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PREFACE

Safety factors now in use in structural design have the important
function of ensuring safety in structures at an economically tolerable
level. These safety factors have been arrived at through a long process
of trial and experience with little application of any scientific analysis.
The Division of Building Re search, NRC, through its Building Structure s
Section, has undertaken an inve stigation of structural safety and thus is
reviewing not only the safety factors themselves but also the procedure
in which they are applied in practice. The five articles comprising this
Technical Translation are particularly relevant to this part of the project.

Because of the extreme need for additional building construction
in the USSR, special efforts have been made in that country to review,
and if necessary revise, design rules for structural safety and performance.
As a result, a new approach to the design of structures - design by
"limit state s" - was tried and adopted. This approach is gaining acceptance
in Europe for design of reinforced concrete structures. Briefly, this method
defines the conditions that determine the design of a structure (strength,
deflection, cracking, etc.) and attempts to base safety factors on probability
of failure, i. e. of realizing the "limit state ".

Even for limit state design, safety factors are still partly based on
experience rather than on probability of failure. The following first four
articles describe a method of determining safety factors more directly on the
basis of probability of failure and statistics. Many simplifying assumptions
were made by the authors, but because the method attempts a more rational
basis, it deserves consideration by engineers and code writers. The fifth
article is a review of the development of probability methods for the design
of structures in the USSR.

The translations were prepared by a member of the DBR Building
Structures Section, Dr. D. E. Allen. The assistance of Mr. G. Belkovof
the Translations Section of the National Research Council of Canada in
checking the translations is gratefully acknowledged.

Ottawa
July 1969

Robert F. Legget
Director
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IT IS NECESSARY TO IMPROVE THE STANDARDS OF

DESIGN OF BUILDING STRUCTURES

(Neobkhodimo sovershenstvovat' normy rascheta
stroite1'nykh construktsii)

A.R. RZhanitzyn

Stroite1'naya Promysh1ennost'

(8): 29-32,1957
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Rzhanitzyn - ImDroving Structural Desi~n Standards 2 .

The method of designing bUilding structures by limit

states is based on a number of advanced ideas concerning the

reasons for, and the nature of, violations of the safety conditions

of the structure. In particular, one of the Drinciple factors,

subject to calculation in fixing the safe dimensions of the

structure and safe loads, is the statistical scatter of the values

used in the design. This scatter depends on causes of technol

ogical sequence or on the conditions of use of the structure and

results in the fact that each design quantity can take different

values, which can be determined beforehand only with some degree

of probability.

Furthermore, in the method of design by the limit

state, conditions unacceptable in the performance of the structure

are formulated and are called the design or conditional limit

states. Finally, in this method, instead of one safety coefficient,

three calculation coefficients are introduced: one for overload,

one for uniformity and one for the performance conditions of

the structure.

The transition to the new method of design of struct

ures helped the engineer to give up antiquated habitual ideas on

design by the allowable stress and put before him a number of new

questions. At the same time, one should not overlook some inconsist

ency of the design method by the limit state, as a consequence of

its incomplete development.
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The first shortcoming of the design method by the

limit state is that all the limit states are considered identic

ally inadmissable for all types of buildings and structures and

for all elements of the structure. The definition itself "limit

states" is inaccurate and scholastic. It considers that the

structure in the limit state loses the capacity to resist external

action or ceases to satisfy its use requirement. However, the

concept of use requirement is very vague in so far that the use of

the structure can be obtained with different de~rees of convenience

in different conditions as determined by the degree of safety of

the structure. Moreover, one cannot consider absolutely inadmis

sable interruptions of the normal use of the structure when repairs

have to be made. Therefore, the limit states are not equally

dangerous, and their occurrence should be avoided much more when

there may be severe consequences, and less when the limit state

threatens nothing but small inconveniences or troubles.

For example, the limit state determined by exceeding

the carrying capacity of the main members of the building, i.e.

columns or roof trusses which threatens catastrophe, cannot be

set on the same level as the limit state of a truss for skylights,

in which case the only possibility is its repair or replacement.

However, according to the existing standards the design in both these

cases must be made with the same design coefficients and design

values.
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Thus, the first shortcomin~ which must be overcome

in workin~ out a new edition of the standards is ignoring the

consequences of passing beyond the calculated limit states.

4 .

The second important shortcoming of the approved

standards is the incorrect procedure in accounting for the joint

action of the statistical scatter of several quantities taking

part in the deisgn formula. It is clearly evident that the

coefficient of material uniformity corresponds to a particularly

unfavourable case of material of the very lowest quality occurring

in the structure. In an overwhelming majority of cases the

quality of the material in the structure will be better. In

precisely the same way, the overload coefficient corresponds to

the same exceptional occurrence, i.e. when the load has an extremely

high value, whereas during its normal use, as a rule it will not

exceed the standard value. In combining several variable quant

ities in the same design formula, the introduction of limit values

of the uniformity and overload coefficients for all initial design

quantities corresponds to the hi~hly improbable case of simultaneous

coincidence of all unfavourable events, i.e. an occurrence of the

greatest stress in parts of the structure where the material is of

the lowest quality and simultaneously all loads are at their

maximum values.

If the standard design quantities, i.e. the coefficients

of uniformity and overload, were determined on the basis of rigorous

methods of mathematical statistics, the application of the described
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method would lead in the maJority of cases to a highly over-

engineered structure.

The way out of the situation that was found was,

unfortunately, not prompted by science. Instead of rejecting

the principle of joint consideration of the design coefficients

given in the standards, and using the well-known methods of math-

ematical statistics which have justified themselves in other areas

of technology, the coefficients of uniformity and overload and

the corresponding normative quantities were adjusted, so that the

results of design calculations by the new standards corresponded

approximately (with some minimum economy) to the results of design

by the old standards, on the assumption that they were justified

in practice. As an explanation to the 'method of design by the

limit state, one of the authors of this method says "Thus, the

method of establishing the design coefficients is based on the

following:

(I)

( 2 )

( 3 )

DistriGution curves of the indices of strength,

the magnitude of loads, etc. are constructed.

On the basis of these curves, preliminary values

of the coefficients are calculated by the formulae

of mathematical statistics.

On the basis of the coefficients calculated in

paragraph (2), a test design is made.



( 4 )
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The coefficients obtained combine with each

other since they act jointly. A good method of

combination is formulating a test design.

The results of the test design are compared

with the data of use of different structures. The

results of the test design are not compared with

separate data, but with all the available data in

aggregate on the use of any form of bUilding or

structure.

6.

(5) On the basis of the analysis made the final

values of the design coefficients are established."

Such a method of establishinv the numerous co

efficients taken in the standards in practice means that they are

adjusted to the results obtained by designin~ structures according

to the old standards. The data of use of the structures require

introduction of some correctives, which were always made earlier

in the process of a more precise definition of the old standards.

The complexity of fixing the design coefficients

renders impossible a critical appraisal of standard data and of

introducing corrections and a more precise definition of the standards

based on new results on the scatter of design values in the transition

to a more advanced construction technology or to an improved use of

structures. At the same time, this method does not provide
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identical safety of structures, since the method of limit states,

being corrected for one number of variable design quantities of

definite degree of variability must without fail lead to decreased

safety of structures when a smaller number of variable factors

are considered in the design, and to an uneconomic solution when

a larger number of variable factors are present in the design.

7.

The standards also contain other principle short

comings, in particular the presence of coefficients of performance

conditions which must consider all other favourable and unfavourable

factors without any kind of procedure or scientific basis for

fixing these coefficients.

Nevertheless, it is fully possible to use the theory

of calculation of structures in its present state to formulate

standards, based on a strict scientific procedure of calculating

the statistical properties of design quantities, which can provide

in all cases the necessary safety of structures at the maximum

economy of building materials. Such a procedure has already been

worked out long ago in the Laboratory of Building Mechanics TsNISK,

where a plan of basic principles was drawn up for new standards of

the desigp of structures. This plan provides a simpler definitive

procedure of desi~n, based on the application of general safety

coefficients, which have different values for each type of element

of the structure working under specific conditions of use. The

plan gives a procedure for computing the safety coefficients,

differentiated not only by the type of structure and construction,
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but also according to the elements of design of these structures.

The principle of this methodology consists in the following.

The possible combinations of design quantities, which

have to do with the external actions (loads, temperature, settle-

ment of the structure, etc.) and the parameters determining the

Geometric dimensions and mechanical properties of the material

of the structure, must be defined as the most unfavourable for

8.

the calculated element of the structure. If, as usually occurs,

a number of design quantities are quantities without a definite

value which obey the statistical distribution laws, then an un-

favourable combination of the design quantities are taken so that

the sum probability of occurrence of this combination and even

more unfavourable combinations in the course of the selected period

of service of the given element of the structure, must be equal to

a sufficiently small magnitude, determined as depending on the

character of the consequences of the occurrence of these unfavourable

combinations.

In some cases the violation of design conditions of the

performance of the structure leads to the destruction of the whole

structure, which must not be allowed in practice. Thus the

theoretical probability of destruction is taken to be a very

small probability. In other cases, such a violation requires

only the repair of the structure. Thus the probability that the

state of the structure is such as to require repairs, V, can be

determined from the condition that the quantity

c = c + V c.o p ( 1 )
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is at a minimum, where C is the original cost of the structure
o

9 .

and C is the cost of its repair, including loss from interruption
p

of the normal use of the structure.

The quantity C is the mathematical expectation of

expenditure, connected with the erection of the structure and its

maintenance in a satisfactory state during its use.

Since design by formula (1) can be shown difficult

because of insufficient development of the economic calculations

in the construction, at first, conditional values of the probability

of exceeding the limit state assumed in the design can be recommended

as tentative data. Considering that the distribution of the

resulting quantity of any calculation formula, usually differs

little from the normal distribution, instead of the probability

of the resultin~ quantity exceeding its limiting value, the quantity

~ , functionally connected with probability, and equal to the

number of standard deviations of the limiting deviation of the

resulting design quantity from the average value, can be used.

The quantity ~' is called the safety characteristic; in the exist-

ing standards it corresponds to the number of standard deviations

away from the mean value of the variable to its greatest or

smallest design value, and preferably assumed to be three.

As tentative initial data for the safety characteristic,

the followin~ values can be named:

( 1 ) For load-bearin~ elements of large buildin~s and

structures, where their failure in a system of these
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elements signifies destruction of a catastrophic character:

10.

(a) for the usual buildin~s and structres

(b) for especially important structures

\ = 4

6 = 4.5

(2) For protecting structures and such load-bearin~

elements, whose failure does not signify catastrophe but

only requires urgent repairs:

(a) for the usual buildings and structures

(b) for important structures

(c) for structures of the temporary and li~ht

type

1 = 3

~. = 4

~. = 2.5.

(3) For such elements of buildin~s and structures, damage

of which does not cause serious conseqeuences, in which the

damaged elements can be replaced without difficulty, ~ = 2.

To evaluate the sufficiency of the proposed values of

r , we find the corresponding probability V of collapse in the case

of the normal distribution law: for '6' = 4.5, 4, 3, 2.5 and 2, V

is respectively 3 x 10- 7
, 3.2 X 10- 5,1.35

X 10- 3,6.2
X 10- 3

and 2.28 x 10- 2
•

The cited classification of elements of structure can

be afterwards somewhat modified, and the values of the safety

characteristics must be made more refined.

After this each element of the structure is put into

one category or the other and the corresponding safety characteristic
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is assigned to it; the design of this element for safety is made

11.

by the usual methods of mathematical statistics.

calculation system can be proposed.

The following

1. The overload coefficient is determined for all loads,

acting on the given element, according to the formula

.!!..Here k is the overload coefficient; is the variabilityp q

of the load, equal to the standard deviation of the load divided

( 2)

by the average (expected) value. For several loads acting on

the element the average value of the total load is determined

by way of summation:

( 3)

and the standard deviation of the total load is taken as the

average quadratic of the standard deviations of the separate loads

S = .. / Sq' + Sq'+ S' +...
q V·, q. ( 4)

II. The repetition or duration of action of the load can

be calculated separately. It is evident that for repeated or

long-acting variable loads the probability of reaching their

maximum value is increased. Therefore, in these cases in place

of the average value and the standard deviation of a singly-applied

load, the average value and the standard deviation of the maximum

of the load is taken for the considered period of time. This can
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be given by the approximate formulae

Q=Qo+3,S.Sr:.(1- ;rln); S=~q 4 •

yn ( 5)

where n is t~e number of applications of the load; qo and 5'/0

are the average value and the standard deviation of the singly-

applied load. For continuously variable load the singly-applied

load must be considered as the maximum during a specific interval

of time, and the number of loads, n, is given by the particular

division of the term of service of the structure into this inter-

val. This interval must not be too small otherwise the values

of the load in two neighbouring intervals may not be independent(2).

III. The uniformity coefficient for the strength character-

istics of elements of the structure is determined by the formula

I 1 s;
/,'= + ... -'II. j r •

where kll is the uniformity coefficient; r is the average value

and ~. is the standard deviation of the strength characteristic.

( 6 )

The quantity r is determined by the usual formulae of

the theory of structures, using the mean values of the initial

design quantities. The standard deviation of the strength

can be determined by the approximate formula

(7)

where are the standard deviations of the initial design

(2) For the basis and derivation of formula (5), see A.R. RZhanitzyn
"Design of Structures Takinp; Account of the Plastic Properties of
Materials", Grosstroiizdat, izd.I, 1949.
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quantities; a, b, c, are the initial design quantities

13.

entering the formula of the theory of structures for the strength r.

rJr rJr Or
The partial derivatives ~.--,-- are taken at the

v" 0b . de

average values of the quantities a, b, c . ..... The basis of

this formula is also in the book mentioned.

IV. In many cases the strength of the structure is deter-

mined by the strength of the weakest element, where destruction of

this element means destruction of the whole structure, as for

example, in statically determinate systems. Thus it is necessary

to find the average value and the standard deviation of the minimum

strength of the elements of the structure, which can be given by

formulae analogous to those which are recommended for the finding

of the average value and standard deviation of the maximum load

from a number of repeated loads

R=r-315s,(1- 4 I )
Y II

s~ = $,
-,

( 8)

Here R is the mean strength of the whole structure; sr is the

standard deviation of this strength; n is the number of completely

stressed elements of the structure, failure of which leads to

failure of the whole system.

It is assumed that the strength of all these elements

has the same average value r and the same standard deviation s ,
r

which is correct in the case of identical material of the elements

and the same design stress in them. The understressed elements

need not be considered in the number n, because the probability of

their failure is very small.



v.
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Having found the overload coefficient k and the
p

14.

uniformity coefficient k from the final values of variabilityo

of the strengths and loads by formulas (2) and (6), it is possible

to obtain the necessary safety coefficient, ~, for the examined

element of the structure by ,the formula

The safety coefficients, determined by the described

method for separate but similar elements and structures, will

differ very little and they can be readily grouped in order to

standardize the averaged safety coefficients for each group of

elements and structures of any type.



STATISTICAL METHOD OF DETERMINING STANDARD STRESSES

FOR STEEL STRUCTURES

(Statisticheski1 metod oprede1en1ya normativn1kh
napryazhenii d1ya sta1'n1kh konstruktsii)

B.I. Be1yaev

Stroite1'naya Promyshennost'

(3): 32-37, 1954

15.



Belyaev - Statistical Method for Steel Structures

At a conference held to discuss the method of design

of building structures by limit states, organized under the

authority of the Praesidium of the Academy of Sciences, USSR at

the end of 1953, it was noted that in this method the breakdown

of the general safety factor into three separate safety factors -

homogeneity of material, overloads, and performance conditions -

makes it possible to evaluate more precisely the influence of

the different factors allowed for by these coefficients on the

carryin~ capacity of structures than design by allowable stresses.

However~ a simple multiplication of the separate

safety factors does not give a correct idea of the joint influence

of the factors on the total reserve of strength of elements of

the structure.

Prof. A.R. Rzhanitsin, in the article "Application of

statistical methods in the design of structures for strength and

'3 afety", Stroi te 1 'nay a Promyshlennos t ' , No.6, 1952, showed that

the combination of two of these factors - overload and uniformity

of material - must occur according to the laws of mathematical

16.

statistics and the theory of probability. This circumstance was

also given attention at the conference of the Academy of Sciences USSR.

For the determination of stress in elements of steel

structures a number of physical and geometrical quantities should

be considered: the loads P , P , P , the yield point of
1 2 n

steel aT' the ~eometrical parameters of the cross-section of the
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element - area F, section modulus W, static area-moment of the

section S, the coefficient of decrease ~ of the design stress

in longitudinal bending of centrally loaded bars, etc.

According to the present method, the coefficient

~ is a function of the flexibility and initial curvature of the

element, and also of unavoidable eccentricity in the application

of the force not considered in the design.

17.

All these quantities are in essence random (in

mathematical conception), i.e. for a number of reasons they can

have different values. It can be considered that their deviations

from the average values obey the normal distribution.

The application of the normal distribution for the

yield point of steel is confirmed by repeated statistical processing

of the results of mechanical tests of steel (in factory laboratories)

used for steel structures.

According to the data of TsNIPS for steel St3

manufactured in recent years, the average value of the yield

point is 2900 kv,/cm 2 and the standard deviation is 223 kg/cm 2
•

The distribution curve of the greatest values of the

depth of snow cover, given in the book "Steel Structures" edited

by N.S. Strelestkii (p.32), is established without difficulty as

being near to the normal law with average thickness of snow cover

46 cm. and standard deviation 17.5 cm. Undoubtedly, the same

type of distribution also fits the wind loads.
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On the basis of design information it is possible,

for example, to take for the pressure on the roller of an

electric bridge crane with carryin~ caoacity 20/5 T and span

16.5 m, a distribution curve with averav,e value 17.1T and

standard deviation 3.7T.

The values of the geometric characteristics (the

area, section modulus, static moment) of sections comoosed of

rolled profiles, obey the normal law.

The random character of the value of initial crook

edness of the element and uncalculable eccentricities in the

application of axial forces in centrally loaded columns is

confirmed by a number of investigations.

In connection with the circumstances set forth, to

obtain a proper definition of design stresses the method of

the theory of probability should be applied.

In the method of desiv,n of steel structures by the

limit states, only the yield point of steel is considered as

a random quantity, and the loads as quantities havinr. definite

values (standard values, increased by overload coefficients).

18.

Thus, usin~ the method of desi~n by the limit state

in its present form, just as with the method of design by allow

able stress, it is impossible to solve the problem of designing
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steel structures having identical reserve of strength in all

elements, and consequently without excessive expenditure of

material.

It is possible to correctly solve this problem if

the determination of the amount of standard stresses proceeds

from the fact that the majority of the quantities, entering

into our static calculation, are random.

The theoretical part of the problem is now examined.

19.

1. Axial Tension or Compression (without consideration of longitudinal

bending) .

On a rectilinear column act independent loads,

P , P , Pn in the form of single or clustered forces.
1 2

The stress in the column,
'----
v -- F .

According to the method of design by the limit state

for strength, we take as a design limit state of each element

of the structure the reaching of the yield point of steel by

the local stress in the dangerous section.

We introduce the auxiliary quantity

, ,::p
1\ --"" -" 0_=" - ---

I - r F' ( 1 )

which characterizes the fraction of the carrying capacity used

by the material of the bar.
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R is a function of random quantities and is itself

a random function with mean value equal to zero.*

The deviation of the quantity R, whose exceedance

has the same probability as exceedance of the deviation of the

yield point 60 T, the load 6P and the cross-section area 6F, can

be found by the equation:

,j.R = ..,If ~:? \2~-;2~_:~-(-a/?)2t.P2+(iJR)2t.F2.
: \ Chr ) r, L...-< iJP iJF

From equation (1) we find:

-.=--
of F~

and

20.

( 2 )

that*

We introduce the designation c = kCT'

~R = ar - J ~ Or (1 - k), there fore

It is evident

The equation for the determination of the coefficient

k will have the final form:

( 3)

where k is the inverse of the coefficient of safety, guaranteeing

that in elements of a steel structure used for an indefinitely

long period, the stress from the loads does not reach the yield

* Translator's note: The reasoninv, v,iven on p.20 r,ives the same
result, equation (3).



Each of these loads
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point of steel with the same probability that deviations of aT'

P and F can exceed their largest possible values.

2. Transverse Bending

In the general case of bending, the moment in the

design section of a bar or beam is the result of the action of

independent loads P , P , P , P .
1 2 3 n

can consist of a group of concentrated or distributed forces.

The fibre stress at the calculation section
~M

0=--0
W

As in the above, we introduce the quantity
. 1MR ~ a _00 = 0 --

r T W •

Analogously to the axial tension or compression,

21.

( 4)

The section modulus of the section W = sF (s is the kernel distance),

and therefore it is possible to take

a W,= ssr.
Then

and introducing a = ka~ we obtain for determining the coefficient
~ ,

k the equation

( 5)
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Combined Action of Tension or Compression Force and Bending Moment

(a) The bending moments and longitudinal forces are inde-

pendent quantities. In this case,

r.p ~M s r. P+ l:M
a -= -p +-W = --\-'-V-

where s is the kernel distance.

The quantity

We find 6R by equation (2)

eu aR DR s--.-= .. -= ... =~=-;
aP I cJP~ apn W

aR aR eu 1
-=- = ... = -----=-;
aM. aM~ dMn \V

ill? ' sr.? + tM
aw= - . \V~ ;

Introducing a = kaT and aW = SLP + LM, we obtain

the equation for determining k:

1 ,,' \ ')' j ,'\ \ IZ A r ] !J.o 2
(1 - l:f = I~'"' i ,'_~I --,- .; -- _1_ U_. -- -I- -:;,- .

I (,,:.:/'- i :':.11)" I F' 0 1-

( 6)

(n

(b) The bending moment and the lonr,itudinal force are

dependent quantities.

Each bending moment,

""I n = t, (P,,);

'1 (1 P ,l.r.•> = G.'p........ M
"

= Gn'Pn•I~' I = I I' • ,
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where a , a
1 2

a are constants.
n

Then

, ..\, • I" : \'.\ "1'/) ...- \'(a2 .L, S~)~p2.,s-_..:.J..-'- ............ _...,J.;.,j, ...· --~ I ,

s'..:.P :;- '..:.M == ~(s + a) P. .

By analogy with the previous case we obtain:

4. Tension and Longitudinal Bending of Bars with Random Initial

Curvature of the Bar (Deflection Yl)and Ecentricity Y2 in the

Application of Force P

( 8 )

Random crookedness and eccentricity of the applied

force are possible for both compression and tension bars, and there-

fore their influence on the reserve of strength must be considered

in both these cases. In the tension bar the fibre stress at the

calculation section can be expressed as:

a = a +" a). ~-(I'-'__1 ) +~o~ (I _i.~.).• 0 0 p n%E ~2E \-+1 _+1
. ).2 ao ).2ao j

In this formula: ao
= P

F is the stress from the long-

itudinal force P; e is the distance from the centre of gravity

to the edge of the section;

of the bar.

is the flexibility

The quantity
r ( .)Pel ,

R =. a - --ll + 0.1.. -- I - ---.- -r ~
T F ? ~f._- -\- 1

1..2ao

( 9 )
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oI, 1
OJ; = F";

For mean values a = S = 0

,
and after substituting a = k a

~ 0 T'

(

4 )21- _'" U~2
2£ '

'" 1
';..2k'G

T
+ .

or

(

1
1- r:.2E

).2k'GT + 1

\2
) b.'+
•

)

2 ~112+(1 - _2; J~~~]+ ~=~2 •

~+l G
T

, 'Ph'aT ,

( 10)

According to TV (specifications), in the manufacture

of steel structures 6a must not exceed .001; this requirement is

often not met. Therefore it is safe to consider 6a = 0.002.

The mean value of the random eccentricity was determined

by a number of investigators as (.06 to .07) s; 66 can thus be

taken equal to

3 x 1.2533 (.06 to .07) = .225 to .263 ~ 0.25.

In this calculation the number 1.2533 is the transition

coefficient from the simple avera~e to the standard deviation for

a quantity obeying the normal distribution.

Compression and Longitudinal Bending with Random Initial Curvature

(Deflection Yl) of a Bar and Eccentricity Y2 in the Application of

the Longitudinal Force
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The fibre stress at the calculation section of

25.

the bar,

The designation in this formula is the same as in

the previous case.

By analogy with tension and longitudinal bending

with random eccentricities and initial curvature of the bar, we

obtain
;,

\ ~ I
11 _ /.,,) __ I."~ I.

\ ' ... -- tv ;

where

(11)

6. Determination of the Standard Stress

Making use of the above formulae, we find the magnitude

of the standard stress for di~ferent cases of the influence of

forces on elements of the structure.

For random quantities, obeying the normal distribution,

the largest practically possible deviation is usually taken as 3(0),

where (0) is the standard deviation.

The probability of exceeding such a deviation both

above and below the average is sufficiently small - 0.00272, and

in one direction only - half as much, i.e. 0.00136.
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As stated above, the yield point of steel St3

presently has an average value of 2900 kg/cm 2 and a standard

26.

deviation of 228 kg/cm 2
• For the following calculations we have

= 3 x 228 = 684 kg/cm 2

= 0.236.

and

The greatest deviation of the cross-section area of

different rolled profiles, calculated according to the negative

tolerance of the dimensions of the sections, is given in Table 1.

According to the data of this Table, it is possible

to take

6F
F

= 0.14.

For different types of loads the ratio 6: has different

values. In designing industrial structures by the limit state

method, the overload coefficient was established for dead load as

n = 1.1, and for live load as 1.1 to 1.4.

live loads n = 1.4.

For the majority of

In our equations the deviation is the greatest possible

from the averav,e value of the load.

In design by the limit state method the overload co-

efficient determines the deviation of the amount of the load from

its standard value, which, as a rule, will be higher than the average

value.
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It is easy to show in specific examples that in

desi~n by the examined method it is possible to consider both the

average value of the loads and their greatest deviation, and also,

the standard values of the loads with overload coefficients.

The deviation of the loads 6P from their average or

standard value must account not only for possible chan~es of the

magnitude of the loads themselves (the forces), but also for in-

27.

accuracy in the determination of the forces because of the discrep~ncy

between the actual performance of the structure and its performance

according to the design plan.

From equation (3) it follows that the standard stress

must be different depending on the ratio between the magnitudes of

loads acting on the structures, i.e. depending on the cited ratio

6P Vi~p~--=-
p z»

Table 2 gives the values of the coefficient k, by

which the design force for the element of the structure must be

decreased, and the cited overload coefficient n' , by which the value

of the standard stress at ~p = 0 must be divided. For comparison

with n', the value of the overload coefficient n for design by the

limit state method is also given.

Figure I shows curves of the values of the coefficient

k' for tensile elements in the presence of random eccentricities
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and initial curvatures for the followinv, values of the quantities

entering into equation (8).

From the figure it is evident that for any value 6P
P

28.

the value of the coefficient k' depends very little on the flexibility

of the rod. In all cases k' has the smallest value for the average

rod flexibility (A ~ 100).

Figure 1 also gives curves of the values of the co-

efficient k" for compressive elements in the presence of random

eccentricities and initial curvatures, and Figure 2 shows the value

of the coefficient ¢, obtained as a ratio of the coefficient k" at

the given flexibility to the value of this coefficient for a flexib-

ility A = O. Also drawn on this figure is the curve for the value

of ¢ according to the existing standards. From the diagram it is

evident that in the examined method of design the coefficient ¢

depends not only on the flexibility of the rod, but also on the

deviation 6Pp'

Calculation for Loads with Different Probabilities of Occurrence

In the previous calculations it was supposed that all

loads could act on the structure equally often; but actually different

loads act in time with different frequency.

action of dead load is equal to one.

The probability of the
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The probability of action of bridge cranes on a struct-

29.

ure depends on the intensity of their performance. The probability

of action of large snow and wind loads is usually significantly

smaller than for crane loads. Some loads, as for example erection

loads, act on the structure only once durinv, the whole period of

its construction and use.

This difference in the frequency of action of separate

forms of the loads can be accounted for by the value of the largest

deviation 6P, taken in the calculation.

It was shown above that for 6P we take 3(0), i.e. three

standard deviations. The probability that the regularly acting

loads deviate (both signs) more than this amount is D = 0.0027 .
• 1

If the probability of occurrence of other loads is x times less,

then the magnitude of their deviation from the mean value which

can be exceeded with the same probability PI = 0.0027 will be found

according to the probability p = xp .
. I

Table 3 gives the values of the deviations in the number

of standard deviations (0) and the coefficient of reduction W for

loads with different probabilities of action p.

The same table also gives data of the lowering of the

overload coefficients for standard loads with the snow load examined

above as an example.
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The different probability of action of separate loads

must be considered in settinr, the standard overload coefficients.

For erection loads 6P can be taken as zero.
p

Conclusions and Practical Applications

30.

(i) The method of design of steel structures examined above

makes it possible to design for equal strength, and consequently

also for the most economical structures.

( ii ) The method of design according to the limit state is a

particular case of the examined method of desi~n, when the loads

are not random quantities (6P = 0).
P

Actually, for any forces,

when 6P equals zerop ,

For 6F = 0.14 and 60 'li = 0.236:-
F 0'1'

k = 0.746

and 0 = 0.74 x 2900 = 2160 kg/cm 2

a

This corresponds to the guaranteed yield point of steel

St3 - 2400 kg/cm 2 , multiplied by the uniformity coefficient 0.9,

i.e. the desir,n strength of steel St3 in design by the limit state

method.

It is known that design by allowable stress in turn is

a particular case of design by the limit state method, where for

all loads, a single overload coefficient n = 2100/1600 = 1.3 is taken.
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Thus, the method of design examined at the beginning

is a general method, which includes the two other methods as

particular cases.

31.

(iii) For the ~eneral method of desi~n it is convenient to

fix the basic standard stresses for cases of action of the dead

loads (i.e. for the loads with the smallest overload coefficient):

(a) for design of transverse bending and for combined

tension or compression and bending the standard stress can be

taken as cr = 0.733 x 2900 = 2120 ~ 2100 kg/cm 2
•

1

( b ) for desi~n for compression and tension under a

relatively central application of the lon~itudinal force the

basic standard stress can be taken

cr = 0.683* x 2900 = 1970 ~ 1950 kg/cm 2
•

2

The expediency of lowering the basic standard stress for

compressive and tensile elements in comparison with bending is con-

firmed because bending elements in comparison with compressive or

tension elements have additional reserve of strength. This is

because the section modulus of the section WT for plastic stage

of performance is always hi~her than the section modulus of the sec~ion

W for the elastic stage.y

* The coefficient k
1

and A = O.

6P
= 0.683 is obtained from Fig. 1.

P
= 0.1
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In design for combined action of live and dead load

32.

for case (iii)(a) the basic standard stress must be decreased by

the coefficient 0, a quantity which depends on the ratio
1

st- ~f 'i.M"
• :0= ...__~.

P . "if'

Values of the coefficient 0 are presented in Table 4.
1

(v) In design of compressive elements for live and dead

loads the basic standard stress must b~ decreased by the coefficient

o , some values of which depend on ~p and A as given in Table 5.
2 P

In the design of tension elements for the same loads the basic

standard stress must be decreased by the coefficient 0 with A = O.
2

(vi)
in

The data of Table 5 show that/design by the limit state

method, a structure calculated for loads with high overload co-

efficients will have larger reserve of strength than structures

calculated under loads with low overload coefficients. This differ-

ence will be especially significant for structures performing under

several independent loads.

For example, a structure on which act three equal but

independent loads with overload coefficients 1.1, 1.3 and 1.4 (dead,

crane and snow respectively) by the limit state method must be

calculated for the mean overload coefficient

_ 1,1 + 1,3 + 1,4 - 1 23
It- . 3 - , .
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The area or section modulus of the cross-section of an

element of this structure

F = nl/J \~P), ~__~3~(~P) ~ 5 87 , ID-' (/) (EP) •
1 aN 2 100 •

Accordin~ to the method herein

33.

AP V (0, I a +0,3 2 + 0,42 )

P - .1
0,17;

From Table 4, ¢ = 0.97 and the area or section modulus
I

of the section of the element

. F = (/1('::,/') =4,92·1O-4<P(EP).

2 0,97. 2 100

Thus the given structure, calculated by the limit state

method, will have an excess reserve of strength of

(
Fl - F~ )'100= 19'/•..

F~ .
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Translator's Note (Cont'd. from p.6)

R, a function of random variables, is itself a random

- - ~Pvariable approximated by the normal curve with mean R = at - =
F

34.

~t(l - k), and standard deviation SR =

safety characteristic (see article by

~R where y is called the
y

A.R. Rzhanitzyn), and ~R

the "greatest possible" deviation of R, is defined equal to y

standard deviations. For y = 3 adopted later, the probability

of exceeding ~R is 0.14%. Failure occurs when R < 0, Therefore,

if we choose ~R = R = ~t(l - k), which results in equation (3).

the values of k obtained corresponds to the probability of failure

0.14%. The values for P, F and aT to be used in equation (3) are

the average values.
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TABLE 1

Deviation in
% Profile

35.

Deviation in
%

From

Ar:.gles of equal
sides 7.3

Angles of un-
equal sides 8.4

I-beams .. 4.3
Channels 5.4

Universal Sections 2.6
> 6 mm

Sheet Steel
> 6 mm 2.6

To

13.3

13.9
6.4
7.3
8.7

10.0

Ship Steel .

Round Steel of
Diameter > 26 mm

2 Equal-sided
Angles .

2 Unequal-sided
Angles .

I-beam from uni
versal sections.

The same, from
sheet steel ....

From

4.0

3.3

5.1

6.0

1.5

1.5

To

8.3

5.8

9.5

9.8

5.1

5.8

I·
i ~p

P

O,G
0,5
0,4 ,
0,3
0,2
0,1

°

1 ·

TABLE 2

k

0,575
O,GOG
0,641
0,676
O,70~

0,733
0,746

TABLE 3

n'

. ·1,10
1.23
1,16
I, io
1,05
I, o:?
\,00

n

1.(;
: ,\)
1..1
1,3
1,2
1,1
1,0

.
.~, ........ I

AP " " . -
I I I.r p l-p W-

,
I"

P",.,..,.
o\P-6lI1" P,."."., 11=- 1"'PH

--
J 0,0027 O,!.l973 . . ·3,00 1,00 58,0 104,0 1,48 1,00 . I
:2 0,0054 0,9946 2,7R 0,93 54,0 100,0 1,43 0,97

:3 0,0081 o.oom 2,65 0,87 50.5 96.5 1.33' -, 0,93

5 O,OJ35 0,93[,4 2,47 0,82 48,0 94.0 _ 1,3-1 0.91

7 0,0182 n,gRll 2,34 0,78 45,0 91,0 . 1,30 0,81"

10 0,0270 O,!.l7aO 2,20 0,74 43,0 89,0 1.27 0,86

50 0,1350 0,8/150 1,50 0,50 29,0 75,0 1,07 0,72

I100 0,2700 0,7300 I,ll . . 0,37 21,:> 66,7 I,OJ . O,6S
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TABLE 4

kp .
O,G 0.....)75 0,78

I
O,S 0,606 0,83
0,4 O,t)41 0,1->8

I
0,3 0,676 0,92
0,2 0,701-> 0,96

j 0,1 0,733 1,00
I 0 0.746 1,02
I

TABLE 5

0, I A
61'

I I I I I
p

0 so 100 150 200

-
0,5 0.1J6 0,76 0.55 0,32 0,2/
0.4 O,9U 0,79 0,56 0.32 O,~lI

0,3

I
0.91 ' 0.81 0.56 U,33 0,11.

0,2 0,97 0,84 0,56 ' 0,34 0.21
0, I 1.00 O,Il6 0,57 0.34 0.21

according to
NiTYI-46

0i""oo.

~"
~~

" l-¢~~6~~ 'fJIf1HuTlIH$ !-
7f-- P .;, I "1

~~ ~ ~·a' t-o P _

f\\
h..'

~'r-,
. _....

~t:
, 4IJ 14 /14 /611 I1J(JJ

II

/11

I1J

as
a,

Q/

aj

a8

Fip;.l Fig.2
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Belyaev - Statistical Design of Reinforced Concrete

The perfecting of methods of designing cross-sections

of structural elements, in particular the working out and the

introduction in practice of the statistical method of design, is

one of the most important ways of reducing the consumption of

building materials in short supply, and consequently reducing

construction costs. In the first place this article treats the

design of reinforced concrete structures, whose application in

building is increasing from year to year.

As in the case of steel structures, the statistical

method of designing reinforced concrete structures makes it possible

to design load-bearing structures of buildings and engineering

structures for equal strength, without excessive reserve strength,

and thereby to economize on a substantial quantity of materials 

cement and steel - being consumed as a result of inaccuracy of the

existing design methods.

Some specialists doubt the possibility of calculating

reinforced concrete structures by the statistical method because of

the complexity of design formulas. However, design formulas in the

statistical method are only slightly more complicated compared to

formulas in design by the method of limit states (NiTU 123-55).

In the following calculations, in full accordance with

reality, the loads and consequently the internal forces and bending
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moments~ the resistance of concrete and steel~ the area of the

concrete section and steel reinforcing are taken as statistical

quantities whose deviations from the average values obey the normal

distribution law.

In deriving the formulas for the design of sections of

reinforced concrete elements~ the same method is used as in the

derivation of the corresponding formulas for steel structures(l).

It is also shown that the method of design set forth can

be applied for structures made from all building materials: steel~

reinforced concrete~ concrete and wood.

Let us examine the typical cases of designing reinforced

concrete elements with coefficients of performance conditions t = 1.

1. Centrally Compressed Elements with Longitudinal Reinforcing

The stress from the standard loads in such an element

39..

(1 )

According to the strength conditions of the element this

stress must be equal to or less than X ~R ~ where ~ is the coefficient
1 6

of longitudinal bending~ determined by an empirical formula of the

form:

1 ()'P= I 2 'P< 1 •
0.7+0.00012 (p)

(1) B.I. Belyaev, Stroitel'naya Promyshlennost'~ No.3, 1954. (See

previous article)



Belyaev - Statistical Design of Reinforced Concrete

x , the inverse of the general safety coefficient, is the ratio of
1

the resistance of concrete in compression to the average (standard)

yalue, which guarantees that in elements of reinforced concrete

structures during their period of use, the stress from the loads

40 ..

does not reach the least possible value of the resistance of concrete

(or the yield point of steel) with the same probability with which

deviations of random quantities entering into the formula can exceed

their greatest or smallest possible values as taken in the calculation.

We introduce the auxiliary quantity

( 2)

The quantity D characterizing the degree of use of the
1

load-bearing capacity of the material of the element as a function

of random quantities, is itself a random quantity with mean value

equal to zero*.

The size of the deviation of D , whose exceedance has the
1

same probability as the exceedance of the deviation of the resist-

ance of concrete and steel, the loads and the sectional areas of

the concrete and steel taken in the design, is found by the formula

AD' = (iJD,). AR'+ (iJD1) ' AR'+ (iJD1)'A F' + (iJD')' AF' +E(iJD1
) ' AN2.

,oR" 15 Mf. • dFa 6 "if; • iJN

Making use of this formula and considering that

and we find*

* See translator's note on p. 6 of the previous article.
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In this formula:

a is the coefficient of load variation,

where n is the overload coefficient;

41.

( 4)

b _t:.R•
. •- R. is the coefficient of strength variation

(the yield point) of the steel;

is the same for concrete;

is the coefficient of variation in reinforce-

ments;

is the same for the sectional area of the

concrete.

Depending on the investment and responsibility of the

structure, and also the degree of danger if the separate elements

of the structure exceed the limit state, the coefficients of load

variation and of the resistance of steel and concrete can have differ-

ent values. In general these coefficients are determined by the

standard deviation of the variable quantity~s and the safety

characteristic y - the number of standard deviations guaranteeing
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that the greatest (or smallest) value of this quantity can occur

only with the probability taken in the calculation(2). For example,

the coefficient of load variation

and for y the values 2.5 - 4.5 are proposed.

With very small error formula (4) can be brought to the

more convenient form

where

(5)

For the above variation coefficients the following values

will be ~ken (for y = 3): c. = C6 = 0•.1;. b. = 0.25 and b,; 0.4;

Then the final formula for the determination of the quantity X will
1

have the form

(6)

The theoretical quantity A can vary from 0 at ~ = 0
1

to a value near to I at large values of ~, i.e. essentially for a

solid metallic section.

Table I gives the values X for different values of y~
1 IN

and A .
1

(2) See the article by A.R. Rzhanitzyn "It is Necessary to Improve
the Standards of Design of Structures"
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The data of Table 1 show that even at A = a the
1

statistical method of design gives a more economical section than

43.

design by limit states. This economy increases with an increase

of the overload coefficient (the coefficient of load variation)

reaching 24% at a=~5 ~=1~)

The design formula for a centrally compressed element has

the following form:

2. Bending Elements

Such elements include rectangular beams (slabs) and

( 7)

T-sections with a flange in the compression zone of the section,

when the neutral axis is within the flange, with single reinforcing

(Fig. 1).

The design formula is

EM ~ X.R6 [bx(h-O,5x)], R.F. = R6bx,

whence ( 8)

The stress in the beam from the design bending moment is
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and the auxiliary quantity is

The coefficient X is found by the same method as for
2

compressive elements, from the equation

44.

(1 Ra)b' [t IMI po2 R: . (1 _ II. Ra)1 ( )]
X ) ~ - 2 v -- 1'R6 6 X' a + 4R~ '+ R6. b'+b'+c' +b'

- 2 - - "-\2 + , ~ ( Co . a 0 a 6 (

(I~0,51'~:) \tM) I-0,5fi::Y _ (1-0,51'~:r - . 9)

( 1 - II. ~6a)
We designate the expression by A; then approximately

(1-0,511. ~:) 2

(1 - x, r=-2XaA,b~+X:Ul:a~:+ A:( b:+b~+C:+C~)]+b~. (10)

and for the adopted values of the above coefficients,

x \'oRa 055A can vary from 0.62 at 71= Ro =. to 0.99 at the smallest allowable
2

per cent of reinforcing ~ = 0.15%.

The quantity A and consequently the quantity X are
2 2

increased with a decrease of the coefficient of reinforcing.

. '.: ..-:~." --::~. .., "'~, " ...:::.. _ ... - -

'This is an example when the calculation is made not

according to the strength of the concrete but according to the strength

of the reinforcing (Fig. 2).
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The design formula is

E Q -c XaR.(r,sin ell + yO,6 F::'~~r/I) (11)

In this formula: F is the area of section of the bent-up rods;o

a is the angle of inclination of bent-up rods to the longitudinal
1

axis of the element; F is the sectional area of the stirrups inx

one section, a is the distance between the stirrups.
1

The auxiliary quantity
tQ

D a = R. - -V F F R hF. sin el + 0 6 6 x 0o I , R.Il.

and the coefficient X are determined approximately from the equations
3

( 1 - x,r= - 2XaAab: +X:[~Ia~~+ A:( b:+b~+ c~+ cb+ c;)J+ b: =

= - 0.125XaAa+X:[~Ia~~+0.25 A: J+0.0625.
(12)

where

The value of the quantity A changes from 0 at F = 0 to
3 X

0.5 at Fo = O.

4. Eccentrically Compressed Elements (Rectangular Section) with

Double Reinforcing (Fig. 3)

We cite only the final formulas

(a) Case 1. x « O,55h:> 2a'. The design formula is

(13)
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where x is determined from the conditions:

and the coefficient X for the numerical values of the variation
It

coefficients taken above is determined from the equation

46.

(1 ... X )2 = - O,32XtA. + x,[ Ea
2
NI +0,24 AI J+O,16.

• • (E N)' . •

( tJo ' - tJo) R.
A .= R"

In this formula, • [+( r )R•. ] can change from zero (at u ' = u )
ex tJo - tJo R"

( .x 2a')to nearly 1 at 7l=7l'

(14)

(b) Cas e 2. x > .5 5h . The design formula is

The value of the coefficient X is found from the equation
5

theoretically A
5

in which

(at u ' =

( )' - [E a'N'e'
1- X" ..... - 0,32 XI + X:(E Ne)'

tJo' R.
R"AI= ~

O,5+tJo' ;;

0) to nearly 1.

(15)

can change from zero

5. Standard and Design Characteristics of Materials

In the statistical method of design, the average value

of the material strength - the ultimate strength for concrete and

the yield point for steel - must be used for the standard material

characteristics.
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In the standards and technical specifications for design

of concrete and reinforced concrete structures (NiTU 123-55) differ-

47.

ent coefficients of uniformity of concrete Kb are given for different

types and different methods of their preparation. For simplification

of the statistical method of design it is expedient to retain one

coefficient of concrete variation, and the stated influences of the

type and method of preparation are considered in the magnitude of

the standard resistance of the concrete.

The greatest errors in the values of the coefficients

X will therefore not exceed 2 - 2.5%.

The standard resistance of reinforcing of different steel

types must be determined by means of statistical processing of

material tests. It can be assumed that the standard resistance

of reinforcing hot-rolled steel R: will be near to the following

values: St.3 - 2900 kg/cm 2
; St.5 - 3400 kg/cm 2

, 25G25 - 4800 kg/cm 2
•

For the purpose of simplifying calculations in the

statistical method it is also convenient to retain the idea of a

design resistance of concrete and steel reinforcing.

The design resistance of concrete and steel in this case

will be equal to the standard resistance, decreased by a coefficient

~-o and A 0r,p - n= .

Then in place of the coefficient Xn in the design formula

the coefficient
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where
Xo= 0.6, must be introduced.

Tables 2, 3 and 4 gives values of the design resistance

of materials and the coefficient ~n'

The design resistance of reinforcing steel R fora
St.3 is 1750 kg/cm 2

, for St.5 is 2000 kg/cm 2
, and for 25025 is

2900 kg/cm 2
•

In the design of a section for Ra (bent-up bars and

stirrups in bending elements, reinforcing for torsion) the value

of~n varies little for different values An; therefore, these

calculations (in reserve of strength) can be obtained by using

the coefficient ffn when A~ ='0, according to Table 4.

In conclusion we examine some examples of the calculation

of sections of elements by the method of limit states and by the

statistical method.

1. Columns of Middle Row of a Shop of Span 24 m

In both adjacent spans are two cranes under average

conditions of work of carrying capacity 20/5 T. The height from

the bottom of the crane beam to the base of the column is 9.4 meters.

The roof is composed of large span slabs and metallic roof trusses,

the crane beam is reinforced concrete; the spacing of the columns

is 6 m.

The loads acting on the column are: dead load from the

roof, Pp = 0.3 x 6 x 24 = 43.1 T; dead load from the weight of the
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beam and column, Pk = 14T, snow load Pc = 0.1 x 6 x 24 = 14.4 T.

49

The loads from the crane:

21 x 6 +6 1. 55 = 29.0 T;

21 x 4 63 = 16.6 T.

from two cranes according to P = 1.1 x
1

from two cranes according to P = 1.1 x
2

(a) Design by the method of limit states:

LnP = 1.1 x 57.2 + 1.4 x 14.4 + 1.3 (2 x 29 + 2 x 16.6) = 209.7 T.

For a column section of 36 x 90 cm, Fa = 32 cm 2
, ~ = 0.01.

The type of concrete is 200; the reinforcing steel is St.5.

The design formula

EnN < lfI Rap (F6+ ::p Fa) ,
200,7 < O,')711~)O (3 2,W + 2~;:Pd2) = 210 T.

(b) Design by the statistical method:

y~

IP

The design formula is

For a column section of 35 x 73 cm, Fa = 25 cm2
, ~ = 0.01,

LI. R" = 0 01 2 O()O - 0 '~0 A - O.2~ - a 1R
'R" ' 7l ('(' - ,--, 1-' ')2- , L,••;> .... J 1._

'fl = l,OS (Table 3)

For the statistical method of design we obtain a saving

in concrete and steel of 100 (1 - 2 510) = 22%.
3240
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2. Crane Beam with Span 6 Meters for two cranes of load capacity

50~

30/5 T under average conditions.

p = 31 T.
1

The span of the crane is 28.5 m;

The bending moment from the cranes

M = 1.1 x 31 x ~ (1 + 1.05) = 51.2 + 17.9 = 69.1 T.m.
cr ~ 3.00

The bendin~ moment from the dead load is

M
p = 0.8 X 62

8
= 3.6 T.m.

(a) Design by the Method of Limit States

LnM = 1.3 x 69.1 + 1.1 x 3.6 = 93.8 T.m.

Type 300 concrete, reinforcing from steel St.5, U = 0.02

X IL R. 2400 ~
IX = -it =~ = l7i)" 0,02 = O.~o,

= 0.02 x 50 x 75 = 75 ern" (Fig. 4)

The design formula

93.8 T.m. < 170 x 50 x 75
2

x 0.28 x 0.72
10,000

(b) Design by the Statistical Method

= 96.3 T.rn.

(Fig. 5)

~ _ YO.12"a.62+o.3(51.22+17.9') _16.2 - 0 22'
M - 72.7 -12.7 -, ,

fLR~· = 0,02.
2
1:=0.235, A z=O,87, '1=1.19,

F.=O,02..44,,69=61 eM-z

The design formula is

72.7 T.m. < 1.79 x 170 x 44 x 69
2

x 0.765 x 0.0235 = 75.8 T.m.
10,000
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For the beam an economy of 100 (1 - 1880) = 22% in
21f3O

the concrete and 100 (1 - 61) = 18% in the steel is obtained by the
75

statistical method.

3. Fixed Slab of Span 5 Meters

2
The dead load g = 250 kg/m 2, the live load q = 400 kg/m

with overload coefficient n = 1.4,(coefficient of load variation a =

0.4) .

(a) Design by the Method of Limit States

p = 1.1 x 250 + 1.4 x 400 = 835 kg/m 2

The concrete is type 22, the steel is type St.5.

The design formula is
RE nM ..-- R h2 a (1 - a)' a - IL-' •....... 6 • - r R6'

2400,.0,014
a. =. 110 = 0,305; It = 7,5 CM;

1.3 T.m. ~ 1100 x .075 2 x .305 x .695 = 1.31 T.m.

The full thickness of the slab h = 7.5 + 1.5 = 9 cmo

Fa = 0.014 x 7.5 x 100 = 10.5 cm2

(b) Design by the Statistical Method

The design formula is

~M = 0.65 X 52
16

= 1.015 T.m.

a = "':;= O,014Jr: 21: = 0,255; AI - 0,85; <PI = 1,18; h = 6,5 CM;
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The full slab thickness h = 6.5 + 1.5 = 8 em.o

0.014 x 6.5 x 100 = 9.1 cm2
•=Fa

The economy in concrete and steel is 100 (1 - ~) = 11%.
9

Thus, in all the examined cases the statistical method

of design of reinforced concrete structures gives significant

economy of concrete and steel as compared to the method of limit

states.
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TABLE 1

Y ZatNi
Ar-

I I 1
M I I

~
'IN 0 G.2 0.4 0.8 1 II

0 0,6 0,65 0,7 0,74 0,75 0,75 0,6
0,1 0,59 0,64 0,69 0,73 0,73 0,74 0,546
0,2 0,58 0,63 0,67 0,7 0,71 0,72 0,5
0,3 0,57 0,61 0,65 0,67 0,69 0,69 0,462
0,4 0,55 0,58 0,61 0,63 0,64 0,66 0,428
0,5 0,53 0,54 0,57 0,59 0,61 0,62 0,4

Note: k is the uniformity coefficient of
6

concrete.

TABLE 2

Design Resistance of Concrete R in kg/cm 2

6

Type of I Type of Concrete
Resistance 100 150 200 300! 400 I 500

Axial Compres-
Ision A 48 70 90 140 190 230

B 44 I 65 80 130 170 210

Compression
during bending

A 60 85 110 170 230 280
B 55 , 80 100 160 210 260

Note: The design resistance in line A is for concrete
manufactured in factories with automatic and semi
automatic ~roportioning, and under systematic strength
control, line B is for other cases.

53.



Belyaev - Statistical Design of Reinforced Concrete

TABLE 3

Value of Coefficient ¢ for Calculation According to R
p 6

-

y;;;;p;- An

I I /'0,6 I Ir.p 0 0,2 0,4 0,8 I

I

0 1 1,09 1,16 1,22 1,24 1,25
0,1 0,99 1,08 1,15 1,21 1,23 1,24
0,2 0,98 1,05 1,12 1,17 1,21 1,22
0,3 0,94 1,01 1,07 I,ll 1,14 1,16
0,4 0,91 0,97 1,02 1,05 1,07 1,1
0,5 0,87 0,91 0,95 0,98 1,01 1,03

TABLE 4

Value of Coefficient ¢p for Calculation According to Ra

54.

Volpi

r.p o I 0, I -I 0.2

1,25/1,24 I 1,2

0.3 0,4 0.5

1,02
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In the statistical method of design of bUilding

structures(l), a considerable portion of the quantities (loads,

resistance of materials, geometric parameters of sections of

elements, etc.) are considered in full accordance with reality

as random quantities, and their combined influence on the

structure or on its carrying capacity is evaluated according

to the rules of the theory of probability. It is often

mentioned that the statistical method is a natural development

and a deepening of the present method of design of building

structures according to limit states, through a closer

approximation of the calculated premises to the real performance

condition of the structure.

It is known that the method of design according to

the limit state is also built on the theory of probability in

estimating the combined influence of some design quantities.

However, this is not done fully and in some cases it is not

fully consistent.

In order to be convinced of this, it is enough to

analyze the formula of the safety condition of the structure -

the basic requirement in the design of the structure according

to the first limit state (strength)

(1) "Stroitel'naya Promyshlennost" 1929, No. 10; 1932, No.1;
1947, No.8; 1952, No.6; 1954, No.3; 1957, No.8.
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1

Here: P is the standard dead load; Q. are the standard livep l

loads (basic); D. are the additional loads; n are the
l

coefficients of overload; c. is the coefficient of combination
l

under additional loads; a is the coefficient of the load

effects for the considered element of the structure or for

its section; m is the coefficient for the performance condi-

tions; k is the coefficient of homogeneity of material; F is

a geometric parameter of the section of the element; R is the

design resistance of the material.

In this inequality, the quantity N = FR (the load-

carrying capacity of the element's section) is considered by

itself as a function of two random quantities F and Rand

according to this the values of the coefficient of homo-

geneity k are established. But according to the ratio on the

left side of the inequality, the product kFR is not a random

quantity. Also the coefficient m, the basic loads (dead and

live), without the additional and special loads, are also

considered not as random quantities. However the same basic

loads (excluding the dead load) and all additional and special

loads are now considered as a system of random quantities,

since the coefficients of combination c are introduced.

There are some principle objections to the statistical

method of design, objectively restraining its introdution into

the practice of designing building structures. These objections

reduce to the following: for confident use of the statistical
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method of design the law of distribution of the random design

quantities, in the first place the load, must be known

precisely. Also to establish the empirical laws of the

distribution of the design quantities it is necessary to have

a very large number of their values, because the distribution

curve of the calculated values particularly interests us in

the area of very small probabilities (i.e., the "tail" of the

distribution). The opinion is expressed that long-term work

is necessary to perfect the distribution laws of calculated

values; without this accurate definition the practical use of

the statistical method of design would seem to be impossible.

It is also considered that all random quantities

determining the performance of the elements of the structure,

or of all the building, can be divided into two groups:

(a) the resistance of materials, geometric parameters

of the section (area, section modulus, moment of inertia, etc.)

and the dead load. Each element of the structure takes one

quite definite value of every quantity, retaining it during

all periods of the operation of the bUilding, provided such

factors are neglected as: the decrease of the area of the

cross-section by corr~sion of material; the change of resistance

of material due to some physical or chemical condition (decay,

ageing); the change with time of the density of building

materials, for example, in its drying up (wood) or impregna

tion of water in the process of operation (wood, insulation),

etc.
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the live load, which acts during each period of

operation of the structure although of short duration, but

repeatedly (wind, snow, ice, crane loads, groups of people,

etc.) and each time has, as a rule, ~~new value.

There is the opinion that in view of the differences

in principle between the two groups of random quantities, it

is impossible to use the law of the theory of probability for

the determination of their combined influence on the structure.

We note the fact that for the statistical method, in

the design formula there is a single (by value) characteristic

of safety y (usually equal to 3); however for different

distribution laws of the random quantities a different

probability of exceeding the design values of the unknown

random quantities (stress, force) will correspond to this

value 3.

Finally, some of the opponents of the statistical

method attempt to prove that such a method in general does

not apply to the engineering design of structures.

This leads to the consideration(l) that "random

events must carry a mass character permitting repeated

occurrence in practical and identical conditions, and the

probability at which the mathematical operations are made,

must be confirmed by the proper ~uantity of experimental data"

(1) V. V. Bolotin, "Statistical Methods in Structural lJIechanics",
p.9.
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and that "the goal of engineering design is the choice of

a structure, in which destruction would be a highly improbable

event". However, far from these correct principles the

unexpected concl~sion is made. "Therefore, in essence, the

failure of a structure can not be a mass event and the

statistical interpretation of the probability loses its

meaning. Moreover, the uniform conditions for the performance

of building and construction rarely occurs".

On the grounds of this objection it is necessary to

state that the statistical method of design of building

structures in not built on the statistics of structural

failures. Moreover, analysis of the causes of damages shows

that most of them in general could not be averted by means of

engineering calculation. The statistical method of design is

based on the study of the performance of the structure,

constructed from materials possessing definite physical and

mechanical properties, and sUbjected to different categories

of loads whose values obey definite statistical laws peculiar

to each load category. The performance of the structure under

the influence of loads is undoubtedly a mass phenomenon, for

there are no unloaded structures on earth. This mass

phenomenon in its own particulars is repeatedly realized in

practically uniform conditions (of materials, loads).

Therefore it is reasonable to suppose that in

principle, the use of statistical methods in engineering

design of bUilding structures is completely justified.
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We will consider a way of overcoming the other three

objections, which appear to prevent the application of the

statistical method.

Distribution Laws of Design Random Quantities

For the practical use of the statistical method a

knowledge of the distribution laws of the design quantities

is not necessary. It is necessary to know only the numerical

characteristics (average value and standard deviation) of the

distributions. Such characteristics can be established with

the necessary precision by a relatively limited number of

values of these random quantities. The asymptotic laws of

the distribution of the majority of design quantities are

also sufficiently clear.

The distribution of a considerable number of design

quantities is undoubtedly near to the normal distribution (NR).

Examples are: the resistances of materials, the volume weights

of materials, the geometric parameters of the section, the

random warping of bar elements, etc. This conclusion can be

made not only from the results of a study of numerous distri

bution curves of the values of these quantities, but also

mainly from analysis of the general conditions on which the

normal distribution must arise. It is known that a sufficient

condition for this is the possibility of considering the

. deviation of the given random values from its mean value as

the sum of a large number of mutually independent items, none
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of which is characterized by an exclusively large dispersion

(as compared to the others). Such a condition is satisfied

by all the above enumerated random quantities.

On the other hand, the values of many live loads,

in the first place atmospheric (wind, snow, ice), temperature

influences and also crane loads can be considered as a statis-

tical population of the greatest values of these loads,

determined on the basis of sufficiently numerous routine

measurements at definite intervals of time (month, quarter-

year, half-year, year). In such an approach to the design

values of many live loads, it is possible to use the theory

of distribution of extreme values to establish the theoretical

distribution law.

According to this tneory(l), for a sufficiently

large number of selections, the distribution of the largest

terms in the case when the least value of these terms cannot

be less than a, asymptotically approaches the distribution

according to the model law (PR).

(
x- a )11

F (x) = e- -b- • ( 1)

The function F(x) gives the probability of occurrence

of all values of the random quantity X exceeding its value x.

If the origin of coordinates is transferred to the

point where x ~ a, and it is considered that the coefficient b

(1) N. V. Smirnov, I. V. Dudin - Barkovskii. Short Course on
Mathematical Statistics for Technical Applications.
Fizmatgiz. 1959, page 339.
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does not influence the form of the distribution curve (it

changes only the "scale" of values), then it is possible for

further investigation to write the function F(x) in a simpler

form, i.e.

(2 )

Hence the function of the probability density distribution

It is very important that the distribution of the

largest values follow the model law every time the distribu-

tion F(xi) of each of the quantities Xi(i = 1, 2, ... , n),

approaches a sufficiently qUickly. This condition is satisfied

in particular by all empirical distributions of atmospheric

loads. For the rest the function F(x) can be completely

arbitrary.

According to the information of the Voikov Main

Geophysical Observatory in Leningrad, the practical distribu-

tion of wind speed in the present limited region on the ground

surface of the U.S.S.R., measured four times daily, also

agrees well with the theoretical distribution according to

the model law.

The integral function of the distribution of wind

speeds, i.e., the probability that the speed of wind is

larger than u, is expressed by the meteorological formula

F (u) = e- (1-f ( 4)
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This formula is completely identical in form with

formula (1) for a = 0; in order to snow this, it is sufficient

to introduce the substitution b =~. *

In formula (4) a and B are parameters depending on

the wind regime of the given region; their values are found

by construction of a graph of the function F(u) in logarithmic

coordinates.

19 [- Ig F (u)] = a. (Ig u - 19~) + 19 19 e.

The practical value of the parameter a has been

established within the confines of the comparatively narrow

interval, 1 < a < 3.

For example, according to the observations of the

meteorological stations (Gur'evsk, Berezovsk, Mare-Sal and

Dikson), values of the power index a = 1.6; 2.2; 2.8; 2.9

are obtained.

The velocity pressure of the wind is connected with

its speed by the relation

u'J
q= 16'

from which

u=4YQ.

and the distribution function of the speed pressure values

*Translator's note: This is probably a misprint in the Russian
article. It should be b = B.
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will have the form

(
4 Vii)& - ( q )&.

F (q) = e- -,,- = e- If;

that is, the values of the speed pressures of the wind are

distributed according to the same model law as the wind

speed, but with the changed parameters

a.' = 0.5 a.; W= 0.25~.

The average value of the argument x and its standard

deviation are easily calculated by the formulas

-------'- - I,

where r is the gamma function.

-Table 1 gives values x and a for different values

of the parameter a.

Figure 1 shows curves of the probability density of

f(x) for different values a of the model distribution (PR).

For comparison curves of f(x) for the normal (NR) distribution

are shown for the same numerical characteristics x and a as

for the model distribution when a = 2 and 3.

From Table 1 and Figure 1 it is seen that with an

increase of a the value x changes little: initially it

decreases slightly, but beginning with a = 3.5 it increases

once again.



Belyaev - Statistical Design of Building Structures 67.

The standard deviation a sharply decreases with an

increase of the parameter a. The relative dispersion

(coefficient of variation 0) also decreases with increase of

a.

Such an analysis removes the first objection against

the statistical method of the calculation of building loads

(i.e., the absence of sufficient knowledge of the laws of

distribution of the loads). This distribution is well-known

provided the design values of the loads are established as

the values of the extreme (largest) selected terms. In this

case the distribution of values of the loads will asymptoti-

cally follow the model law. The values of the empirical

parameters a and B in the majority of cases (for atmospheric

loads) can be obtained from available meteorological observa-

tions; the necessary distribution of extreme values for crane

loads by contemporary measuring techniques (automatic recording

of pressure in a column, or on a wheel) also can be obtained

without special difficulty.

Consideration of the Action of Repeated Loadings of Structures
by Live Loads

The repeatedly-acting load can be replaced by an

equivalent singly-acting load with average value and standard

deviation of an appropriately altered form.

As such a load, the greatest value of repeatedly-

acting loads is taken from N of its actions during the planned
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period of operation of the building. This value of the load

in turn is considered as a random quantity.

For loads with a normal or nearly normal distribu-

tion the numerical characteristics of equivalent singly-acting

loads can be determined according to an approximate formula(l).

The mean value is

the standard deviation is

(5)

the coefficient of variation is

In the case where the load is given by the 6istri-

bution function of the form F -(T%)- and the numerical(x) = e

values of its parameters are obtained by statistical process-

ing of the results of regular observations of the quantity X,

n times for each definite interval of time (month, quarter,

year), then the greatest value of this load x in T intervals
n

of time (the planned period of building operation) is found

according to the function*

I
F(x) =-,

nT (6)

(1) A. R. RZhanitzyn, "Design of Structures by Consideration
of the Plastic State of Materials"; 1954.

*Translator's note: The average x of the greatest loads
in N years is determined from thenmodel distribution of

the singly-applied loads by 'putting F(x) = -!. The
nT

explanation of this formula is given sUbsequently.
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and the standard deviation of this greatest load can, for

practical designs, be taken equal to:

m~-~
~=~- .8,5

-where x is the mean value of the acting load; a ~ 2.5. For
1

large values of a the model distribution approaches the normal

distribution; and in this case formula (5) becomes valid for

( 7)

the determination of the numerical characteristics of the equivalent

load.

Table 2 shows the results of calculating the numerical

characteristics of the equivalent singly-applied load, the maximum

yearly value of which is distributed according to the model law

with value of the index a = 2, P = 0.89, a = 0.47 (Table 1).
1 1

The numerical characteristics of the load are deter-

mined by formulas (6) and (7) for the model distribution, and also

by (5) for the normal distribution. The agreement of calculated

results in both cases is very satisfactory, for which the model

distribution a = 2 greatly differs from the normal distribution

(see Figure 1).

It is known that the probability of exceeding a

calculated value of the live load for an unlimited range of

dispersion (although on one side - zero to infinity) increases

with an increase of the number of loadings.

If p(x) is designated as the probability of exceeding
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the calculated value x of load acting once, then the probability

of exceeding this value of the load under repeated application

is determined by the formula

PN (x) = 1- [1 - P (x)]~ •

where N is the number of loadings.

(8 )

Since the probability Pl(X) is taken sufficiently

small in the calculations, then, approximately [the more

precise, the smaller Plea)],

PN (x) = 1 -II-Npdx}] = Npdx}.

Thus for the design value of repeated loads, a

value must be taken corresponding to the probability which is

N times smaller than the case where the given load would act

on the structure only once:

PN (x) = PI (x) •
N

Its standard deviation is

where y and yare the number of standard deviations of the
N 1

actual load corresponding to the probabilities PN(x) and Pl(X).

The average value of the equivalent load remains the same as

for the acting load.

To verify how close the results of the two methods

of substitution of repeatedly-acting loads by singly-acting
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load are comparative calculations were carried out.

The stress, which can be assumed in the section of

a tension bar from the average value of the singly-applied

equivalent load,

where y is the design coefficient, determined by the formula

Here tip. Ur • up are coefficients of load variation*, resistance

variation* (yield point or tentative resistance) and the area

variation* of the section; y is the characteristic of safety.

The results of calculating the value of the coefficient

y for a tension bar from steel type St. 3 with a coefficient of

load variation, Up = .25, yield point uT = 0.1 and area of

section uF = 0.25, number of load applications N = 1, 10, 10 2
,

10 3 and 10 4 and safety coefficient y = 3, are given in Table 3.

It is easy to show that the calculation according to both

changes from 1. to 0.94).

methods

ratio

in all cases gives

e:
yzP

N

practically identical results (the

Consequently, any repeatedly-acting load can be

replaced by an equivalent one through the effect on the structure

*Translator's note: The coefficient of load variation U means

the coefficient of variation (0 IX) of the load times y.x
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of a singly-applied load, and the principle difference between

the two groups of design random quantities is eliminated.

The value of the coefficient of live load variation

should be fixed differentially, depending on the planned

period of service of the designed construction, i.e., on its

importance.

On the Values of the Safety Characteristics

In the statistical method of design we are concerned

with the value of the safety characteristic y only for the

auxiliary design quantity

(10)

where R = resistance of the material;

F = a geometric parameter of the section (area,

section modulus);
n

~~ = sum of the force effects on the given element
I

in the design section from different loads;

A = a coefficient, taking into account the difference

between the resistance of the material determined

by standard specimens, and the calculated resistance

of the material in the rolled profiles, and also

the influence of the technological processes involved

in manufacture and erection, on the strength of

material going into the structure;
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B = a coefficient, taking into account tile difference

of the distribution of the forces between the

design diagram and the real structure. The

coefficients A and B are random quantities, in

the same way as R, F and P..
l

In a series of investigations by the statistical

method the auxiliary quantity D is taken in a different form,

namely,

or

However, this has no significance in principle.

From the theory of probability (the theory of

composition of distributions) it is known that in the case

where a generalized random quantity is the algebraic sum of

a sufficiently large number of particular random quantities

with different laws of distribution, then in the majority of

cases the distribution of this generalized random quantity

must approach the normal distribution asymptotically.

In our case the significant portion of the design

random quantities (material resistance, geometrical parameters

of the section, certain loads), as shown above, has a distri-

bution near to the normal.

Table 4 gives values of the safety characteristic

for loads distributed according to the model law with different
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parameters, having the same value of the function F(x) = 0.00135,

which corresponds to y = 3 for the normal distribution.

From Table 4 it is seen that for the model law of

distribution at values of the parameter a = 1.5--4, the

safety characteristic y for which the value of the function

F(x) = 0.00135, is 2.8 to 4.3, i.e., near to 3 for the normal

distribution.

If the random quantity is the product of a number of

particular random quantities, then its distribution tends to

the logarithmic-normal(l).

The differential function of this distribution is

In.
- 2b1

t
,(x) = b y2x ..c

In this case, if the coefficient of variation of

this random quantity is relatively small (less than 0.25), its

distribution also approaches the normal.

Table 5 gives values of x, a and y for the

logarithmic-normal distribution with coefficient b = 0.1 - 0.25

for F(x) = 0.00135.

From the above one can assume that the safety

characteristic in formula (9) for the determination of the

(1) Kh. B. Kordanskii, "Applications of the Theory of Probability
to Engineering Works"; Gosfizmatizdat, 1963.
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design coefficient y can be taken without substantial error

in conformity with the value of the function F(x) for the

normal distribution.

It is hoped that the objection against the statisti

cal method of calculation of building structures is removed

and this advanced method finds application in design practice.
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For a long time investigations in the area of structural

design were aimed at the maximum precision of tile initial data,

thinking that this approacn brought the design nearer to tile

actual performance of the structure.

Only gradually did it become evident that the

statistical nature of the majority of design quantities nad to

be considered and a change from deterministic to random

dependence had to be made. In the theory of structures all

this was first revealed in tne analysis of structures and in

the maintaining of safety factors in the strength calculations.

The safety factor was always determined by considera-

tion of the experience of erection and use of a large number of

structures, but without any calculation basis. A rough

determination of the safety factor contradicted tne applied

precise and laborious methods of deterministic calculation

of strength and often did not provide the neces3ary economy

of expenditure of materials, and in some cases did not provide

the required safety.

Since the safety factor depends on many factors,

repeated attempts were made to break it down into a series of

coefficients, each of which would determine the influence of

anyone factor. Usually these particular coefficients were

proposed in the form of factors whose product mU3t give the

full amount of the safety factor. Such a method was, in

particular, recommended for designs in mechanical engineering



RZhanitzyn - Probability Methods of Structural
Design in the USSR

by I. A. Oding, and for tr1e design of builuing structures by

P. Ya. Kamentsev. In tnis case tile particular coefficients

were determined by eye and their product, through the

8~

accumulation of errors, was even less accurate than the full

safety factor obtained by a direct intuitive estimate.

The essence of the safety factor, as a function of

the possible deviations of the properties of materials and

loads from their expected values, was revealed at the end of

the twenties in a series of articles by N. F. Khotsialov

(27-28) and N. S. Streletskii (25-26). N. F. Khotsialov was

the first to suggest determining the safety factor from the

condition of not exceeding a definite but very small pro-

bability of structural collapse, taking the strength properties

as random, and the load as deterministic.

N. S. Streletskii in 1935 suggested considering the

random deviations of bot}l the strength characteristics and

the loads. In this case he introduced a quantity, called

the safety guarantee, which depended on functions of the

distribution of strengths and loads.

For the determination of this quantity tne distribu-

tion curves of strength and load were constructed on the same

axis, expressed in identical units, for example in Kg/cm 2

(Fig. 1). A vertical passing tllrough the point of inter-

section of these curves, cut off two areas wand w , whose
1 2

product established the safety guarantee r = w w .
1 2
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From the fixed quantity r the correlation of the

centres of the distributions of strength and loads was

det ermined, i. e., t he safety fac tor s ought for.

It should be noted that the safety guarantee did

not determine synominously the probability of collapse (16).

More recently the method of probability theory was

applied to the given problem in the articles (17-18). The

principle position and conclusions of these investigations

consist in the following. The conclusive stage of the design

of the structure for strength and deformability must be the

estimation of their possible deviations from the expected

values. In view of the statistical character of the basic

deviations both for the characteristic of strength of the

elements and for the loads on the structure, the method of

the theory of random quantities can be used. The value of

the required safety factor must be based on the law of the

distribution of the final results of the calculation, which

is also a random variable, and on the fixed safety characteristic,

which for a normal curve of the distribution of calculation

results is equal to the number of standard deviations cut off

in this curve from the centre of the distribution. In the

case of a distribution curve of different form the value of

the safety factor can be determined from a fixed sufficiently

small value of the probability of collapse. Such a method

made it possible to consider the various aspects of the
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performance of the structure - its set-up and the character

82.

of the load. These investigations were conducted simultaneously

and independently of some analogous investigations oy

Freudenthal (U.S.A.).

In 1945, in connection with tne development of new

standards of design and planning by the newly organized

Narkomtyazhstroi Commission for the unification of ~ethods of

design, a conditional system of calculation coefficients,

suggested by I. I. Gol'denblat, M. G. Kostyukovskii and A. N.

Popov was adopted. According to this system the general

safety factor was broken down into three groups: the

uniformity coefficient, accounting for possible deviations of

strength characteristics; the overload coefficient, account-

ing for random increases of the loads; and the coefficient of

the performance conditions. This system fixed the basis of

design calculations, adopted by the new SNiP*, in which the

definition of what should be called failure, was given accord-

ing to newly proposed terminology, the limit states of the

structure (2). The commission mentioned above, composed of

N. S. Streletskii, V. M. Keldysn, A. A. Gvozdev, V. A. Baldin,

I. I. Gol'denblat, and others, defined three forms of the

limit states: based on strength, deformation and the amount

of opening of cracks (in reinforced concrete and masonry

structures). The limit state was defined as the condition of

the structure, where its further serviceability became

*Rules and standards of construction
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impossible or inadvisable. In spite of so~e insufficient

83.

development, this method was an advance, since it allowed one

to estimate separately tne influence of the random character

of the strength properties of materials and of the load. The

short-coming of the method of limit states is that the

coefficients of uniformity and overload were determined for

each design factor independently of the scatter in the other

factors. This led to an overstated reliability, i.e.,

insufficiently economic design when there are a large number

of random factors, and a small reliability in those cases when

only one factor is random (for example, in metal reservoirs,

where the load is determined and the deviation can only be in

the magnitude of the steel strength). In recent years an

attempt was undertaken to introduce in the method of limit

states the so-called coefficients of combination.

At the present time the method of limit states is

applied in the design of all building structures and analogous

methods were introduced in a number of other countries.

However, the time has come to work out new standards for the

desiGn of structures. These standards must be based on a

stricter use of the theory of probability and random

functions (17).

In the probability approach a vulnerable area for a

long time was the principle of fixing the standard probability

of collapse (or tne numoer of standard deviations from the
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average value of the calculated quantity). It is true to say

that the volitional approach here was not removed, but was

only transferred to the earlier stages of the calculation.

A. R. RZhanitzyn suggested an approach to the

determination of the safety factor (20) Lased on the minilnum

expected full cost, including the cost of erecting the structure

and of liquidation as a result of collapse or damage multiplied

by the probability of collapse during tile period of service of

the structure.

There is no objection to this metnod for cases where

there are purely economic consequences of collapse and it

requires only correct calculations of expected expenditures.

In the article (22) formulae were given for deter-

mining optimum dimensions of the sections of structures on the

assumption that the cost of erection and restoration are non-

uniform linear functions of the cross-sectional areas. The

normal law of distribution was taken for the limits of strength

and for the load. In recent times B. I. Snarskii gave a number

of generalizations and gave recommendations for the practical

application of this method with a different law of the distri-

butions of loads and strengths. He also made an attempt to

substantiate the economic approach for any structure.

The investigation of statistical strength of

structures appeared partly in connection with the problem of
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the safety factor. The development of the theory of statistical

strengths of materials began much earlier. In 1940 the work of

T.A. Kontorov and Ya. I. Frenkel' (13) was published. Their

work was closely connected to the work of the Swedish scientist

W. Weibull and was based on the concept of ideally brittle

materials, whose collapse was determined by the maximum reduction

of the tentative strength in any point of the body. The correlation

between the presence of defects at sufficiently close points of

the body was not considered. In spite of the formal character

and also disregarding the possible redistribution of forces in

the body at partial collapse, this theory made it possible to

describe such qualitative phenomena as, for example, scale effect.

Analogous methods were used by N.N. Afanas'ev in

the theory of fatigue strength (1). Subsequently this theory

was developed in the works of V.V. Bolotin (7-8).

The first consideration on a different approach to

the strength of statically determinate and statically indeter-

minate systems was expressed in the paper (18). Thus for

statically determinate systems the strength is determined by

the weakest element and the problem in this case is to find the

probability of occurrence of the minimum value of some quantity

in several statistical sets.
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In statically indeterminate systems the case is more

complicated. For the simplest statically indeterminate systems

the statistical strength was determined by L. G. Sedranyan (23).

A number of considerations regardinG the problem of the statis-

tical strength of concrete can be found in reference (14).

An original approach to the statistical strength of

materials was applied in (29), where instead of defects, the

statistical set of the three-dimensional forces was examined,

equivalent in their action to the presence of defects.

The statistical approach is especially necessary when

small chance deviations in the initial values lead to large

quantitative and qualitative changes in the results of the

calculation. Such a condition takes place in problems of

stability of compressive structures. The first calculation

of stability by statistical methods, evidently are the

articles (18) and (19). The author proposed a method of

constructing curves of coefficients of decrease in the

allowable stresses in compression depending on the random

errors in the centering of members and from possible elementary

wow of the member axis. The method was based on calculating

eccentrically loaded members with respect to boundary stresses.

In calculating the dispersion of the critical forces, whi c h

depend non-linearly on the initial data, a linearization of these

dependencies was made which led to simple final formulae. The

method of linearization is sUfficiently accurate in cases of a
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comparatively small change of the random factors, when large

deviations of the latter have a small probability.

The statistical method was applied by V. V. Bolotin

(5) to the problem of stability of compressed cylindrical shells

based on the non-linear tneory of shell stab..i.lity. In tnis

case the random factor was considered only the amount of ele-

mentary flexure in the centre of tne panel of the shell. This

method was used by B. P. JvIakayov (15), who examined Lie

stability of cylindrical shells under lateral normal pressure,

under all around compression and under torsion. Analogous

investigations were conducted also by I. I. Vorovich (11),

V. N. Goncharenko (12) and A. S. Vol'mir (10).

Of theoretical interest and of practical importance

in the application of probability metllods was tne investigation

on settlements of buildings in unevenly compressible soil.

The problem of a beam on a statistically non-uniform elastic

base was suggested and solved by 0. N. Sobolev (24). The

coefficient of sub grade here was considered a stationary

random function of length, computed along tne beam. For the

solution of the problem a method was applied in wu i c h t ne

equation containing the random function is reduced to an

equation containing a random quantity. This is achieved by

integrating the equation over tne length of the beam with a

fixed weight by a metilod close to that of Bubnov-Galerkin.

Simultaneously V. V. Bolotin offered a different solution to
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the given problem. He used (8) the concept of a small random

component of the coefficient of subgrade in comparison witn

its mathematical expectancy. This solution was applied to

calculating the strength of a pipeline lying on a non-uniform

elastic base.

More general problems posed more recently are problems

of the theory of elasticity or the theory of plasticity of

continuous bodies with random physical characteristics, for

example, with coefficients of elasticity as random functions

of the coordinates. In this area little has been done yet.

The article of V. V. Bolotin (9) on the calculation of

reinforced plastics with random irregularities should be

mentioned. A number of investigations are now working in tilis

area.

The random character of the actions on a structure

occurs perhaps more often than the random nature of strength.

This action in the majority of cases is better considered not

as random quantities but as random functions of time. A typical

action in this respect is wind load. Ttle concept of #ind load

as a stationary random process was used in a paper by i1. F.

Barshtein (3) for the design of tower structures under wind

load. The problem reduced to the calculation of vibrating

systems during random perturbations. The apparatus of the

spectral theory of random functions was used. Later on

M. F. Barshtein gave analogous calculations for the action of
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sea waves and for seismic vibrations (4), w~icil were examined

also as stationary random processes. In reality the viorations

of the ground in earthquakes are non-stationary random processes

which was mentioned somewhat earlier by V. V. Bolotin. He

examilled this problem using rather general notions concerning

the many components of seismic action, i.e., the presence of

three random translational displacements and three ra{jdom

rotations (6).

In problems of the action of random processes tne

probability of collapse is determined as a function of the

time of their action, for which the theory of ejections is

used. In the majority of cases the ejections can be considered

as sufficiently rare, non-correlated events, which makes it

possible simply to solve tile problem as depending on the

given period of service of the structure.

The maximum values of the snow load reached towards

the end of tne winter can be considered as repeated random

values. The calculation here reduces to the problem of the

probability of the occurrence of the specific maximum value

of repeated random values for wIlich various approximate

methods can be used (21 and 16).

TIle loads obtained also carry a random character, but

tlleir regularity is sometimes very difficult to catch. There

is a great deal of statistical data for crane loads in

industrial buildinGs with roadway cranes. However, tnere are



Rzhanitzyn - Probability Methods of Structural
Design in the USSR 90 1

deterministic dependencies embedded in t~le random factors, and

this requires more care in the application of statistical methods.

The same phenomenon occurs in tne pay loads in dwellin~s and

pUblic buildings.

It must be mentioned tnat in tIle existing standards

of the design of structures the random character of tile loads

is not reflected sufficiently completely.

The whole set of probability calculations of structures

for strength is sometimes called the theory of reliability of

buildings and structures, including the change of fitness witn

time owing to corrosion, ageing of materials, etc. The theory

of reliability in the construction area has not yet received

much development, but is appli2d with success for the solution

of problems of macllinery construction and for the performance

of various devices.

An important contribution to the theory of reliability

of buildin~ structures was made by V. V. Bolotin, who gave

special attention to the problem of accumulation of damage in

repeated overloads (8).

At the present time investigations in the area of

design of structures with the application of probability

methods are being carried out on broad fronts. Their

expediency and efficiency are no longer in doubt. The develop-

ment of these metllods promotes advanced refinement of the
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mathematical apparatus and promotes its application in otner

91.

branches of technology and physics which could not be dealt witn

in t h l s paper.
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