeas. 

    

• The attribute subsets and attribute selection 

To optimize performance, we evaluated various subsets of 

attributes using the training data.  We kept the four most 

promising subsets (noted 4321 ,,, AAAA ) with different 

number of attributes. We applied the selected learning 

algorithms on these four subsets to construct a set of 

heterogeneous base-level models.   

 

• The cost information 

To obtain an adequate balance between false positive and 

false negative errors, we decided to also build models with 

non-default cost information.  The decision trees (J48) and 

naïve Bayes implementations provided in the WEKA 

system can take cost information into account when 

building the models.  The user provides the cost 

information through a cost-matrix that specifies the 

penalty for false positives and false negatives.  

Unfortunately, we had to identify the cost-matrix ourselves 

since the domain experts could not easily provide us with 

such information.  After several experiments, we decided 

to use the following cost-matrix since it leads to a fairly 

low false positive rate without significant negative effect 

on the detection of failures: 
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This matrix gives penalty 2 for false positives and 1 for 

false negative. 

 

4.2 Model-building Experiment  
We divided WS into training and a testing datasets noted S and 

T, respectively.  S contains 22083 instances associated to 145 

wheel failure events or sequences.  T has 9337 instances for 65 

sequences. After setting the parameters as explained above, we 

learned the heterogeneous base-level models and then built meta-

models to combine the low-level models.  

4.2.1   Building heterogeneous base-level models 
 As shown in Figure 4, 16 heterogeneous base-level models (mij 

with i=1,2,3,4 and j=1,2,3,4) were built by applying different 

algorithms to different datasets formed from 4321 ,,, AAAA .  

 

     

We computed the performance of each model using Equation 2 

and then ranked the models for each subset of attributes.  Table 6 

shows the results.  Since the testing dataset contains 9337 

instances and 65 sequences, the potential score values are from -

9500 to 1200. The higher the score is, the better the performance 

of a model is.  We also report false positive rate and problem 

detection rate. The problem detection rate is the number of 

failures detected over the 65 wheel failures events contain in the 

testing dataset T.  The false positive rate is calculated based on the 

confusion matrix from each model.  Highlighted lines in Table 6 

identify the best models within each group.      

Attribute 
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Figure 4. Building the base-level models. 



4.2.2 Building meta-models 
To build the meta-models, we selected the best 4 base-level 

models from Table 6 (i.e., m11, m21, m34  and  m44).  We applied 

these models to all instances {Xij} in S to generate 

44342111 ,,,
m
ij

m
ij

m
ij

m
ij cccc  and 44342111 ,,,

m
ij

m
ij

m
ij

m
ij cfcfcfcf , and to create a new 

training dataset ⊇'s { 44342111 ,,,
m
ij

m
ij

m
ij

m
ij cccc , 44342111 ,,,

m
ij

m
ij

m
ij

m
ij cfcfcfcf , ijc }. 

Then we applied the two versions (with and without cost) of 

decision trees and naive Bayes on S’ to build meta-models.  Like 

what we did to evaluate the base-level models, we computed the 

score of each meta-model and then ranked them.  Table 7 shows 

the result.  Finally, we selected the meta-model cm
1

(since it has 

the highest score) to form a MCS that combines four base-level 

models for wheel failure predictions. Figure 5 shows the 

architecture of the MCS obtained.  

Table 6. Ranking of base-level models. 

Model 

Name 
Version of Algorithms 

Model 

Score 

False 

Positive 

Rate 

Problem 

Detection 

Rate  

m11 Decision Trees 315.58 0.11 0.97 

m13 Decision Trees with costMatrix 290.86 0.04 0.95 

m14 Naïve Bayes with costMatrix 198.69 0.12 0.97 

m12 Naïve Bayes  164.51 0.13 0.97 

m21 Decision Trees 295.29 0.10 0.97 

m23 Decision Trees with costMatrix 290.48 0.06 0.95 

m24 Naïve Bayes with costMatrix 188.81 0.15 0.97 

m22 Naïve Bayes  155.21 0.15 0.97 

m34 Naïve Bayes with costMatrix 290.45 0.14 0.97 

m32 Naïve Bayes  273.39 0.16 0.98 

m33 Decision Trees with costMatrix 161.51 0.12 0.91 

m31 Decision Trees 138.08 0.15 0.94 

m44 Naïve Bayes with costMatrix 382.42 0.15 0.98 

m43 Decision Trees with costMatrix 362.34 0.13 0.92 

m42 Naïve Bayes  349.60 0.16 0.98 

m41 Decision Trees 160.20 0.13 0.82 

 

Table 7. Ranking of meta-models. 

Meta-

Model 

Name 

Version of Algorithms 
Model 

Score 

False 

Positive 

Rate 

Problem 

Detection 

Rate  

cm
1

 Decision Trees 698.49 0.08 0.97 

cm
2

 Decision Trees with costMatrix 650.94 0.08 0.97 

cm
3

 Naïve Bayes with costMatrix 643.35 0.12 0.98 

cm
4

 Naïve Bayes  622.67 0.13 0.98 

  

We are now developing a real-time wheel-monitoring prototype 

based on the constructed MCS.  We plan to evaluate this 

prototype through a field trial.  The monitoring system receives 

the WILD data in real-time and transforms it into our 

representation.  Feature extraction is also applied to the selected 

attributes.  Each base-level model is provided with the attributes it 

requires (a subset among 4321 ,,, AAAA ) and returns prediction on 

failure along with confidence.  All base-level model outputs 

( 1111, m

ij

m
ij cfc , 2121, m

ij

m
ij cfc , 3434,

m

ij
m
ij cfc , 4444,

m

ij
m
ij cfc ) are given as input to the meta-

model cm
1

.  The monitoring system will use the output of the 

meta-model (our MCS) to decide when to alert staff of upcoming 

wheel failures. 

  

 

5. DISCUSION AND OPEN ISSUES 
To the best of our knowledge, this paper describes the first 

application of KDD for prognostics of train wheel failures.  The 

lack of comparable work prevents us from contrasting our results 

with ones from other researchers.  Instead, we evaluate the 

significance of our work by assessing the benefits over the most 

advanced use of WILD data in the railway industry.    

Many railways have recently started to use the WILD data and 

threshold-based approach [25] for predictive maintenance of 

wheels. This approach uses a set of pre-determined thresholds to 

alert staff of potential for future 140kips events.  Commonly used 

thresholds are 65kips, 80kips, and 90kips.  In practice, most 

railways will start looking for a suitable time to replace a wheel 

once it has exceeded the 90kips level a couple of times.  

Depending on schedule, shop’s work load, and the availability of 

new wheels, it may take several days or even weeks before the 

wheel gets replaced. A high number of 90kips alerts will increase 

priority on the repair while 80kips and 65kips alerts will often be 

ignored.    

Since the railway was not applying the above procedure during 

the period of time considered in this project, we have been able to 

use the available data to study the ability of the 90kips threshold-

based approach to prevent 140kips events during operation.  We 

found two major problems with this approach.  First, we observed 

that a large number of 90kips events never lead to 140kips events 

or wheel replacements (even after several months).  For all of 

these cases, the 90kips threshold-based approach would have 

generated false alerts and potentially cause the replacement of 

many good wheels.  Second, focusing on the cases for which we 

actually observed a 140kips event, we found that the time it takes 

from a 90kips event to a 140kips event varies so much that it 

becomes impossible to determine how long the organization has 

to perform the repair.  For examples, we found a number of cases 

for which a 140kips event immediately follows the corresponding 
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Figure 5. An MCS constructed using 

a meta-model and 4 base-level models. 
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90kips event while in other cases the delay between the two 

events was greater than a year.  This means that for some cases, 

the 90kips alerts are raised too late to allow any predictive 

maintenance actions while in other cases they were way too early.  

Our approach resolves this issue through sophisticated data 

mining models that closely match the various failure patterns and 

raise alerts in a timely manner.  Indeed, as shown in Table 7, the 

proposed methodology detected more than 97% of all wheel 

failures in the test data by raising warnings during the selected 

time-frame (i.e., from 1 day to 20 days in advance).  The false 

alert rate was curbed at a relatively low level (less than 8%).  

Comparing results in Table 6 with the ones in Table 7, we 

observed that the meta-model boosted the performance of base-

level models through a much higher score and a lower false alert 

rate.       

The experimental results demonstrated that the developed 

methodology is capable of building high-quality models for 

predicting train wheel failures but there are still a number of open 

problems: 

• Alternative approach to trade-off failure detection and 

false alert rates  

An ideal model or classifier should detect all failures without 

generating any false alert. In real-world applications, such a 

model is rarely feasible.  In general, when we try to increase the 

detection rate, we obtain a higher false alert rate.  For instance, 

both m42 and the m44   in Table 6 have the highest detection 

accuracy (98%), but they also generate more false alerts than the 

other models (15% of false positives).  In our approach we used 

cost information as a way to balance the failure detection rate and 

the false alerts but alternative techniques are suitable.  In 

particular, it would be useful to have a technique that could 

automatically optimize the trade-off without requiring a cost-

matrix.       

• Improvement of data quality 

Data quality includes the quality of operational data and the 

quality of maintenance data. The operational data comes from the 

WILD systems.  To build the models, we assumed that all WILD 

data was reliable but further analysis suggested that some of the 

WILD sites were not properly calibrated. To enhance performance, 

additional efforts should be deployed to ensure adequate precision 

in data acquisition.  Our methodology could also be expended 

with automatic data validation techniques to monitor data quality 

before learning the models.   

The quality of the maintenance data directly affects the 

identification of the wheel failure events, which in turn determine 

the data to be used for building the models.  In this particular 

application, it was sometimes difficult to identify the exact 

location of the wheel that has been replaced. The cars on train 

have 12 axles for a total of 24 wheels. To identify a particular 

wheel location, the maintenance staff enters the number of the 

axle (1 to 12) and the side of the faulty wheel (right or left) in free 

form text. Unfortunately, we found many inconsistencies and 

errors in this text. For instance, technicians used many symbols to 

refer to the axle number 10 such as: `a', `10', `x', `0x'. The same 

problem also exists for other axles above 10. Moreover, we found 

that the staff sometime entered the wrong axle number (e.g., 6 or 8 

instead of 7) or wrong side (left instead of right). These errors can 

negatively influence the modeling process by making it construct 

failure models that fit non-failing wheel data. We try to deal with 

errors in wheel location through extensive manual validation. 

When the ambiguity is too high, we generally ignored the case 

and ensured that potentially related sensor data was not included 

in the model-building experiments. To ensure good predictions, it 

is desirable that the technicians are aware of the potential 

consequences of errors in maintenance data and are provided with 

proper validation tools to ensure consistency. 

 

• Cost-based analysis of the developed models 

Our model evaluation approach takes the timeline of the 

alerts and problem coverage into consideration but it does not 

compute the potential business value of a given model to predict 

wheel failures. Ideally, we would like an extension of the current 

method that takes into accounts the various costs (undetected 

failures, early replacement, false alerts, and implementation of the 

models) and returns the expected gain in dollars. However, this 

may not be practical as organizations may be unable to adequately 

evaluate these costs. We should therefore also investigate other 

alternatives.  

6. CONCLUSIONS  
 In this paper, we introduced a comprehensive KDD 

methodology to build models to predict high impact wheel events 

before they disrupt operation.  The proposed methodology 

innovates in key data-mining areas such as data representation, 

automatic labeling, model fusion, and model evaluation. Most of 

the steps are generic and can be reused in other circumstances 

such as in medical and environmental applications. We evaluated 

the feasibility of the methodology through a large-scale 

experiment in which we build a set of the heterogeneous base-

level models and a set of meta-models to implement model fusion.  

After combining four base-level models, we have successfully 

constructed a Multiple Classifier System (MCS) capable of 

predicting 97% of wheel failures while maintaining a reasonable 

false alert rate (8%). Such results clearly show the great potential 

of this innovative application of data mining in the railway 

industry.  Our future work includes a field trial to further evaluate 

the usefulness of the technology developed and additional 

research on the open issues discussed.    
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