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ABSTRACT

This paper describes the parameters and method used to calibrate an anamorphic lens specially designed for a 3-D

triangulation based laser range sensor. It expands the more “conventional” spherical lens calibration technique that has

been developed in photogrammetry to include the extra distortions introduced by the strong astigmatism and by the

different optical principal planes of the lens of the anamorphic design. Experimental results using a prototype of the lens

for the Biris range sensor are presented.

Keywords: Anamorphic, calibration, range sensors, lens model, photogrammetry.

2. INTRODUCTION

A trend in cinematography that has once been very popular was to provide the audience with a wide field of view screen.

Of course the technique known as  “CinemaScope," could have been accomplished using a wide film (e.g., 70 mm rather

than the conventional 35 mm). However it was found to be more economical and more convenient to photograph and

project using the more conventional and widely used 35 mm film and an anamorphic optical lens system.
1,2

An anamorphic optical system is one that has a different power along mutually perpendicular meridians. Such devices

usually make use of either cylindrical lenses or prisms. In the CinemaScope, a 2× anamorphic afocal cylindrical

attachment is placed in front of the primary spherical lens. This attachment has no effect in the vertical dimension but

compresses the horizontal image on the film. Projection is accomplished in the same manner; an afocal cylinder

attachment is placed in front of a standard projection lens and “expands” the compressed image.

Diodes laser optics is another example of an anamorphic optical system. Diode lasers have a divergent asymmetric

output due to diffraction effects in the asymmetric gain region of the laser cavity.  Prisms and cylindrical corrections

optics are used to project a circular laser beam instead of the usual elliptical beam.

In the following sections, the advantages of using an anamorphic lens design with a 3-D laser based range sensor are

discussed. The benefits of increasing the field of view of the sensor while preserving the range accuracy of the system

are presented.  The method used to calibrate this anamorphic design is then discussed and experimental results are

shown using the NRC’s Biris range sensor.  Although the discussion is mainly focused on the NRC’s technology, it is

directly applicable to most triangulation based methods.
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3. RANGE TRIANGULATION

The Biris range sensor is a combined triangulation and focus based technique. The range information is gathered by

projecting a laser plane on an object and imaging the projected laser line using a dual aperture mask inserted inside the

camera lens. The combined Biris-plane of light  principle is depicted in Figure 1.

Because of the two aperture mask and the defocusing of the image, two distinct points p1 and p2 are measured.  Range is

obtained by either measuring the average position p=p1+p2 of the two laser spot images p1 and p2 on the CCD photo-

detector (plane of light method, denoted by sub-index p), or the separation b=p2-p1 (Biris method, sub-index b).
3
 

Range can be computed using either equation 1 or 2.

z

l
l f

f D l
p

p =
+ −

⋅ ⋅






 ⋅−

1

1

(1)

z

l
l f

f d l
b

b =
+ −

⋅ ⋅






 ⋅−

1

1

(2)

The two equations combined yields

( ) ( )z =
1

K  b+ l  +  (1 - ) K  p+ lb pα α⋅ ⋅− −1 1
(3)

where f is the focal length of the lens, l is the focusing distance, D and d are respectively the triangulation base and the

mask aperture separation of the sensor. α is a weighting factor to optimize for noise by minimizing the variance of w=1/z

as it will be explained later.

The general form of equation 1 and 2 is the same, therefore the discussion for equation 1, plane of light method, also

applies to equation 2, original Biris method. From equation 1, the range measurement error propagation formula ∆z is
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and the field of view φx of the camera
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Figure 1. Optical Principle of the

Biris/Plane of Light method
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The difference in nomenclature fx and fy will be made obvious later (section 4).  For a conventional rotationally

symmetric spherical lens (fx=fy=f).

Equations 4 and 5 gives the total field of view of the camera at a given range value z
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which, for a spherical lens, simplifies to
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The range accuracy of the range sensor is directly related to the separation between the laser plane and the imaging

optics (triangulation base), and the focal length of the lens (equation 4). However the field of view of the camera is also

related to the focal length of the camera and the CCD dimensions (equation 5). To increase the accuracy of the

measurement, for a conventional rotationally symmetric spherical lens, requires to sacrifice the field of view of the

sensor (equation 7). Figure 2 shows the relationship between accuracy, field of view, and lens focal length.

4. ANAMORPHIC LENS

An anamorphic lens gives a different magnification for the two axes -x and -y. The equivalent focal lengths can then be

made independent ( f fx y<< ) and the field of view of the camera larger without sacrificing the range measurement

accuracy (equation 6).

Although distortions are large with anamorphic lens designs, they are not of major concern for range triangulation

because of the calibration procedure. Coma and the other primary aberrations may seriously degrade the quality of the

optical system and therefore the imaging resolution -x,-y of the device. A tradeoff between cost and optical performance

is essential.
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Figure 3 shows the basic principle of an anamorphic lens design, composed of two orthogonal cylindrical lens. Details of

the first order geometry are shown in Figure 4. Aberrations of such a simple lens design are very large and in practice

other designs using multiple lenses are used. This simple optical system illustrates well the principle behind the

anamorphic lens design.

From Figure 4, the magnification ratio of the anamorphic lens system is

             M
f

f
a

y

x

=   (8)

Of particular importance for calibration is the location of the principal planes of the lens. Obviously, they are very

different for the -x and -y axis. The photogrammetric calibration equations (section 5) will not perfectly correct such a

large asymmetry in the optical system, although they can easily compensate for a small astigmatism. This is further

amplified when the working volume is close to the lens which is usually the case with 3-D triangulation based cameras.

In Figure 4, the locations of the primary and secondary planes coincide with the physical location of the lens. For

complex lens design, thick lens equations
1
 are used to compute the location of the primary and secondary principal

planes.

5. LENS DISTORSIONS

The direction of a light ray after refraction at the interface between two homogeneous, isotropic media of differing index

of refraction is given by the well known Snell's Law

( ) ( )n n1 1 2 2⋅ = ⋅sin sinθ θ  (9)

where both angles are measured from the surface normal. Optical design packages, such as the one used to draw figure

3, trace many optical rays through the system and, applying Snell's Law at each interface, determine the imaging

characteristics of a lens or lens system. In practice, the lens system is first estimated by using certain approximation.

These basic approximations are based on the sine functions in Snell's Law  expanded in infinite Taylor series:
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Figure 3. Basic Anamorphic Lens Design using

two orthogonal cylindrical lenses
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Figure 4. First order model of the lens of Figure 3.



The first order and most commonly used approximation replaces ( )sin θ θ≈ . Although this first approximation called

"first order theory" or paraxial theory seems an oversimplification, it is of great utility in determining system focal length,

magnification, field of view, and is always used in designing an optical system. In practice the exact optical design of a

commercial lens is rarely given by the manufacturer: (lens curvatures, surfaces' distances, glasses)  the paraxial theory is

often the only one available for a given optical system.

The second approximation uses the first two terms in the Taylor expansion of equation 10 ( ( )sin / !θ θ θ≈ − 3 3 ). The

results of third order lens aberrations  were investigated extensively by Seidel and are therefore often called the Seidel

aberrations. Seidel developed a formalism to approximate these aberrations without the necessity of actually tracing

large number of rays. The aberrations that are of interest with monochromatic laser based range sensors are:

• Spherical aberrations

• Astigmatism

• Coma

• Field curvature

• Distortion

The weight of the different Taylor expansion terms for different field of views are given in Table 1 and shows the

possible effect of the different terms when calibrating a lens. Seidel aberrations are usually sufficient to model long focal

length and/or small fields of view optical systems.
7

For the anamorphic design, the errors associated with the fifth order aberration term will be close to 10
-4

, more than 30×
the error of a 22° field of view lens. Considering that sub-pixel measurement with an accuracy of 1/4 to 1/8 of a pixel

gives a sampling resolution of up to 4000 elements on the CCD detector, these aberrations are not negligible for a range

sensor.

Taylor Approximation

Example of lens

Lens nominal

field of view θθ θθ3
 / 3! θθ5

 / 5! θθ7
 / 7!

Single element 3° 0.026 3 ×10
-6

1 ×10
-10

1.7 ×10
-15

Conventional camera 22° 0.19 1.2 ×10
-3

2.2 ×10
-6

1.9 ×10
-9

(multiple elements lens) 30° 0.26 3 × 10
-3

1 ×10
-5

1.7 ×10
-8

Anamorphic Design 45° 0.39 1 ×10
-2

7.8 ×10
-5

2.9 ×10
-7

Table 1. Contribution of the Taylor approximation to a lens system aberrations

6. CALIBRATION MODEL

6.1  Photogrammetry model

Given an homogeneous world coordinate system, X w , in which 3-D positions are specified, and an homogeneous

system, x c , in which pixel locations on the camera CCD are measured, the perspective transformation matrix C can be

modeled by a 3×4 matrix:

x C Xc w= ⋅ (11)

The calibration method based on a pin-hole optical model of the camera and projector can be simultaneously solved for

both intrinsic parameters (e.g., focal length of lens, camera pixel sizes) and extrinsic parameters (e.g., camera

orientation).
6
  However important, lenses optimized for photography have large distortions and principal points offset

that must be calibrated. Parameters from these estimates will be included in subsequent data processing for calibration

of the raw measurements.



Variations in angular magnification with angle of incidence are interpreted as radial lens distortions, usually expressed

as a polynomial function of the radial distance from the optical axis of the lens. Tangential lens distortion is the

displacement of a point in the image caused by misalignment of the components of the lens. The displacement is

described by two polynomials, one for the displacement in the direction of the -x axis and the other for the displacement

in the -y direction:
6
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where r x yc c
2 2 2= + , x x xc o= − , y y yc o= − . Equation 11 becomes

x C X
c c w

+ = ⋅∂       (14)

6.2  Elimination of the z dependency in the model

Using the previous model for calibration does not provide enough parameters to completely model the anamorphic lens.

Distortion equations 12 and 13 need other parameters that depend on the zc coordinate of the camera. This is mainly due

to the origin of the principal planes of the lens that are different for the -x and -y axis.

If we specify the rigid transformation from the world coordinate system to the laser plane coordinate system

C X C Xw l l⋅ = ⋅ , where [ ]X l = x zl l

T

0   then the dependence between world coordinates yw and zw is removed

and the intrinsic parameters of the camera can be directly measured. The symmetry of equations 12 and 13 is no longer

valid because of the orientation of the laser plane that may not coincide with the CCD/lens optical axis.

We will consider here only equation 1, knowing that the same discussion applies for equation 2.  Equation 1 assumes

that the position of the center of the CCD and the location of the principal plane of the lens are perfectly known which, in

practice, is not the case.

6.3 Anamorphic model

Assuming good quality lens, the calibration equation is
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where zoy and  po are the "zero" positions or respectively the lens principal plane and the position of the optical axis of

the lens on the CCD. The zl coordinate in the laser plane is

z zp l= ⋅ cos( )τ (16)

where τ is the angle of the laser plane with respect to the z axis of the camera. Assuming that zoy is small, compensated

by the series expansion, then

z Wp = 1 /  (17)
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Experimentation and tests using an optical design package have demonstrated that with I=4, J=7, a very good correction

of the distortions of the camera-lens (including zoy) is obtained. This is in agreement with Table 2.

Using matrix notation, equation 17 is rewritten in a more convenient form

W U Mw P
T= ⋅ ⋅   (19)

where M is a I×J matrix that contains the intrinsic calibration parameters of the sensor and

 U
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p p p
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K .

And the orthogonal coordinate x, for a first order system is

( )x z zp p ox= − ⋅ tan( )ϑ        ϑ =
−u u

f

p o
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where up is the pixel position (video line) on the CCD, and uo the position of the optical axis of the system, on the CCD.

 Note that zoy≠ zox, and x xp l= .  Replacing by a Taylor expansion, to calibrate for the distortions, yields

tan( )ϑ β β β β= + ⋅ + ⋅ + ⋅ +0 1 2
2

3
3

u u up p p L (21)

X U Mx Z
T= ⋅ ⋅    (22)

7. CALIBRATION PROCEDURE

The calibration procedure consists of acquiring several profiles of a calibration bar at perfectly known ranges with

increments Zinc.
7
  Calibration of the Z axis is done with the calibration bar perpendicular to the translation axis of the

camera or the calibration bar as shown in Figures 5 and 6.

From the different sets of measurements zc,p, minimization of the least square error
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directly yields to the calibration matrix Mw of dimensions I × J that will be used to compute range from the raw data

(equations 17 and 18).  Although in theory it is possible to use some symmetry of the optical design, decentering of the

lens and the lack of perpendicularity of the optical planes offset the gain obtained by a non-linear minimization of the

calibration equation.

Rotation and translation of the calibration bar are accurately controlled by motorized rotation and translation stages,

Figure 5. The equation of the plane of Figure 7 is

 z x x z
r

o o= − + −( ) tan( )
cos( )

Φ
Φ

(24)

Assuming φ=0, we have the condition z z rc o= − , the Zc range measurements or equation 23. The axis x −∞ < < ∞x ,

is undefined.  Let define two plane angles Φ1 = γ , and Φ 2 = −γ , assuming the reference xo = 0  then
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which yield
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Calibration of the -x coordinate system can be implemented by independently minimizing the error associated when

calibrating for the two angles

zc = ⋅ ⋅U Mx Z1 1 (28)

zc = ⋅ ⋅U Mx Z2 2 (29)

where zc is the position of the calibration plane referenced to the calibration of the z data (equation 22). With

[ ]Z
T = 1 z , calibration of the -x axis is obtained by

x = ⋅ ⋅U Mx Z (30)
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8. EXPERIMENTATION

The technique has been applied to different models of standard lens and anamorphic designs. Figure 8 shows the raw

data and distortions associated with one of these lenses, using the calibration method discussed in this paper. For this

particular lens, we have fx=8 mm, fy=16 mm, and CCD=8.8 mm (2/3” CCD). Distortions are not perfectly symmetric

with the optical axis. Adjustment of the laser plane is referenced to the mechanical body of the camera and not the CCD.

That explains the tilted laser profiles of Figure 8.

Figure 9 shows the calibrated X-Z data.  Figure 10 shows the RMS error associated with the measurements, obtained

with the anamorphic design.  Of particular interest is the variation of the field of view of the camera with range which is

easily explained by the fact that the reference z=0 of the camera is located at the principal plane of the lens fy while the

field of view is referenced to fx.

The accuracy of the calibrated range data has also been tested using a different method, to validate the accuracy of the

measurements.
8
 This method used targets at perfectly known locations. Absolute accuracy of the measurements was

confirmed. Angles between calibration planes can be recovered from the measurements.
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10. CONCLUSION

This paper has presented a method used to calibrate an anamorphic lens for a triangulation based laser range sensor. The

principal advantage of using an anamorphic lens for range sensing lies in the independence between the field of view of

the camera and the accuracy of the measurement introduced by the anamorphic design. Range accuracy can be increased

without sacrificing the field of view of the sensor.

The non-linearity and the distortions of the model of the anamorphic lens were expanded in Taylor series. The linear set

of equations was solved to minimize the errors associated with measuring a set of parallel calibration bar at different

known ranges. Experimental results have demonstrated that the very strong distortions introduced by the anamorphic

lens are easily compensated for with the calibration procedure presented in this paper.
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