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‘Abstract

Flatfishes are a group of teleosts of high commercial and environmental interest but
whose biology is still poorly‘ uﬁdérstoodl The recent'rapid devvelopment of different
‘omics’ technologies is however enhancing the knowledge of the complex genetic
control underlying different physiological processes of flatfishes. This review describes
the different functional genomics approaches and resources currently available for
flatfish research, and summarizes different areas where microarray-based gene
expression analysis has been applied. The iﬁcrease in genome sequencing data has also
allowed the construction of genetic linkage maps in different flatfish species; these
maps are invaluable for investigating genome organization and identifying genetic traits
of commercial interest. Despite the signiﬁcént progress in this field, the genomic
resources currently available for flatfish are still scarce; Fﬁrther intensive research
should be carried out to develop larger genomic sequenc;e'databases, high-density
microarrays, and more detailed, complete linkage maps, using second-generation
sequencing platforms. These tools will be crucial for further expanding our knowledge
of flatfish physiology, and we predict that they will have important impacts on wild fish
population management, improved fish welfare, and increased pfoductivity in

aquaculture.

Key words: Pleuronectiformes; EST, microarray; genomics; gene expression; genetic

linkage map
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INTRODUCTION

Flatfish, members of the order Pleuronectiformes, are a relatively large group of
ray-finned fish with about 570 extant species (Nelson, 2006). The name of the order is
derived from the Greek mAgvpd (pleura), meaning "rib" or "side", and vnit6v (nekton), |
meaning "swimming", These fish have both eyes in one side and lie on the opposite
side, they-are benthic and carnivorous, and most are marine species, although some
species occur only in freshwater. Flatﬁsh are an mterestmg group of teleosts because
they show a unique developmental process known as metamorphosis, during which one
eye migrates across the top of the skull to lie adjacent to the other eye on the opposite
side, while the body flattens and lies on the eyeless side (Okada et al., 2001). This is
accompanied by drastic morphological and pllysieldgical changes and its molecular
regulation is still poorly understood (Power et al., 2008). The reproductive processes of
flatfish are also of scientific interest since the males of some species show testis of a
semi-cystic type, an unusual type of spermatogenesis among teleosts in Whieh
spermatocytes and spermatids are released into the seminiferousvlumen where they
differentiate into spermatozoa (Yoneda et al., 1998; Garcia-Lopez et al., 2005). In
addition, many flatfishes show elaborate courtship behaviours that are necessary for
successful mating but the underlying mechanisms are largely unknown (Gibson, 2005).

A number of flatfishes, including the flounders (Platichthys flesus L.,
Paralichthys olivaceus Temminck & Schlegel, P. lethostigma Jordan & Gilbert,
Pseudopleuronectes aruericanus Walbaum), soles, (Solea solea L. and S. senegalensis

Kaup), turbot (Scopthalmus maximus L.), plaice (Pleuronectes platessa L.), and Atlantic

halibut (Hippoglossus thpoglossus L. ) are also 1mportant food resources. Because of

,72 L

their highly - pnzed white ﬂesh the aquaculture of a few of these species has been
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enhanced or developed duﬁng the last years (imsland et al., 2003; Conklin ef al.; 2003;
Naylor & Burke, 2005; Mori et al., 2006). The aquéculturc’ produétion of turbot is the -
highest among flatfishes, whereas that of Atlantic halibut is now successfully underway
although improvements in efficiency remain a maj dr goal (Naylor & Burke, 2005). For
other species, such as the Senegalese sole or the flounders, the production is lower, and
in the case of sole different aspects of their culture need to be optimized to allow a |
sustainable and profitable industrial production.

The Iﬁanagement of wild, captive and reared flatfish populations is in ge_neral
impaired by the limited knowledge of different aspects of their biology. Recently,
research on flatfish physiology has increased significantly, and ‘omics’ teclmdlogies
(genomics, proteomics‘, metabolomics)_have been applied to better characterize
reproduction, development, nutrition, immunity, aﬁd toxicology in these species. These
technologies are powerful tools for investigating the genetic and molecular regulation of
biological processes in a global manner, and therefore they are of great interést for
flatfish research. The proteomic approaches that have been used to investigate diverse
biological questions in model and non-model fish species, including flatfishes, ﬁavé
recently been reviewed (Forné e al., 2010). Therefore, the scope of this review is to
highlight the genomics technoldgies that have been developed so far in ﬂatﬁshes, and

summarize the different research areas where they have been applied.
DEVELOPMENT OF GENOMICS TOOLS IN FLATFISH

GENOMIC LIBRARIES

%6
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_Although the genomes of five well-known model fish species, zebrafish (Danio

rerio Hamilton), medaka (Oryzias latipes Temminck & Schlegel), spotted greeli



98

99

100

101
102
103
104
105
106
107

108
| 1>O,9
1'le
111
112
113
114
115
116
117
118
119
120

121

pufferfish (Tetraodon nigroviridis Marion de Procé), Japanese pufferfish (Takifugu
rubripes Temminck & Schlegel) and three-spined stickleback (Gasterosteus aculeatus
L.), have been fully sequenced, those of commercially importanfc species including
ﬂatﬁsh, has lagged behind. With the advent of no{/el methods for high-throughput DNA
sequencing, such as 454 pyrosequencing technology (see below), more than 1,000,000
reasénably long reads (300-500 nucleotides) can be achieved in a 10 h run. Large-scale
sequénce analysis of Atlantic cod, Gadus morhua L., has been performed (J ohansen et
al., 2009) and this approach is currently beiﬁg applied to the sequencing of selected
BAC:s from Atiantic halibut (e.g., Mechaly ez al., 2016).

Significant work has recently been achieved with half-smooth tongue sole
(Cynoglossus semilaev;’s Giinther), a flatfish of great commercial importance in China.
In order to better understaﬁd the éex-de’termininé méchanisﬁ in this species, a W sex
chromosome-specific library covering almost 1% of the chromosomé was constructed
by amplifying DNA isolated by laser capture microdissection (Wang er al., 2009a).

Sequence analysis of 518 clones revealed only 75 significant BLASTX and BLASTN

hits, including 24 repetitive sequences. A fosmid library consisting of 49,920 clones

(3.23 genome equivalents) has also been constructed for the female half-smooth toﬁgue |
sole and end-sequencing of both 5' and 3' ends of 1,152 individual clones generated
2,247 sequences after trimming, with an average sequence length of 855 nucleotides.
BLASTN searches of the nr and expressed sequence tag (EST) databases of GenBank,
and BLASTX searches of the nr database, resulted in 259 (11.53%) and 287 (12.77%)
significant hits (E < e-5), respectively. This fosmid library will be a useful resource for

large-scale genome sequencing, physical mapping, and positional cloning (Wang ez al.,

PO

2009b) and aid in understanding sex-determination in this species.
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EST SEQUENCING

In the last decade, the number of ESTs and species of ﬂétﬁsh represented in
public databases (e.g., GenBanlc) has increased suBstantia11$f (Table I). EST surveys of
flatfish spécies have been performed using classical high-throughpuf sequencing
techniques which are costly, and this may explain why for some species the numBer of
sequenced ESTs remains quite low. Winter flounder (Pseudopleufonectes americanus
Walbaum) and Japanese flounder (P. olivaceus Temminck & SchlegeD were two fish
subjected to EST analysis starting over 10 years ago (Aoki et al., 1999; Douglas et al.,
1999; Koﬁo & Sakai, 2001; Arma et al., 2005), but recent surveys include ESTs fromv
the digestive systém (Kim et al., unpub.), and immune tissues such as liver, spleen and
head kidney of Japanese flounder stimulated by various pathogens (Hirono et al.,
unpub.). Approximétely 1,000 5’—end sequenced ESTs have been obtained from each of

eight different tissue-specific and five different developmental stage-specific

- normalized ¢cDNA libraries of Atlantic halibut (Douglas et al., 2007), and over 4,000 .

ESTs were obtained from 2-cell stage embryos, 1 day-old yolk éac larvae and fast
skeletal ﬂluscle éf juvenile fish of the same species (Bai ef al., 2007). More thaﬂ 10,000
ESTs have been 3’-end sequenced from a multi-tissue normalized cDNA library of
Senegalese sole from adult tissues, larval and juvenile stages, and undifferentiated
gonads (Cerda ef al., 2008b). Over 12,000 ESTs have also been generatéd from the
liver, head kidney and spleen of turbot stimulated by nodavirus infection or polylC
(Park et al., 2009), or by challenge with the bacterial pathogens Aeromonas salmonicida
and Philasterides dicentrarch;’ (Pardo et al., 2008). European flounder, P. flesus L.,

which is used in environmental monitoring has been extensively studied and ESTs have

147

been sequenced from livers of fish exposed to a variety of toxic compounds such as

heavy metals and other pollutants (Williams et al., 20006).
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ESTs have proved to be a valuable source of microsatellite markers for genetic

mapping. In Atlantic halibut, 129 microsatellites were identified by analysis of ESTs, 60

of which were polymorphic (Douglas e ql., 2007) and mcbrporated into a genetic
linkage map (Reid ez al., 2007). A total of 191 microsatgllites were identified in the
turbot EST céllection (Pardo et al., 2008) of which 50 were present in contigs, thereby
allowing the identification of 11 putative polymorphic loci. In J apanese flounder, 5 |
microsatellites were id¢ntiﬁed 1'11‘260 ESTs generated from a muscle cDNA library, 3 of
which were also successfully amplified in turbot and half-smooth tongue sole (Liu et

al., 2006). A similar approach was used to identified 25 microsatellites from 1,000
ESTs generated from a spleen cDNA library from half—smooth tongue sole (Liu et al.,
2007), 11 of which were usefu] in determining polymorphic loci. Several of these
microsatellites were also successfully ampliﬁed iﬁ turbot and flounder.

Single nucleot1de polymorphisms (SNPS) can also be identified from EST surveys
if several individuals are used to make cDNA hbrar1es 1f there is sufficient redundancy
in the sequenced libraries, or if sequencing is sufficiently deep. Thus far in ﬂatﬁsh this
has only been undertaken for turbot ESTs where 1,148 good quality SNPs were

identified among 9,256 ESTs (Pardo et al., 2008),

MICROARRAYS

Gene expression profiling using microarrays has shed li ght on various
fundamental processes in fish, including immunity, gametogenesis and development,
nutrition, stress, and response/adaptation to environmental conditions (for reviews, see

Douglas, 2006; Cerd3 ef al., 2008a; Goetz & MacKenzie, 2008; Miller & MacLean,

2008). Inﬂatﬁsh smgle spe<:1es mlcroarrays are avaﬂable for ﬁve spec1es ( Table ID 3 1 O ——

S

172

addmon mult1—spec1es mlcroarrays have been developed for assessing fish stocks and
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for response to venvh'o‘mhental contaminants (Table III). In general, cross-species, or
heterologous, microarrays have been uséd whére micfoanéys for the species of interest
are not available. Both oligonucleotide and cDNA probes have been used in flatfish -
microarray design and the pfobe density ranges frdrh low (several hundreds) to very ‘
high (tens of thousands). | |

Two cDNA microarrays have been described for European ﬂoundér - the :
GENIPOL foxicogénomics microarray representing 3,336 unique EST clustefé :
(Willia_ms et al., 2006), andran earlier version representing 3,352 unique sequences
(Cohen et al., 2007). The GENIPOL microarray has been useful in studying gene
expression éhanges in European flounder in response to environmental toxicants or as a
result of genetic adaptation (see below). This microarray Was also used to assess cross-
species hybridizations to transcriptomes of niné differéni fish, including flatfishes such
as halibut, Japanese flounder and Senegalese sole (Cohen ef al., 2007; Osuna—J imenez et
al., 2009). Using a bioinformatic approach, computed hybridisation efficiencies of 78.5-
82.7% were obtained between European flounder, Japanese flounder ‘and Atlanﬁé
halibut whereas efficiencies to the other teleosts testéd were lower. Expérimental
validatibns showed hybridization efficiencies of 79% at sub-order taxonomic levels
confirming that heterologous microarray analyses between closely related species can
be performed.

Currently, oligonucleotide arrays are the preferred choice for flatfish microarray
design given the lower cost and greater reproducibility of the éxpression data compared
to that obtained from cDNA microarrays (Brénnan et val., 2004). Therefore, these

platforms have recently been selected to design microarrays for different flatfishes

i
i

197

——(Cerdi-etal;2008b; Douglas-et-al; 2008; Kochzius etal.y2008; Baket 4412009

Millan et al., 2009). For Senegalese sole, specific oligos Wére designed against the 3’



198 untranslated regions because of their géneral low conservation (Cerda ei‘ al., 2008Db),
199 which permitted discrimination between paralogues arising from gene duplication

200  events in teleosts (Meyer & ‘Peér, 2004). Thus, this inidroarray contains probes for 35,087
- 201 - unigenes and allown the identiﬁcaiion of siaeqiﬁc isoforms within some gene families,
202 e.g., cyclins, vitellogenins, heat shock proteins, 408 and 60S ribosomal proteins.

203 Oligoarrays are also available for Atlantic halibut and turbot representing 9,277 and
204 2716 unigenes, respectively (Douglas ez al., 2008; Millén et al., 2009).

205 Multi—species microarrays, in which a single microarray is used to analyse the
206  different species under study, have been developed for comparative and ecological

207 genomics studies of fish (Kassahn, 2008). These platforms are, however, challenging
208  because limited signal intensity from fish with high sequence divergence, and variable
209 sequence divergence across differeni genes, must be accounted for in the experimental
210 designi Nevertheless, this approach may be useful when the expression of a few genes
211 across different species need to be étudied, for which cross- hybridizing oligos can be
212 designed. This is the case, for instance for the multi-species microarray coniaining 65-
213 mer oligos designed to represent 24 genes in\iolved in endocrine mechanisms from

214 many species, which has been used as a diagnostic tool to screen the effects of

215 environmental chemicals in the sentinel fish hornyhead turbot (Pleuronichthys verticalis
216  Jordan & Gilbert) (Baker et al., 2009). Similarly, a multi-species microarray containing
217 23-27-mer oligos specific for mitochondrial 16S rDNAs of 11 species, including one
218 flatfish, Scophthalmus rhombus L., has been used for fish identiﬁcation which can be
219 useful for correctly identifying fish eggs and larvae for stock assessment, and in food
220  control (Kochzius et al., 2008). With more sequence information, greater refinement

221  and the planned productlon of a “Fish Chip” for app10x1mately 50 spemes (see

h 222 Kochzms et al 2008) genotypmg and population genetics studies in flatfish such as




223

| 224
225
226
227

228

229

230

231

232

233

234

235
236
237
238
239
240
241
242
243

244

245

those carried ouf on different chum salmon haplotypes (Moriya et al., 2007) might be
possible in the future. | | |
Species-specific oligo micrdérray platforms are the most reliable for flatfish
research. However, thé current platforms available (e.g., sole, Atlantic halibut, turbot)
contain still a relatively low number of probes (<10,000 unigenes) even though they
were constructed from ESTs derived from different tissues. The limited number of
represented genes makes these platforms challenging when the changes of the éoinplete
transcriptome of a tissue, particularly one from which ESTs were not derived, is to be
investigated. Therefore, these platforms, altﬁough they may be suitable as a diagnostic
tool for certain physiological conditions, are possibly not the best strategy for the
discovery of genes and gene regulatory networks. Mass sequencing of the transcriptome
through the uée of next-generation sequencing platforms represents an alternative that

may overcome some of these obstacles.

NEXT-GENERATION SEQUENCING PLATFORMS

Second-generation sequencing technologies allow massive-scale DNA sequencing
at a low cost and are now driving biomedical and biological research (Mardis, 2008).
These platforms include the 454 pyrosequencing system from Roche, which can yield
500 nucleotide reads, plus the Illumina/Solexa platform and the SOLIiD platform from
Applied Biosystems, which 1b'oth yield shorter reads (~25-100 nucleotides). These
platforms generate consi‘derably more data per run and are more cost-effective in terms
of price per nucleotide sequenced (Ansorge, 2009). The Illumina and SOLiD platforms

are thus more suitable for model organisms or fish for which the whole genome has

246

een sequenced, while fhe longer-read 434 platform is advantageous for denovo———————— oo
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sequencihg in. non-model fish such as flatfish, for which completely sequéncgd genomes
are not available. |

The 454 technology can increase both genomic and EST sequence information,
and thus enlarge the nﬁmber of unigenes represented in the microarrays. It also has the
advantage of combining lgene discovery with expression profiling, and theoretically

provides information on the complete transcriptome rather than just the portion

- represented on a microarray. Therefore, the labor-intensive construction of normalized

cDNA libraries fequired for microarray design and construction is not needed as high
throughput, in-depth sequencing provides an accurate estimate of gene expression
(Torres et al., 2008). This technology has recently been used to sequence the
transcriptome of two commercially.hnportant fish species, the lake sturgeon (Acipenser
Julvescens Rafinesque) (Hale et al., 2009) and Atlantic cod (i ohansen e al., 2009), and
it may‘be the preferred ‘strategy for gene discovery in flatfish research. -

The short-read IHuminé/Solexa technology can be uséful to investigate some gene
regulatory networks through the sequencing of miéroRN As (miRNA) and other small
regulatory RNAs (Hafner et al., 2008). miRNAs are small RNAs that bind to the 3’
UTR of mRNAs and control the accumulation of the target mRNAs in the cell, thereby
regulating a number of morphogenetic and developmental processes (Schier & Giraldez,
2006). The Hlumina platform can potentially be used for miRNA discovery, surveying
and quantification in flatfish, although this approach has been used to date on only
model species with fully-sequenced genomes and still remains chalienging (e.g., Chen

et al., 2009; Rathjen et al., 2009).
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GENE EXPRESSION PROFILING.
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GAMETOGENESIS

Failure to complete bvarién maturation éind oVuiétiOn isa common reproductive
dysfunction in cultured flatfishes even after hormone therapiés (Mylonaé ‘& Zohar,
2001). Although in recent years a signiﬁcant effort has been devoted to investigating the
endocrine basis of flatfish reprdductiori (e.g., Weltzien ef al., 2004; Kobayaéhi etal.
2008ab; Cerda et al., 2008¢), the physiological mechanisms underlying reproductivé
dysfunctioris of cultured flatfish remain largely unknown. Transcriptome analyses have -
been empldyed in some species, such the Senegalese sole, to obtain infonnatiori on thé
molecular basis of ovarian developmeht (Tingaud-Sequeira ét al., 2009). In this rstudy,
pairwise experiments using a sole-specific oligo array revealed the differential
expression of more than one hundred. genes during ovarian giowth, maturation and
ovarian follicle atresia. During ovarian growth (vifellogeriesis), many up-regulated
ovarian transcripts had a putative mitochondrial function/location suggesting high
energy production, e.g., NADH dehydrogenase Subunits, and increased antioxidant -
protection, whereas other regulated transcripts were related to ‘cytoskeleton and zona
pellucida organization, intracellular signalling pathways, cell-to-cell and cell-to-matrix
interactions, and the maternal RNA pool (Tingaud-Sequeira et al.; 2009). Duiing
maturation, ﬁp-i’egulated transcripts in the ovary included ion transporters, e.g., Na'-K'-
ATPase subunits, which are probably required for oocyte hydration, as well as a vesicle
calcium sensor protein (extended synaptotagmin-2-A)» that might be part of the
molecular pathways activated in the oocyte in preparation for fertilization.

During ovarian atreéia, the process where ovarian follicles degenerate and are

resorbed (Saidapur 1978; Guraya 1986), two particularly interesting genes were found

~—to-be-highly up-regulated-in-Senegalese-sole-(Tingaud-Sequeira-er ak;2009)- The-first -z

of these was apocl, encoding apolipoprotein C-1, which is pai’t of chylomicrohs and of

12
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very low and high density lipoproteins involved in lipid transport in the bloodstream
(Jong et al., 1999). The upfregulation of apocl in follicular cells, as well as of
apolipoérotein A-I(apoal) (Tingaud-Sequeira et al., 2009), is thus consistent with a.
role for these lipid transport molecules in mediating the ingestion and digestion of the
yolk by the follicular cells and further transport into the bloodstream (Saidapur, 1978;
Babin 1987). These data indicate the importance of lipid-metabolic processes during
follicular atresia in teleosts (Babin, 1987; Agulleiro et al., 2007), and may provide
potential Biomarkers for premature ovarian regression and abnormal embryo .
development in cultured flatfish.

The other notable up-regulated gene in atretic ovarian follicles was Ject2 encoding
a leukocyte cell-derived chemotaxin 2 related protein (Tingaud-Sequeira et al., 2009).
This transcript is related to mammaiian LECT2, which encodes a protein with
chemotactic properties for human neutrophils (Yamagoe ef al., 1996). In atretic ovarian
foilicles, blood cells such as erythrocytes and leukocytes (granulocytes) are often -
ébserved invading the degenerating oocyte (Miranda et al., 1999; Besseau & Faliex,
1994; Santps et al., 2005). The up-regulation of lect2, which is most highly expressed in
theca and granulosa cells of atretic ovarian follicles, suggesfs an active mechanism for
the chemotaxin;mediated attraction of leukocytes to atretic follicles, where they act
synergistically with follicular cells in the resorption of the oocyte (Besseau & Faliex,
1994). Microarray analyses have therefore‘provided interesting insights into the

physiological activities that are im‘portént during this process.

LARVAL DEVELOPMENT AND NUTRITION

Mlcroarrays have been used successfullv in ﬁsh nutngenommq studies a8 Well-ag- oo
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for studymg development (for review, see Douglas, 2006; Leaver et al. , 2008). For
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~345-—artifictal microdiets-for-therearing-of fish-larvae;especially-flatfish-larvaesis-a priority———

346

flatfish, most studies have Concentrated on Atlantic halibut. A microarray containing
50-mer oligohucleotides repfesenting 9;277 uniciue Atlantic halibut genes has been used
to study early larval development (Douglas et al., 2008). Priﬁcipal component analysis
showed that the five different devglopmental stages analysed could be resolved from |
one another. As larvae approached metamorphosis, genes involved in digestioﬁ
(trypsinogen, chymotrypsinogen), eye development and muscle structure (myosin,
tropomyosin, troponin) were up-regulated. Preliminary studies have also be.en repbrted
on the use of a small-scale cDNA microarray for studying gene expression changes in
whole larvae during flatfish métamorphosis (Power et al., 2008). This study also found -
myosin, trypsinogen and three genes involved in vision to be up-regulated during
metamorphosis. | |

Providing adequate nutrition to developing larvae and juveniles is a challenge in
the successful aquaculture of flatfish and microarrays have proved useful in assessing
gene expression changes in Atlantic halibut in response to dietary modifications. The |
partial replacement of fish meal protein by soy or other plant proteins can result in
intestinal inflammation in some fish species, especially salmonids. In Atlantic halibut
juveniles, however, this condition was not observed when 30% soy protein was
included in the diet (Murray ef al., 2009a), although microarray analysis showed that
the expression of several immune markers and genes involved in detoxification was
increased. In contrast, genes involved in lipid tfansport were down-regulated, consistent
with previous reports of hypocholesterolemia in fish fed soy protein. Genes involved in
smooth muscle function were also down-regulated, indicating that intestinal muscle

metabolism and motility may have been affected. The replacement of live feeds by

for the aquaculture industry. Microarray analysis has been used to assess the effect of
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introduction of microdiet to Atlantic halibut larvae 20 days post first feeding (Murray et

- al., 2009b). Although there was no significant difference in mortality in the microdiet-

fed group compared to the control group fed live feed over the 33 days of the study,
growth was h’miteci and malpigmentation of the skin and eyes was more common.
Genes involved in metabolic processes were enriched, and their expression was
incréased especially early after transfer to microdiet, as were genes involved in
detoxification and stress. Genes involved in replication, translation, cell proliferation
and cell structure were generally down-regulated, consistent with the lower growth of
the fish. As with most microarray studies, a significant number of unannotated genes are
differentially regulated in these studies, and identification of their functions may shed

light on crucial processes affected by dietary or developmental changes.

H\/IMIJ:;NOLOGY AND PATHOLOGY

Microarrays have been employed to better undefstand the immune response and
disease control in the corﬁmercially important flatfish J apanese flounder and turbot.

For the Japanese ﬂounder,. various cDNA microarrays containing subsets of
immune-relevant genes based on ESTs from a cDNA library derived from peripheral
blood leukocytes (Kurobe e al., 2005) have been developed (Table II). A microarray
containing 871 unique elements was used to follow immune gene expression changes
over time (1, 3 and 6 h) in cultured head kidney cells stimulated by concanavalin A,
lipopolysaccharide (LPS), ‘phorbol myristate écetate (PMA) and hirame rhabdovirus
infection (Kurobe et al., 2005). Interestingly, different immune stimulants caused

different sets of genes to be regulated. As expected, LPS up-regulated a number of

inflammation-related genes; however, while PMA induced eXpression of transciption.— e oo

v371

factor AP-1 regulated cell proliferation genes, it mainly down-regulated genes, perhaps
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372  through its inhibitory.action oﬁ the transcriptional regulator, CEBPB. Viral infection

373 | resulted in a spike in expréssion of genés involved in early and éeli—mediated immunity

374  at3h post-infectioh that mainly returned to normal aftevr:6 h. This array was also used

375 to follow gene expression ovef time (1, 3 éﬁd 7 days) in head kiciney cells of fish

376 iﬁjected with a plasmid expressing flounder IL-1§, a major inﬂammation-rélated

377. cytokine (Emmadi ez al., 2005). In this case, gene expression spiked at 1 day post-

378  injection and decreased over time. Appréximately 10% of the 871 genes were

379  differentially regulated, with twice as many being up-regulated as down-regulated;

380  Genes for cytokines such as TNF and G-CSF as well as immunoglobulins, MHC Class I

381  antigens andinembers of the Toll and NF-kB signalling pathway Were'ﬁp-regulafédy. ‘

382 Infections by viral hemérrhagic septiéemié virus (VI—ISV) have devastated |

383  salmonids and recently emerged among J apanese ﬂounde‘r. Hence, vaccine development

384  against this and other viral pathogens of fish is crucial. TWo slightly different

385 microarrays have been used to evaluate Vaccinétion of juveniles using recombinant

386  VHSV glycoprotein and a DNA vaccine encoding the glycoprotein (Byon et al., 2005,

387  2006). The DNA vaccine conferred excellent protection, largely through thé induction

388  of MX, whgreas the recombinant glycoprotein vaccine was virtually ineffective, even

389  though it induced the expression of humoral defense-related genes and some non-

390  specific cellular defense-related genes. The DNA vaccine induced the most genes after

391 3 days; these included leukocyte-expressed genes involved in both the specific and non-

392  specific immune responses. Gene expression chénges following vaccination of juveniles

393  against hirame rhabdovirus (HIRRV) using DNA vaccines for G and N proteins were

394  investigated using a microarray containing 796 unique elements (Yasuike et al., 2007).
*"‘*-“’:a‘v‘?f*‘f'“*f“ﬂ@‘ftf?lnterestiﬁglyi;fth‘e"tWO“differeﬁt*vac*ciﬁeﬁndtrcedfdtfféreﬁt‘sﬁwﬁfg‘eneswhi@hfcdﬁeia‘téd‘,ff‘f‘iﬁ”?ﬁfﬁ%ﬁ"f’%"’”f%’f’fﬁi’-;"

396  with protection; Type I interferon-induced genes were up-regulated by the vaccine S
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raised against the G protein and this vaccine vs}as also protective whereas that raised
against the N protein was not, This underscores the ilnportaﬁce of the ability of vaccines
to stimulate the type I interferon system..

The major bééterial pathogens affecting Japanese flounder are Streptococcus
iniae, the Gram positive causative agent of streptococcosis, Edwardsiella tarda, the
Gram negaﬁve éausa’cive agent of Edwardsiellosis, and Mycobacterium sp., the
causative agent of mycobacteriosis. Vaccination against S. inaie and E. tarda using
formalin-killed cells (FKC) was studied using a microarray containing 1,946 unique
elements (Dumrongphol et al., 2009) and an updated microarray containing 1,187
unique elements including additional novel genes from skin and liver ESTs (Matsuyama
et al., 2007a), respectively. The former study showed that S. iniae vaccination resulted
in the dramatic up-regulation of a set of 8 gej;nes at 3 Hpost-vaocination, whereas with E.
tarda vaccination, a different set of 7 highly up-regulated genes wére expressed at 1 day
post—vaccination.' In both cases, the transcript levels of mosf of the differentially
regulated genes (six iminune-related and 13 unknown) had returned to normai at 3 days
post-vaccination. In the second study, fish were challenged after zero, one or two
vaccinations with E. tarda FKC and sampled daily. As expected there were significant
changes in gene expression in challenged fish that had been vaécinated as well as those
that had not; however, in vaccinated fish there was a cluster of genes expressed
throughout the sampling period that were uniquely up-regulated and may play a role in
protection. Very recently, vaccination against mycobacteriosis using BCG and formalin-
killed cells of Mycobacterium sp. was studied using a microarray containing 1,945 spots

of unique genes including 215 immune-related genes (Kato et al., 2010). BCG

vaccination conferred protection against infection and also induced the expression-of — -

421

genes involved in both non-specific and adaptive immunity.
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Parasite infection is also the cause of substantial Iossss to the Japanese flounder
industry. The monogenean pérasite Neoheterobothrium hirahe infects both wild and
cultured flounder, causing necrosis and inﬂamrﬁation at sites of attachment. Gene
expression changes in PBLs following infection by this parasite were monitored for -
three weeks using a microarray containing 797 clones (Matsuyama et al., 2007b).
Potential molecular biomarkers of infection were uncovered, including genes.involved
in both non-épeciﬁc (matrix metalloproteinases, CD20) and adaptive (MHC
componénts, immunoglobulins) immunity.

Similar disease problems have surfaced among turbot, necessitating a better
understanding of the immune system in this species and the development of {laccines.
The response of turbot to nodavirus infection and stimulation by the viral mimic,
polylC, over a 72 h period was studied using a microarray containing 1,920 elements
representing 768 unique genes (Park ez al., 2009). MHCI genes and two interferon-
stimulated genes were up-regulated, consistent with the known role of these effectors in
viral immunity. Recently, a high-density microarray representing 2,716 genes from an
immune-related EST turbot database (Pardo et al., 2008) was used fo assess the
respénse of the spleen three days after infection by 4. salmonicida, the causative agent
of furunculosis, and to identify candidate genes for resistance to pathogens (Millan et
al., 2009). A set of 50 genes related to immunity and host defense were differentially
regulated, mostly positively, and with functions related to the innate immune response,
stress and/or defense response, transport and protein' synthesis, processing or
degradation. Due to the layout of the microarray (eight microarrays fitted on éach slide),

a hierarchical experimental design could be used to evaluate sources of technical and

- b;.ujlugiual noeise iu_. the diffm'ciuﬁa}. "gencCx p[c:SS’i‘Oﬂ"ﬂf’fSpfleGHS‘”fFOm’"iﬁijC’Eﬁdﬁfj_nh -

compared to healthy fish.
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TOXICOLOGICAL STUDIES

Flatfish are benthic teleosts that feed mostly on invertebrat_es and therefore are
impacted by sediment-associated toxicants, including endocrine disruptors, heavy
metals, polycyclic aromatic hydrocarbons, and dioxins. These species are thus good
candidates as sentinels for biological effects monitoring in inshore/estuarine waters
(Williams e al., 2006; Baker et al., 2009). Both multispecies and species-specific

microarrays (Tables II and III) have been successfully used in flatfishes, particularly in

the European flounder, to identify changes in gene expression after exposure to different

environmental pollutants (Sheader et al. 2006; Williams ef al., 2006, 2007, 2008; Diab _

et al., 2008; Nakayama et al., 2008; Baker et al., 2009). These studies have
demonstrated that key biological process disrupted by toxicants with different modes of

action can be identified by transcriptomics. The data may also permit discrimination

between classes of toxicants and the identification of molecular biomarkers for early =~

detection of pollutant responses in fish (Williams et al., 2006, 2008), although
Validatibn of these markers may require further biochemical, genetic and physiological
studies. Nevertheless, among the potential biomarkers that have been suggested in
flatfish are molecular chaperones, i.e., heat shock genes, oxidative stress responsive
elements, i.e., glutathione—S-tfansferases, peroxiredoxins, phase I and II metabolic
enzymes, i.e., cytochrome P450s, liver-derived egg proteins, i.e., vitellogenins and
choriogenins, and metallothionein, a metal jon sequestering protein (Williams ez al.,
2006, 2008).

Most of the toxicogenomics studies carried out so far on flatfish used individual

toxicant treatment in Iaboratory-maintainqd fish and therefore the relevance.of the-—

471

observed gene expression responses for natural populations is unclear. When
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considering these populations, non-genetic effects may contribute to the observed
variation in gene expression making it very difficult to exclude inﬂuences from
maternal, early dévelopmental or epigenetic effects resulting :fro'rv'n interplay between
genetic background and parehtal/ envirohmental variability. A étudy by Falciani et al.
(2008) partially addressed this issue and showed, by uéing a multivariate variable
selection coupled with statistical modelling methods, that gene ekpression signatures in
livers of ﬂounders can predict their geographical site of origin, although‘the accuracy of
this system was limited torspeciﬁc sites. This model used the éxpression pfoﬁié of only |
17 genes and was able to predict the site of origin of independent fish samples. The
future development of similar methods may prove very useful for evaluating the

susceptibility and adaptation to environmental pollutants in flatfishes.

POPULATION GENETICS

‘ Neutral DNA-based markers, such as microsatellites, can be used to démonstréte
the existence of different subpopulations among marine fish populations at both macro
and microgeographical scales (e.g., Nielsen ef al., 2004; Jorgensen et al., 2005). Such
genetic divergence may result in variations in gene expression, which is known to play
an important role in evolutionary processes of adaptive divergence among natural
populations (Nielsen et al., 2009). The few available studies on natural fish populations
have suggested that variation in gene expression arises mainly from neutral genetic drift
(Oleksiak et al., 2002; Whitehead & Crawford, 2006a). In relatively isolated
populations with low migration rates, such as those of the mummichog Fundulus

heteroclitus (1..), a strong correlation has been observed between genetic distance and

EaYATAY-4 PN

e AQ 5 differences-in-gene-expression-(Oleksiak et -al;2002;-Whitehead-8-Crawford; 2006 b)—

However, in other marine species with higher migration rates and low level of genetic
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differentiation, such as some flatfishes, actual variations in gene expression as an

adaptive response to a specific habitat are less well-known. This is however highly

relevant to the sustainable management and aquaculture of fish populations, inclu(iing
flatfishes, since several studies hax)e pointed out the high heritability of gene regulation
(Schadt et al., 2003; Morley et aZ, 2004; Brem & Kruglyak, 2005; Whitehead &
Crawford, 20063).

The determination of gene expression patterns through microarray-based
approaches provides more direct information on adaptive genetic divergence among
populations when compared with commonly used neutral genetic markers (Nielsen et
al., 2009). This approach has been recently used to elucidate differences in gene
regulation between two flounder populations from the North Sea and Baltic Sea that,
apparently, are almost genetically identical based on microsatellite markers (Larsen ef
al., 2007). This study demohstrated that despite extremely vlow levels of neutral genetic
divérgence, a high number of genes are significantly differentially expressed between
the two flounder populations maintained in a long-term reciprocal transplantation
experiment mimicking natural salinities. Several of the differentially regulated genes,
related to osmoregulation, heme biosynthesis ahd stress resistance, qould be directly
linked to fitness traits (Larsen ez al., 2008). These findings suggest that flounders,
despite little apparent genetic divergence between populations, can adapt their gene
expression to local environmental conditions, and imply that such adaptation could be
common in other flatfishes with similar low levels of population subdivision (Larsen et
al., 2007, 2008). However, the relationship of the local changes in gene expression with
single nucleotide polymorphisms (SNPs) has not been yet reported, and therefore a

more complete genetic characterization of flatfish populations is needed. —
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FLATFISH GENETIC MAPS

Genetic linkage méps are essential tools for investigatihg' genome organization.
They provide a brief outline of the genome of an organism based on the frequency of
recombination between molecular markers and ideally generate the same number of
linkage groups as the number of chromosomes. Typically, genetic maps are based on
polymorphic markers such as microsatellites, variation at restriction sites, detected as
restriction fragment length polymorphisms (RFLP) or amplified fragment length
polymorphisms (AFLP), or SNPs. Microsatellites tend to be the most polymorphic of
these markers while SNPs occur the most frequently in génomes. Construction of
linkage maps requires hundréds of informative markers, ideally evenly spaced

throughout the genome. While microsatellites are typically isolated by constructing

- libraries enriched for these sequences, EST libraries have been an excellent source of

microsatellites for flatfish genetic maps (Liu et al .,‘2(‘)06; Chen et al., 2007; Liu etal.,
2007; Reid et al., 2007; Bouza et al., 2008; Kim et al., 2009). Due to the well-
established conservation of microsatellite loci among teleosts (Rico et al., 1996),
microsatellites are often informative in related species. This is also the case in the
Pleuronectiformes (e.g. Liu ef al., 2006, 2007, Reid et al., 2007) and thus all flatfish
microsatellites are potentially useful for a given pleufonectid species. While SNPs have
not yet been incorporated into any flatfish map, more than 1,000 were detected in turbot

ESTs (Pardo et al., 2008) and the application of next generation sequencing methods to

- flatfish genomics will undoubtedly allow the identification of massive numbers of

useful genetic markers.

~Currently;-genetic-linkage-maps-are-available-for-four-flatfish-species-Japanese-—

flounder (Coimbra ef al., 2003; Kang et al., 2008); Atlantic halibut (Reid et al., 2007),
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turbot (Bduza et al., 2007) and half-smooth tongue sole (Liao et al., 2009). Maps for all
species were constructed with microsatellites markers or a cmﬁbinaﬁon of microsatellite
and AFLP markers (Table IV). The. number of markers mapped range from 137 in sole
to 604 in halibut. As would be expected, the m_nnber of markers mépped tends to
correlate with the completeness of the map: maps with fewer markers tend to have more

linkage groups than the haploid number of chromosomes and tend to have a number of

small linkage groups with only a few (2-4) markers. The halibut map appears to be the

most complete of these maps, although additional markers would clearly improve the
coverage of all maps.

For two species (halibut and turbot), diploid gynogens have been used to map
the position of the centromere for most of the linkage groups (Reid et al., 2007;
Mart;’nez etal., 2008). For _halibut, ail of the centromeres are located at or close to one
end of the linkage group, with the centromere on linkage group AH-20, located at ~25 :
cM being the most distant from the end of the linkage group. In turbot, the centromere
locations for two linkage groups, L.G-2 and L.G-8, are metacentric and sub-metaqentric,
respectively, while the remaining mapped centromeres are acrocentric. For both

species, these centromere locations are generally consistent with the karyotypes (Bouza

et al., 1994; Brown et al., 1997), which provides support for the accuracy of these maps.

As in most fish species, ﬂatﬁsh also show differences in recombination rates
between males and females, even though the overall map length is similar in the two
sexes. Sex-associated recombination difference_s haye been most carefully dissected in
halibut, where it is evident that higher rates of recombination occur near the centromere

in females (11-17 times the rate in males), but the difference decreases as one moves

away from the centromere to the pomt Where recombmatmn is hlgher inmales.near the-.......

571

telomeres (2—3 times the rate in females) (Reid et al. » 2007). Sex-averaged maps (Bouza
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et al., 2007; Kang et al., 2008; Liao ef al., 2009) tend to have inflated map lengths since

the high recombination regions of both sexes are iﬂcorporatéd into a single map.

CROSS-SPECIES GENOME COMPARISONS

The development of flatfish genetic maps provides the necessary resources for
genomic comparisons both within the flatfish and with other teleosts for which draft
genome sequences are available. The use of a large number of Japanese flounder
microsatellite markers in the Atlantic halibut genetic map allowed the identification of

linkage groups with common markers in the two species (Reid ez al., 2007). The

- updated Japanese flounder map (Kang et al., 2008) increases the correspondence

between the two species for some linkage groups' due to the coalescence of pairs of
linkage groups in the original map or the removal of some markers from the map. Stiﬂ,

both similarities and differences in marker order are seen in these two species.

For comparisons to draft genomes, marker sequences are typically comparedto

the draft genome by BLAST to identify regions of similarity. Since not all marl;érs give
clear BLAST results, these comparisons usually provide only a limited number of points
of comparison. Nevertheless, for both turbot and Atlantic halibut, multiple markers
from one linkage group map to a single chromosome of the spotted green pufferfish
whose genome has been sequenced (Bouza ef al., 2007; Reid et al., 2007). Using the
pufferfish as an intermediate, correspondence between turbot and halibut linkage groups
can be inferred (Table V). This approach suggests, for exaﬁlp'le, that turbot LG-6
corresponds to halibut AH-3, since both contain markers mapping to pufferfish

chromosome 13. Clearly, a direct comparison between halibut and turbot is needed to -

confirm-this-inference.-
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such as growth rate or disease resistance, are complex and polygenic. A. ZENELIC.MAP - e e

Conserved synteny blocks are indicative of orthologous genomic regions that

breeding programmes. The selection of a set of markers from different linkage groups g

The main use of genetic maps is to provide a basis for the identification of |

quantitative trait loci (QTL). Most phenotypic characteristics of interest in aquaculture, ;

596

597 arose from a common ancestral généme. Comparison of fish genomes with those of
598  other vertebrates have revealed multiple synteny blocks conserved among all vertebrates
599  aswell as duplicéted blocks that provide evidence for a fish-specific genome
600  duplication (e.g., Elgar, 1996; Jaillon et al., 2004; Naruse et al., 2004). A recent
601  investigation demonstrates a small, conserved synteny block between Atlantic halibut
602  and five other teleosts m the region near the kisspeptinl receptor gene (Mechaly ef al.,

| 603 2010). In this region, gene order and organization is conserved in all six species for at
604  least two protein-encoding genes as well as three microRNA genes. The region of
605  synteny is extended in halibut, medaka and stickleback, where there are at least two
606  more genes with the same organization, but not in zebrafish and the two pufferfish.
607  Flatfish-specific synteny blocks will likely become evident as more flatfish genomic
608 resougces are developed.
609 A |
610  APPLICATIONS OF GENETIC MAPS
611 Construction of a genetic linkage map provides additional useful information
612 about the markers that have been mapped. Knowledge of the marker's linkage group and
613  distance from the centromere can be useful in designing marker panels for population
614  studies and aquaculture-related applications such as pedigree analysis or selected
615
616  will be more informative in these types of studies than a randomly selected group.
617
618
619
620  provides a ba31s f<0rw identifying regions of the genome that have a high correlatioh with
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the desired trait and to use molecular markers from these regions for the selection of the
fish of interest. Methods and aﬁproaches for the identiﬁcatioﬁ of QTL and their use in
improving aquaculture broodstock have been describéd ina numf)fef of comprehenﬁi)e
reviews (Canario et al., 2008; Korol et al., 2007, Liu & Cordes, 2004).

A QTL mapping approach Wés taken to identify markers in J apanese ﬂoundér
associated with resistance to lymphocystis disease (Fuji et al., 2006). The aﬁthors
identified a marker on linkage group 15 that accounted for 50% of the phenotypic -
variation in the group of fish that were scréened. This marker was later used in a
marker-assisted breeding program to'develop a lymphocystis disease-resistant line of
Japanese flounder (Fuji éz‘val.,‘ 2007).

A second example of QTL analysis in ﬂatﬁéh is the identiﬁbétion of a marker
associated with sex in turbot (Martinez et a[., .2009).‘. In inost fish, sex chronﬁosomes are
not heteromorphic, with an obvious exception being half-smooth tongue sole (Chen ez
al., 2009), and thus molecular markers able to distinguish between sexes are of high --
interest and have multiple applications in aquaculture. In turbot, sex is determined by a
ZW/ZZ system and thus a genome scan was used to identify markers linked to female
sex, and presumably the W sex-determining region. A ﬁarker near the centromere of
linkage group 5 was identified that was able to correctly sex 98% of the individuals in
four out of five families. Environmental or other minor genetic factérs were thought to
account for the fish that could not be accurately sexed. This marker will clearly be
useful in assessing sex in turbot. We anticipate th_at additional QTL analyses for traits

important to flatfish aquaculture will be forthcoming,

e CONCEUSIONS
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The development of new genomic tools and approaches for flatfish, as well as for
other teleosts, is enhancmg our knowledge of the biology and physwlo gy of these fish,
which are of significant interest for commere1a1 and environmental purposes. However,
the genomic resources currently available fof ﬂatﬁsh are still scarce and should be
augmented by the development of more BAC libraries, larger EST databases, high-
density oligo microarrays, and more detailed, complete linkage maps. Second
generation sequencing methods will soon begin to replace these approaches as their read
lengths increase and new software is developed to handle the massive amounts of data
generated by them. These new sequencing technologies may also be a powerfui tool for
the discovery of genes and gene regulatory networks, e.g., miRNAs, and will thus be
very useful for unravelling the genetic control of different flatfish biological processes.
This mfonna’uon will expand our bas1c knowledge of flatfish phys1ology and will

1dent1iy candidate genes as potential molecular biomarkers respons1ble for normal and

‘abnormal reproduction, larval development, stress, mfectlons and pollutants. This will

lead to better management of wild populations, improved fish welfare, and increased

productivity in the aquaculture industry.

The research conducted by the authors was supported by the PLEUROGENE
consortium financed by Genome Spain and Genome Canada. This is NRC publication

number 2009-xxxx.
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TABLE L. Number of ESTs from flatfish in Genbank dbEST database as of Nov 2009 (Releasé 103009)

Species ‘ Common‘name Family #ESTs
Hippoglossus hippoglossus L. Atlantic halibut Pleuronectidae 20836
Scopthalmus maximus L. Turbot Scophthalmfdae 12427
Solea senegalensis Kaup Senegalese sole Soleidae 10631
Paralichthys olivaceus Temminck & Schlegel Japanese (olive) Paralichthyidae 9983
flounder :

Platichthys flesus L. European ﬂounder Pleuronectidae 8396
Pseudopleuronectes americanus Walbaum Winter flounder Pleuronectidae 1483
Paralichthys lethostigma Jordan & Gilbert Southern flounder Paralichthyidae 596
Verasper variegatus Temminck & Schlegel Spotted halibut Pleuronectidae 524
Pleuronectes platessa L. Pléice Pleuronectidae 75
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TABLE V. Correspondencé of halibut and turbot linkage groups to spotted green

pufferfish (T. negroviridis Marion de Procé) chromosomes®

Pufferfish chromosome  Turbot linkage group # - Halibut linkage group #
1 5,7 6,21
2 23,1321 12
3 13 5,9,20
4 13
5 1,25 6
6 17 24
7 13,18,UL 5,22
8 2 10
9 10

10 3,15

11 ' 15
12 12,22 14
13 6 3
14 23 |
15 1 13,18
16 UL 12
17 - 19 17
18 7 i1
19 16 8,17
20

21

“Bold type indicates linkage groups where more than one marker maps to the

pufferfish chromosome.
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