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Abstract. Matrix factorization techniques are widely used to build col-
laborative filtering recommender systems. These recommenders aim at
discovering latent variables or attributes that are supposed to explain and
ultimately predict the interest of users. In cognitive modeling, skills and
competencies are considered as key latent attributes to understand and
assess student learning. For this purpose, Tatsuoka introduced the con-
cept of Q-matrix to represent the mapping between skills and test items.
In this paper we evaluate how predictive expert-created Q-matrices can
be when used as a decomposition factor in a matrix factorization rec-
ommender. To this end, we developed an evaluation method using cross
validation and the weighted least squares algorithm that measures the
predictive accuracy of Q-matrices. Results show that expert-made Q-
matrices can be reasonably accurate at predicting users success in specific
circumstances that are discussed at the end of this paper.

Keywords: Cognitive models, Matrix factorization, Recommender systems, Com-
petency-based learning

1 Introduction

Nowadays, recommender systems are extensively used. Technologies, usage and
application domains including learning and education keep going further, bigger
and wider. Recommenders are usually classified into two categories [14] depend-
ing on the approach they implement; content filtering or collaborative filter-
ing. Content filtering requires the creation of user profiles to provide them with
matching products. A lot of domain specific information is required. Collabora-
tive filtering overcomes this difficulty by providing recommendations based on
past actions of the users, finding similarities between them and extrapolating
to future behaviors. Among collaborative filtering methods, latent factor mod-
els are probably the most well known since they were popularized during the
Netflix Prize. A latent factor model aims at discovering latent traits character-
izing both users and their resources usage, in order to make predictions. Matrix
factorization is a common technology used to perform latent traits modeling.
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A matrix factorization approximates a matrix R by the product of two smaller
matrices Q and S, i.e., R ≈ QS = R̂. The link between latent traits modeling
and cognitive diagnostic modeling, appeared obvious to many [10, 23, 24] since
skills or competencies are latent attributes allowing to understand, assess [25,
5, 23] and to some extent predict [22, 16, 24, 15] student success. The overlap
between cognitive diagnostic modeling goes even further since matrix represen-
tations have been used for decades with Tatsuoka’s [25] Rule-Space model and
the introduction of the Q-matrix, a matrix representing the mapping between
test items and skills. In this context, a matrix factorization recommender would
predict the success or failure on unperformed items. Starting from a matrix R
containing the results of students to items, a basic matrix factorization would
produce a Q-matrix mapping test items to latent skills, and a matrix S contain-
ing the mapping between students and skills. Many researchers have recently
tried to automatically generate [24, 23] or improve [10, 4] Q-matrices using ma-
trix factorization methods. While the quality of the reconstruction of R is duly
measured by comparing R to R̂, the quality of the generated Q-matrix is difficult
to evaluate. For instance, it is not unusual to generate a Q-matrix leading to a
perfect R reconstruction but as good as chance in terms of predictive accuracy.
In order to address this problem, we propose the method presented below (sec-
tion 3), that aims at specifically evaluating the predictive quality of a Q-matrix.
We applied this method to several expert-made datasets (section 4) and present
our experimental results in section 5.

2 Q-matrix and matrix factorization

The Rule-Space model [25, 28, 29] was introduced in the eighties to statistically
classify students items responses into a set of ideal response patterns associated
to different cognitive skills. One of the major assumptions of Rule-Space is that
students only need to master specific skills in order to successfully complete test
items. Rule-Space aims at performing fine granularity diagnostic assessments. In
its first phase, Rule-Space consists in identifying skills called attributes to create
ideal response patterns. A second phase relies on statistical classification using
item response analysis to map student answers to ideal response patterns. There
were initially no real process specified by Rule-Space to design and develop the
cognitive diagnostic assessments required by its first phase. However, Gierl et
al. [11] in their tutorial proposed four sequential steps. In the first step, the (k)
cognitive attributes are identified and their hierarchical relationships specified by
cognitive experts. In a second step, an incidence matrix is built by considering the
potential pool of items [3] representing all (2k−1) combinations of attributes an
item could evaluate. The incidence matrix also called Q-matrix is then reduced
according to the attribute hierarchy. As reduction example, let’s consider the skill
”addition of natural numbers” as a prerequisite to the skill ”addition of integers”.
If an item in the Q-matrix is designed to evaluate only ”addition of integers”,
this item would be removed in the refinement process because it is deemed
impossible to evaluate ”addition of integers” without evaluating ”addition of
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natural numbers”. The third step consists in constructing the test items based
on the reduced Q-matrix. Finally, in the fourth step, ideal item response vectors
are created based on the reduced Q-matrix (Fig. 1). These ideal item response
vectors are then used in the statistical pattern classification of student responses;
the second phase of Rule-Space.

Q =









Skill1 Skill2 Skill3 Skill4

Item1 1 0 0 0
Item2 0 1 0 0
Item3 0 0 1 0
Item4 0 0 0 1









Fig. 1: Example of a reduced Q-matrix with one skill per item.

To some extent, Q-matrix extraction could be seen as a Rule-Space reverse
engineering exercise. The objective is to discover the Q-matrix from real response
patterns having most of the time no information regarding the ideal response
pattern and a very limited knowledge of the possible skills involved in the items.

The analysis starts from the result matrix R and approximates it as a product
of Q-matrix and student matrix S:

R ≈ Q× S. (1)

The estimates of Q and S minimize the reconstruction error ‖ R̂−R ‖ between
R and its estimate R̂ = Q × S. As explained by Desmarais and Naceur [10]
this factorization correspond to a specific interpretation of the Q-matrix called
compensatory. A compensatory Q-matrix assumes that each skill adds to the item
success. Other interpretations include the conjunctive Q-matrix, which assumes
that all skills in an item row are necessary for success, and the disjunctive Q-
matrix, which assumes that knowledge of any skill in the row yields success. The
conjunctive Q-matrix is widely used [10, 1], and as noted by Desmarais et al. [9],
it may be solved by applying the standard factorization to the Boolean negation
of the result matrix qR as:

qR ≈ Q×qS (2)

The matrix factorization framework can therefore be applied to model conjunc-
tive as well as compensatory Q-matrices making our method for evaluating and
validating a Q-matrix relevant over a wider range of assumptions.

3 Q-matrix evaluation method and validation

The evaluation considers both conjunctive and compensatory factorization mod-
els (Eqs. 1–2). Assuming R (or qR) and Q known, we evaluate how well Q would
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Algorithm 1: Q-matrix cross validation evaluation algorithm.

Data:
R: Result Matrix
Q: Q-matrix to evaluate
N: Number of cross validation folds
Result: Performance: The estimator Root Mean Square Error
Performance←− 0
Mask ←−Mask of size R randomly populated by integers 1..N
for Maski ∈Mask do

Weight←− matrix of size R populated by 1
Weight(Mask == i)←− 0
S ←−wsolve(R,Q,Weight)

R̂←− Q× S

Performance←− Performance+ performance(R, R̂, 1−Weight)

Performance←− Performance/N

predict missing values through a classical 10-fold cross validation algorithm de-
tailed in algorithm 1.

To obtain S we defined the function wsolve that uses a least squares method
provided by the function Matlab mldivide (S = Q \R) that solves the system or
linear equations Q× x = R. The function wsolve extends the function mldivide

by taking into account a weight matrix that is a boolean matrix of the size
of R having 0 where missing values are injected by the cross validation masks
(Maski). Wsolve is an implementation of the weighted least squares method1.
Instead of using directly the Weight matrix, we calculate w =

√
Weight and

solve column by column k the system (wk.×Q)× sk = (wk.× rk) with mldivide.
Thus equations containing missing values are not used in the solving of the
system.

Matlab offers many alternatives to weighted least squares like using the func-
tion fminsearch [30] implementing the Nelder-Mead optimization method over a
cost function. The Nelder-Mead [18] algorithm is based on the simplex method
for finding a local minimum. Using Nelder-Mead proved to be particularly inef-
ficient in our case because of the slow convergence rate. An improvement over
the simplex approach would have been to consider a simple or a conjugate gradi-
ent algorithm. However, gradients approach would not have been as fast as our
analytic approach. Most results detailed in the following sections were obtained
almost instantly on an average office laptop.

To validate our evaluation method, we used simulated data by defining a
Q-matrix as shown in figure 2 and a matrix S detailing learners abilities.

The student matrix S encodes the skills that each student has acquired.
Students may have acquired anything between 0 and K of these skills, so the
mapping is always ”1-N” (with N possibly 0).

1 Weighted least squares method: http://en.wikipedia.org/wiki/Least_squares#
Weighted_least_squares
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Q =





















































Skill1 Skill2 Skill3 Skill4

Item1 1 0 0 0
Item2 0 1 0 0
Item3 0 0 1 0
Item4 0 0 0 1
Item5 1 1 0 0
Item6 1 0 1 0
Item7 0 1 1 0
Item8 1 1 1 0
Item9 1 0 0 1
Item10 0 1 0 1
Item11 1 1 0 1
Item12 0 0 1 1
Item13 1 0 1 1
Item14 0 1 1 1
Item15 1 1 1 1





















































Fig. 2: Q-matrix containing all the possible items (24 − 1) with 4 skills.

Assuming binary values, the simplest student matrix encoding all combina-
tions of skills is presented in figure 3.

S =









A B C D E F G H I J K L M N O P

Skill1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Skill2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Skill3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Skill4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1









Fig. 3: Student matrix with all the possible student-skills mapping.

There are several ways of combining the information in the Q-matrix and
student matrix, depending on how we combine the item line in Q and the student
column in S:

1. Conjunctive: The student needs to have all the skills in the item to succeed.
2. Compensatory: The more required skills the student has, the more likely she

is to succeed.
3. Disjunctive: The student succeeds if he has any of the skills necessary for the

item. However, ”disjunctive models are closely related to compensatory mod-

els, in which lacking certain attributes can be compensated for by possessing

other attributes” [7].

While disjunctive approaches didn’t appear relevant to us since we didn’t
find in the literature examples of disjunctive Q-matrix generations and because
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of its link with the compensatory case, we limited the validation of the evalu-
ation method to the compensatory and conjunctive approaches creating the R
matrices illustrated by figure 4. The compensatory matrix Ra has non-binary

(a) Compensatory Ra (b) Comp. RbT > .5 (c) Conjunctive Rc

Fig. 4: Graphical representation of the result matrices. From white to black,
values in the cells go from 0 to 1.

values and cells contain the probability of success. This matrix was calculated
so that a student mastering one skill out of the two required is predicted to
have 50% chances of success. As R matrices in cognitive modeling are usually
binary matrices, matrix Rb has been obtained by applying a threshold of .5 on
Ra, converting values above this threshold to one and inferior values to 0.

Table 1: Average RMSE as computed by the evaluation method.

Data set Ra Rb Rc

RMSE (Compensatory) .2838 .3400 .4563

RMSE (Conjunctive) .2838 .5218 .1055

We ran the evaluation algorithm one hundred time and obtained the aver-
aged results in table 1. While R̂a was not rounded prior to calculate the RMSE
(Root Mean Square Error), we calculated an optimal threshold and rounded R̂b

and R̂c to calculate each fold RMSE. In the case of Ra, both conjunctive and
compensatory models provide results of similar quality making difficult to dis-
criminate from a conjunctive or a compensatory matrix. Compared to Rb, errors
obtained by Ra on the compensatory model suggests that the calculus of the
optimum threshold tends to increase the error. Finally, errors obtained by Rb

and Rc show a big difference in the predictive quality between compensatory
and conjunctive factorization validating the capacity of the evaluation method
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to discriminate properly between conjunctive and compensatory matrices in this
simulated dataset. This is particularly significant in the case of the conjunctive
matrix Rc that provides almost perfect predictions in a conjunctive factorization.

Table 2: R reconstruction coverage measure in percentages.

Data set Ra Rb Rc

Av. best coverage (Compensatory) 85.90 94.89 90.04

Av. best coverage (Conjunctive) 85.90 91.53 99.69

In table 2 we calculate the percentage of similarity between each cells of R and
R̂. Usage of weighted least square computations algorithm leads almost every-
time to a perfect retrieval of Rc with the conjunctive model. Compared to the
RMSE calculation, coverage does not only measure the accuracy of predicting
the missing values. It is also a measure of the model stability since non missing
values can differ in R̂. Conjunctive matrix recovery is particularly stable with
the conjunctive model.

4 Datasets

We considered four different datasets in our study. Some of them are available
through the Cognitive Diagnosis Modeling (CDM)2 package freely available with
the statistical toolkit R. The selection process was guided by our will to experi-
ment on real datasets with Q-matrices designed by cognitive modeling experts.
Therefore we discarded from our selection process datasets with questionable Q-
matrices origin and simulated sets. Each dataset is composed of a result matrix
containing performances of the students to the same set or items and a Q-matrix
associated the same set of items to a list of skills. There is no missing data either
on the R or Q matrices and both of them in each set are binary matrices.

The first dataset is a very well known cognitive model designed by Tatsuoka
[26, 27] involving 2144 middle school students answering 20 items (see table 3)
on fraction algebra. Eight skills were identified to answer correctly those items
as follow [7]:

1. Convert a whole number to a fraction,
2. Separate a whole number from a fraction,
3. Simplify before subtracting,
4. Find a common denominator,
5. Borrow from whole number part,
6. Column borrow to subtract the second numerator from the first,
7. Subtract numerators,

2 CDM: http://cran.r-project.org/web/packages/CDM/index.html
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(a) Tatsuoka (20x8) (b) Desmarais (20x8)

(c) Delatorre A (15x5) (d) Delatorre B (15x5)

Fig. 5: Graphical representation of the Q-matrices used in our evaluation. Black
cells are populated in the Q-matrix by ones while white cells are associated with
zeros.

8. Reduce answers to simplest form.

As all the required skills need to be present to answer properly each item, this
dataset is intrinsically conjunctive [10]. The next datasets are all related to this
first one.

The second dataset proposed an ”improved” version of initial Tatsuoka’s
Q-matrix. This refined Q-matrix was automatically discovered by a matrix fac-
torization method proposed by Desmarais and Naceur [10]. This new Q-matrix
contains the same number of skills but the mapping of skills 3 (Simplify before
subtracting) and 8 (Reduce answer to simplest form) is slightly different as illus-
trated by figure 5b. Though this Q-matrix was not fully generated by an expert,
it was evaluated and compared to the original Q-matrix on a previous paper [10]
making it a good candidate to validate or not our method.
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Table 3: Items of Tatsuoka’s Fraction Subtraction dataset [8].

1. 5

3
−

3

4

2. 3

4
−

3

8

3. 5

6
−

1

9

4. 3× 1

2
− 2× 3

2

5. 4× 3

5
− 3× 4

10

6. 6

7
−

4

7

7. 3− 2× 1

5

8. 2

3
−

2

3

9. 3× 7

8
− 2

10. 4× 4

12
− 2× 7

12

11. 4× 1

3
− 2× 4

3

12. 1× 1

8
−

1

8

13. 3× 3

8
− 2× 5

6

14. 3× 4

5
− 3× 2

5

15. 2− 1

3

16. 4× 5

7
− 1× 4

7

17. 7× 3

5
−

4

5

18. 4× 1

10
− 2× 8

10

19. 4− 1× 4

3

20. 4× 1

3
− 1× 5

3

De la Torre [6, 5] used as well two datasets derived from the initial Tatsuoka’s
536 students by 20 items dataset. This time, the R matrix was modified as
a subset of 536 students by 15 items and two smaller Q-matrices (A and B)
containing only 5 skills were introduced. The 15 items was composed of items
2, 4, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19 and 20 following the numbering of
table 3.

Each Q-matrices A and B were designed according to a specific solving strate-
gies [17, 6].

Table 4: Skills of Q-matrices A and B.

Skills in Q-matrix A Skills in Q-matrix B

1. performing basic fraction subtraction
operation,

2. simplifying/reducing,
3. separating whole number from frac-

tion,
4. borrowing one from whole number to

fraction,
5. converting whole number to fraction.

1. performing basic fraction subtraction
operation,

2. simplifying/reducing,
3. converting whole number to fraction,
4. converting mixed number to fraction,
5. column borrowing in subtraction.



10 Guillaume Durand, Nabil Belacel, and Cyril Goutte

5 Experimental results

The evaluation algorithm was executed one hundred times on all the datasets and
the average RMSE as well as the Mean Absolute Error (MAE) were calculated
on normalized R̂. The normalization consisted in converting to 0 negative values
and values above one to one prior to calculate the error at each iteration of the
cross validation.

Table 5: Results obtained by the Q-matrix evaluation method on expert-made
Q-matrices.

Dataset (a) Tatsuoka (b) Desmarais (c) Delatorre A (d) Delatorre B

RMSE (Compensatory) .4270 .4064 .4251 .4911

RMSE (Conjunctive) .4051 .3810 .3969 .4374

MAE (Compensatory) .2737 .2537 .2633 .3417

MAE (Conjunctive) .2531 .2353 .2321 .2893

Results obtained (see table 5) shows better results with conjunctive factor-
ization model for all of the datasets. The cognitive models tested were designed
to be conjunctive and the evaluation method was able to discriminate properly.
The second result is regarding the automatically improved Q-matrix (b) that
proves to be significantly more predictive with our method than the original Q-
matrix (a) both with the compensatory and the conjunctive models. The results
for matrix b obtained with our 10-fold non-stratified cross validation tend to
support the results Desmarais and Naceur [10] obtained with their item strat-
ified method. They calculated the MAE for the Tatsuoka’s dataset with the
original Q-matrix (a) (MAEconj. ≈ .175,MAEcomp. ≈ .190) and their improved
Q-matrix (b) (MAEconj. ≈ .155,MAEcomp. ≈ .155)) and obtained lower errors
but leading to the same conclusion.

Q-matrices (c) results are comparable to results obtained by Q-matrix (b)
and slightly better than Q-matrix (a). This might advocate for a predominant
strategy A over the alternative strategy B since Q-matrix (d) results are not as
good as the previous ones. The cognitive strategies involved in the solving of
the items and implemented in Q-matrices (c) and (d) might not be split in such
exclusive way. It would be interesting to validate this assumption by attempting
to split R by student strategies and reevaluate how Q-matrices (c) and (d) would
perform.

The evaluation of simulated data has shown that the proposed method was
almost perfect in the full conjunctive. With real data we can see that the error
measured is more important. We assume that the difference observed is basically
coming from several factors. The first factor is the Q-matrix quality and definitely
the purpose of our work. Depending on the solving strategies identified by the
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expert, different Q-matrices can be proposed and their goodness of fit is variable
as shown in the obtained results.

The second factor comes from the nature of education that may differ from
other matrix factorization application domains. One major assumption of Rule-
Space, we mentioned at the beginning of this paper, is that items should require
only the students mastery of specific skills to be successfully completed. However,
in practice students not having the skills can also succeed (by guessing the
answer) and student having the required skills may also fail (slip into an error).
As the linear model induced by matrix factorization is deterministic, it does
not take into account those parameters contrary to other probabilistic cognitive
diagnostic models like DINA [12]. Q-matrices (c) and (d) were studied in [6] with
DINA, a model having guess and slip parameters, but the authors were interested
in the capacity of DINA to fit the dataset. Intuitively, one would expect that
Q-matrices misconceptions should produce a smaller residual error that would
be compensated by the probabilistic parameters (guess and slip parameters for
DINA) making difficult to discriminate the influence of the Q-matrix compared
to the estimated parameters in the model goodness of fit. Adding parameters to
a predictive model make the evaluation of the Q-matrix more difficult since the
expert misconceptions can be more easily compensated. Some researchers were
able to observe and study more in detail this phenomenon.

6 Related Work

Rupp and Templin [20] evaluated the impact of ill-defined Q-matrices on the
DINA [12] model using a simulation dataset. Considering 4 attributes, and sub-
sequently 15 items, they generated 10000 respondents answer using a normal
distribution of skill patterns. They defined Q-Matrix misspecification conditions
by eliminating blocks of items (adding or removing skills for specific items) and
representing incorrect dependency relationships (adding or removing skills when
specific skills are present or missing). Under the effect of misconceptions, and
depending on the category of misconceptions, the estimated guess and slip val-
ues became larger than the initial ones while the respondent misclassifications
(learner skillset wrongly inferred) correlational measures (Kappa, Lambda, etc.)
didnt necessary lead to significantly different results from the calculated value
using the original Q-matrix.

Jimmy de la Torre [4] proposed an empirical method to validate a Q-matrix
for DINA [12] as well. De la Torre observed from his δ-method and like Rupp and
Tremplin [20] that small guess and slip parameters are sufficient but not neces-
sary conditions to establish model-data fit. Therefore, he defined an optimization
function that maximizes the difference of probabilities of correct response be-
tween examinees who have all the required attributes and those who do not.
This difference of probability characterizes a discrimination index called δ that
changes according to the item q-vector. A bigger δ would characterize a bet-
ter q-vector and ultimately a better Q-matrix. De la Torre method proved to
be successful at discriminating both simulated and real q-vectors. However the
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δ-method requires as input estimates of the guess and slip parameters that are
variables from one item to the other.

Desmarais and Naceur [10] proposed a stratified cross validation mechanism
to evaluate and compare improvement in Q-matrices in a matrix factorization
model as presented in this paper. Instead of randomly injecting missing values
as proposed in our evaluation method they calculated in turn expected results
to each item given the outcomes obtained on the 19 others (fig. 5a). For each
iteration, S is calculated based on a 19 items Q-matrix. Then R̂ is computed with
the full Q-matrix and missing values in R̂ compared to R are replaced by the
”geometric mean of the average item difficulty and the examinee ability over the
19 given items”. Therefore the error calculated add or withdraw to the Q-matrix
goodness of fit the error coming from the heuristic to replace the missing values
in R̂. The error calculated may rather measure the heuristic than the Q-matrix
goodness of fit in case where a lot of missing data would occur for the tested
item.

7 Conclusion

We proposed in this paper to evaluate the predictive quality of expert-created
Q-matrices in the context of matrix factorization recommender systems. The
presented method has proven to be an efficient way to evaluate the predictive
quality of conjunctive cognitive models. On the validation datasets, the model
was able to fit the data in the case of a conjunctive R-matrix associated to the
conjunctive factorization and experimental results supported results obtained by
prior research studies [10]. As mentioned [2], matrix factorization models lead
to prediction errors that are comparable to other cognitive diagnostic models.
We were able to evaluate Tatsuoka’s original dataset (a) with the item response
theory model used by PSLC Datashop [13] and obtained for an unstratified
10-fold cross validation an rmse of 0.3751. The weighted least squares algorithm
handles missing values without replacing them. This feature is particularly inter-
esting for incomplete dataset. PSLC Datashop [13] offers numerous dataset with
missing data and we were capable with very limited modifications to apply our
method and to compare our results with the results obtained by the platform.
Considering the dataset DS 605 [19, 21] and the Q-matrices (aka Knowledge
Component Models in Datashop) ”KTracedSkills” and ”Rules” we obtained an
rmse of 0.3471 (compensatory) and 0.3249 (conjunctive) for ”KTracedSkills” and
0.2675 (compensatory) and 0.2183 (conjunctive) for ”Rules”. Results obtained
are consistent with the unstratified cross validation rmse of 0.304451 (”KTraced-
Skill”) and 0.186956 (”Rules”) computed by Datashop. Those results comfort
the potential of the proposed method to be used in practical cases where learn-
ers do not perform the same items, or progress at different paces. In this case,
uncompleted items should not necessarily prevent the Q-matrix to be tested and
iteratively improved in parallel with the testing activity. Beyond the exercise of
evaluating expert-based Q-matrices, this evaluation method could allow practi-
tioners to quickly evaluate cognitive models they design without requiring more
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sophisticated cognitive diagnostic models using multiple parameters and their
sometimes heavy associated knowledge. This could prove to be particularly use-
ful in technology enhanced learning environment to design competency-based
learning functionalities that may be more accurate.
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