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A discussion of the concept of independent sampling of mean-square pressure in pure-to 

reverberant sound fields is presented together with a derivation of Lubman's result on th 

covariance function of the mean-square pressure. 
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rRODUCTlON 
n = tan- l ( ~  sin Oi/Z cos Oi). 

The need for spatial averaging of the mean-square pres- 
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e 3 in connection with laboratory measurements of 

md power and sound transmission loss in reverberation 

Ims is well known. Several papers'-8 in the Journal have 

,n devoted to discussion of various types of spatial averag- 

. The concept of independent sampling can be accepted 

dily for such incoherent reverberant sound fields as are 

ated by narrow-band random noise excitation. For pure- 

e excitation, however, the reverberant sound fields creat- 

-- m rooms of fixed geometry are coherent9 and the applica- 

bility of this concept needs to be clarified. The main objective 

of this Note is to present a more consistent picture of the 

subject and to provide a derivation of Lubman's result on the 

tial covariance of the mean-square pressure that is essen- 

to many of the previous discussions and to the present 

IEVERBERANT FIELD UNDER PURE-TONE 
CITATION 

Rooms with fixed geometry will be considered. At fre- 

quencies above the Schroeder's large room frequency, lo 

f, = 2000(T&JV)1'2, (1) 

where T, is the reverberation time (s) and V, room volume 

(m3), a large number of room modes will be excited to vibrate 

at the source frequency. Using the free-wave model,4 the 

reverberant sound field can be idealized as consisting of a 

large number of plane waves with equal amplitudes but dif- 

ferent phases. At any point in the room sufficiently far from 

the source and any reflecting surfaces the directions of prop- 

agation of the plane-wave trains are assumed to be uniformly 

distributed in all directions. The acoustic pressure at such a 

location can be written as 
., 

In other words, the sound pressures at all points in space 

vary sinusoidally in time, but with different amplitudes and 

phases. As a result, the temporal mean-square pressure 3 
shows large variation with position. For a practical estimate 

of the space-averaged value of 3 it is advisable to obtain a 

finite number of independent samples of 3. To ensure inde- 

pendence, a necessary condition is that the spatial covar- 

iance between paired samples is negligibly small. As the esti- 

mation process involves spatial averaging of 3 ,  it is 

appropriate to assume that the random process describing 

the field is stationary and ergodic with respect to position. 

Thus ensemble average can be replaced by spatial average 

and different statistics of the field are independent of posi- 

tion and orientation. The spatial covariance of the mean- 

square pressure can be defined as 

where ( ) denotes spatial averaging, r = Jr, - r1 1, and ( 3) 
represents the space-averaged value of 3. 

Lubman2 presented a result for the normalized covar- 

iance function without proof. Only recently Jacobsen" pro- 

vided a derivation of Lubman's result for a pure-tone field 

using Hilbert transform technique. A more conventional ap- 

proach is possible, however, and will be outlined in Sec. 11. 

First, it is necessary to summarize several second-order sta- 

tistics of this field. 

A. Probability density of mean-square pressure 

Using the free-wave model mentioned in the previous 

section, Waterhouse4 has derived the probability density 

(2) 
function for the normalized mean-square pressure. If I is 

defined by 

where q5i is the phase of the ith plane wave and w the driving 

frequency of the source. { 4,. ) is considered to be a set of N I= 3 (rV( ?), (5) 

statistically independent random variables uniformly dis- the probability density function P (I ) is 

tributed on (0,277). Note that Eq. (2) can be rewritten as P(I) = e - I .  (6) 
p(r, t ) = A  cos(ot + a), 

where 

A = (x cos + (x sin mi): 

(3) 
B. Joint probability density of instantaneous pressure 

In Eq. (2), if N is, large, it follows from the central-limit 

theorem'' that the instantaneous pressurep is Gaussian dis- 

tributed for any specific time, t = ti. For a pair of points that 
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a 6 La 611vusll up oint probabil- 

ity density is the product of two Gaussian density functions. 

For other pairs of carrelated points it is possible that their 

joint probability density may not be bivariate Gaussian, al- 
though they are Gaussian distributed individually.I3 

To ensure that the joint probability density is biva: 

Gaussian a computer simulation of the reverberant field 

been performed using the free-wave model. If the assu ..., 
tion that the directions of the plane waves are uniformly 

distributed is incorporated into Eq. (2), the instantaneous 

pressures at two adiacent locations can be written as, follow- 

ing Jacobsen's wo 

ted their j 
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Imn- 

irk," 

cos [wt, 
M L 

~('1, f l )  = C 2 
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X 
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~. . 

nctions of tr 
- .. FIG. 2. Comparison of standardize 

formed variables with Gaussian function. Combination of 30 waves 1 

equal amplitudes but random phases. 2500 pail 

ans- 

where L = positive integer value of (N?r/2M )sin( j?r/M ), 
r = Ir, - r,l, and k is the wavenumber ( = @/speed of 

sound). To generate Eq. (7), the zenith angle (O<B<v) has 

been divided into M equal increments. The factor (Nv/ 

2M )sin( jv/M) represents the number of incident plane 

waves distributed over the ring element, as shown in Fig. 1. 
The spatial variation of the amplitude of the pair of points at 

any instant of time was simulated on the computer by gener- 

ating different sets of #i(rl, j) using a routine that produces 

uniformly distributed random numbers. 

It is rather difficult to test the normality of a two-di- 

mensional joint-probability density function. A simpler ap- 

proach is to rely on the fact that two random variables hav- 

ing a bivariate Gaussian probability density function can be 

transformed into two independent Gaussian random varia- 

bles by a rotation of coordinates (see, for example, Daven- 

port and RootI4) and to test the normality of probability 

density functions of the transformed variables individually. 

Such an approach was taken by the author in his computer 

simulation. A total of 2500 pairs of points were generated for 

the probability density computation. A representative com- 

parison of the density functions of the transformed variables 

rs of points 

. . .. 

were used. 

. . 
with the standard Gaussian probability aenslty 1s show1 

Fig. 2. A chi-square test applied to these density functi 

using 27 class intervals of equal width showed that the 

pothesis of normality was acceptable at the 0.05 level of 

nificance. It is therefore concluded that the joint probabi 

density is bivariate Gaussian for any pair of points at ; 

instant of time in the free-wave model of a pure-tone re1 

berant sound field. 
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C. Space-time cross correlation of pressurc 

Using Eq. (7), the space-time cross correla 

sure can be written as 

B 

rtion of PI 

t1b(r29 t,)) 
M M L L  

= C 2 C 2 (us[ut1 + #,(r19 m)] 
m =  1 j= 1 I =  1 i =  1 

(8) 

the It can be demonstrated that the main contril: 

quadruple summation comes from terms with m = j r 
1 = i. Hence 

( ~ ( r l ,  tlb(r29 t2)) 

l M L  
w(tl - t,) + kr cos 

Converting the summation over discrete zenith angles b 

to continuous integration, 

W l ,  tlb(r29 t2)) 

ack 

= (5) 1 [w(t, - t,) + kr cos B ]sin B dB 

= (N/2) [sin(kr)/kr] cos [w(t, - t,)] . (9) 

The procedure is very similar to that given by Jacob- 

sen," but the interpretation is different. Although the nor- 

malized correlation of Eq. (9) with zero-time difference has 

d 

FIG. 1. Geometry of ray path of incident plane wave on a microphone pair. 
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same fon given by Cook et a1.,I5 it has minimal 

ctical value. Equation (9) only serves as an intermediate 

to the final solution of the covariance of the mean- 

are pressure. The formulation derived by Cook et al. is 

incoherent reverberant fields9 (e.g., narrow-band noise 

itation) and is valid for any fixed pair of points in space. 

: results can be utilized for the investigation of certain 

ects of "diffusion" and to provide information about the 

uctures b~ d in reverberation 

rn as that the 
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ZOVARIANCE OF MEAN-SQUARE PRESSURE 

As has been stated before, to ensure independent sarn- 

~g of 3 it is necessary that the spatial covariance between 

red samples be negligibly small. Hence the form of this 

ariance has to be determined. The mean-square pressure 

sually defined as 

1 = 
= lim , l, d ( r l ,  t )dt. 

7- m 
( 10) 

yu1, 

pail 

cov 

is u 

Kor  

FIG. Al .  Effect of bandwidth on normal mce functio 

the number of positions is large. A similar situation results if 
averaging over modal pattern and frequency is applied by 

the use of a rotating diffuser. The case of narrow-band noise 

excitation can also be considered as averaging over frequen- 

cy. It is necessary, however, to ensure that there are no sig- 

nificant changes to the form of the covariance function as a 

result of frequency averaging. It is shown in the Appendix 

that the form of the covariance function changes insignifi- 

cantly when averaged over a bandwidth of 1/3 octave. 

As 

den 

has been demonstrated in Sec. IB, the joint probability 

.sity of pressure is bivariate Gaussian. Thus the covar- 

:e of pressure squared can be written as (see, for example, 

venport and RootI4), 

bl, t,lP2(r2, t2)) = b2(r1, fl)) (p2(r2, t2)) 

+ 2b(r,,  t,lp(r2, t2D2. ( 12) 

~stituting Eqs. (12) and (1 1) in Eq. (4), it follows that 

ianc 

Da7 

(n21 

APPENDIX: EFFECT OF FREQUENCY AVERAGING 

Under narrow-band noise excitation the normalized co- 

variance function of the mean-square pressure can be ob- 

tained by averaging Eq. (1 5) over frequency; i.e., 

w 

Sut 

R (r) = 2 lim - JTr f 1 ~ ( r 2 ,  h))2dtd dl2. (13) 
T-r- T2 0 0 

By expanding the integrand into a Taylor series about the 

mean wavenumber [k, = (k, + kl)/2] it can be shown that 
Usi ng Eq. (9) for the space-time cross correlation of pressure, 

I easy to show that 

R (r) = (N/2)2[sin(kr)/kr]2. ( 14) 

ne normalized covariance is 

(r) = [sin(kr)/krI2. (15) 

'his result was first obtained by L ~ b m a n . ~  

DISCUSSION 

The normalized 

whereF (kor) = [sin(ky)/kOrl2andF " andF " " are thesecond 

and fourth derivatives of F, respectively. (R (r)) has been 

computed for the case of (k2 - k,) equal to 1/3 octave wide. 

Figure (Al) shows a comparison of (2 (r)) /. with [sin(kor)/ 

kOrl2. The conclusion is that no significant changes have oc- 

curred as a result of frequency averaging. 

covariance of the mean-square pres- 

e 3 is diminishing beyond kr = T, according to Eq. (1 5). 

us if 3 is measured at points half a wavelength or more 

-,.~rt, the samples can be considered to be uncorrelated. 

They cannot, however, be regarded as independent because 

the probability density of 3 is not Gaussian. They are ex- 

  on en ti ally distributed as indicated by Eq. (6). 

The condition of independent sampling can be ap- 

roached if some additional averaging schemes are incorpo- 

ated. For example, averaging over many independent 

source positions (at least half a wavelength apart) is a possi- 

bility. As has been shown by Waterhouse: the probability 

density function of the averaged 3 approaches normal if 

sun 
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