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On the Sensitivity Analysis of Angle-of-Attack in a

Model Reduction Setting

Alexander Hay∗, Imran Akhtar†and Jeff T. Borggaard‡

Interdisciplinary Center for Applied Mathematics, Virginia Tech, Blacksburg, VA 24061, USA

The proper orthogonal decomposition (POD) based model reduction method has been
successfully used in fluid flows. However, the main drawback of this methodology rests in
the robustness of these reduced-order models (ROMs) beyond the reference, from which
POD modes have been derived. Any variation in the flow or shape parameters within the
reduced-order model fails to predict the correct dynamics of the flow field. To broaden
the spectrum of these models, the POD modes should have the global characteristics of
the flow field over which the predictions are required. Mixing of snapshots with varying
parameters is one way to improve the global nature of the POD modes but has shown
limited success. Instead, we have used Sensitivity Analysis to include the flow and shape
parameters influence within POD modes and developed robust reduced-order models for
varying viscosity (Reynolds number), changing orientation and physical deformation of
the bodies. In this study, we address the flows over an elliptic cylinder for a range of
incidence angles. We use Sensitivity Analysis to develop reduced-order models and show
their capabilities in capturing the effect of varying inflow and predicting the dynamics of
the flow field.

I. Introduction

Most of the fluid flows are governed by partial differential equations (PDEs) which correspond to an infi-
nite number of degrees of freedom in the system; Navier-Stokes is one such example. The analytical solution
exists only for a limited number of simple flows. These equations are typically solved using computational
fluid dynamics (CFD); however, for complex flows the degrees of freedom may still be in thousands or even
in millions. Many engineering and industrial problems involving fluid-structure interaction require repeated
simulations of unsteady fluid flows. From a practical point of view, it is often impossible to perform these
simulations for a variety of parameter values required for design, control, and optimization. Thus, reduced-
order model techniques are often employed to build dynamical systems having a reduced number of degrees
of freedom that approximate complex physical problems and minimize the computational cost.

The proper orthogonal decomposition (POD)-Galerkin approach is often used to develop reduced-order
models for the fluid flows. This methodology requires snapshots of the flow field either from an experiment
or a numerical simulation. In the first step, POD modes are computed using the snapshot data.1–3 Next, the
velocity field is written as the sum of the mean flow (ū) and the velocity fluctuations (u′). The mean flow
ū = 〈u〉, where 〈〉 is the time average of the assembled data, is subtracted from W. Then, the fluctuations
are expanded in terms of the POD eigenfunctions (Φi) as follows:

u(x, t) ≈ ū(x) +
M
∑

i=1

qi(t)Φi(x), (1)

where M is the number of POD modes used in the projection. Substituting the velocity in the governing
equations (e.g. Navier-Stokes equations) gives a reduced-order model of the form:

q̇ = F(q) (2)
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Depending on the problem, the number and variety of snapshots used to generate the POD modes can
have a strong influence on the general applicability of the reduced-order model. Despite the accuracy of
the model at this specific Reynolds number, the model lacks robustness away from the reference simulation.
Deane et al.4 note that the accuracy of the model predictions rapidly deteriorate as we move away from

the decomposition value. Obviously, the accuracy of reduced-order models depends on how well the POD
basis can represent the desired set of solutions. In this case, the accuracy of the model is good only in the
parameter value of the reference simulation from which POD basis are derived. Deviation in any parameter,
within the reduced-order framework, will compromise the accuracy of the model and may lead to instability
of the model. In addition, POD-based models have limitations in predicting bifurcations in control parameter
variation if the snapshot data does not contain the qualitative change in the range of parameter over which
bifurcation occurs. Ma and Karniadakis5 investigated the stability and dynamics of three dimensional limit-
cycle states for the flow past a cylinder using low-dimensional modeling. They mixed the snapshot data
before and after the Mode A6 instability to predict the jump in the Strouhal number vs Reynolds number
curve. Noack et al.7 suggested a generalization for POD based Galerkin models to include the transient
behavior. In their Galerkin approximation, they included an additional vector and termed it a shift-mode.
The approaches of adding shift-modes and mixing the snapshots to capture the flow physics in a wide range
are encouraging and expand the application of POD based reduced-order models.

In our previous work,8,9 we proposed the inclusion of derivatives of the POD basis functions (computed
using Sensitivity Analysis). The study considered two approaches for using the POD derivatives to define
an improved reduced basis. In the first approach, we used linear extrapolation in the parameter space of the
standard POD basis (extrapolated basis); while in the second approach, we combined the POD and POD
derivatives to construct an expanded basis (expanded basis) suited to account for a larger range of parameter
values. The underlying idea behind this approach is that the POD mode sensitivities span a different subspace
than the one generated by the POD eigenfunctions. Furthermore, this subspace is deemed appropriate to
represent changes in solutions with parameter variations. Both approaches have led to improved reduced-
order models in the study of flow past a square cylinder where the viscosity (equivalently, the Reynolds
number) was varied from the reference value. However, when considering larger parameter changes, the
expanded approach was demonstrated to provide a much more robust strategy. In particular, it was shown
that it converges to a stable limit cycle that is a fairly good approximation of the attractor of the full-
order simulation even for large parameter changes. This previous study was limited to problems with fixed
geometries by considering only value parameters. Follow up studies extended the proposed approaches to
shape (or design) parameters (i.e. parameters that define the geometry of the problem.) We demonstrated
our shape sensitivity analysis approaches by developing reduced-order models for flows where the parameter
described: 1) the orientation of a square cylinder placed in a channel (10, 11); 2) the thickness ratio of an
elliptic cross-section cylinder (12, 13). In the first case, POD mode sensitivities where computed using flow
data obtained by the Sensitivity Equation Method and differentiation of the eigenvalue problem. In the
second case POD modes where calculated by a finite-difference approach. In both cases, it has been shown
that the extrapolated and expanded bases yield more robust reduced-order approximations and hence that
the inclusion of shape sensitivity information in the POD bases performs better than the baseline approach
(one on one mapping without the inclusion of sensitivity). However, a limitation has also been uncovered
since the expanded basis has led to ROM having incorrect behaviors (note that the extrapolated approach
is not subjected to this problem). The most striking example is observed at the baseline where energy is
transferred from the POD modes to their sensitivities though the latter components should not be activated
at all. The present work aims at extending the methods to varying inflow conditions.

II. Numerical Methodology

A. Model equations

We consider flows described by the unsteady incompressible Navier–Stokes equations. The momentum and
mass conservation laws are written as :

ρ
∂u

∂t
+ ρ(u · ∇)u = ∇ · σ, (3)

∇ · u = 0 (4)
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where u is the velocity vector and σ = (−pI + τ (u)) is the stress tensor, ρ the density, p the pressure and I

the second-order identity tensor. For Newtonian fluids, the viscous stress tensor is given by :

τ (u) = µ
(

∇u + (∇u)
T
)

(5)

where µ is the fluid viscosity. The solution to these equations is sought on a domain Ω with a boundary
Γ = ΓD ∪ΓN and over times t ∈ T = (0, tf ). Dirichlet and homogeneous Neumann boundary conditions are
imposed on boundary segments ΓD and ΓN , respectively :

u = u (ΓD), (6)

σ · n̂ = 0 (ΓN ), (7)

where n̂ is an outward unit vector normal to the boundary. The variables are initialized in time using a
prescribed initial solution.

For both the DNS and the ROM simulations of this PDE, the weak-forms of (3) and (4) are formed by
a Galerkin projection on a set of suitable test functions. In particular, the test functions for the momentum
equation satisfy the homogeneous version of the Dirichlet boundary conditions (6) (i.e w ∈ X0 = {f ∈
[

H1(Ω)
]d | f = 0 on ΓD} with d the dimension of the problem). Then, we seek u ∈ X =

[

H1(Ω)
]d

and
p ∈ L2

0(Ω) such that

∫

Ω

(

ρ
∂u

∂t
+ ρ(u · ∇)u

)

· w dΩ =

∫

Ω

p (∇ · w) − τ : ∇w dΩ ∀ w ∈ X0, (8)

∫

Ω

q (∇ · u) dΩ = 0 ∀ q ∈ L2
0(Ω). (9)

These equations have been obtained by integrating by parts the term involving σ as classically done :
∫

Ω

(∇ · σ) · w dΩ =

∫

Γ

(σ · w) · n̂ dΓ −
∫

Ω

σ : ∇w dΩ (10)

=

∫

Γ

(σ · n̂) · w dΓ +

∫

Ω

p (∇ · w) − τ : ∇w dΩ. (11)

The integrand in the boundary integral is zero on ΓD since w ∈ X0 and also on ΓN from the homogeneous
Neumann boundary condition (7). For the DNS, the test functions are finite-element interpolation functions

that span
[

H1(Ω)
]d

(see §B); for the ROM, the test functions are the global modes that span the space
generated by the baseline flow (and possibly sensitivity) snapshots.

B. Flow description and Direct Numerical Simulation

We consider here two-dimensional flows (d = 2) over an elliptic cylinder having a semimajor axis along the
x-axis (Lx) twice as large as its semiminor axis along the y-axis (Ly). Solutions are sought for a range of
angles of incidence α of the incoming free-stream flow (see Eq. (6)) u = [cos(α), sin(α)]T . The Reynolds
number based on the semimajor axis length and the free-stream velocity U∞ = ||u|| (Re = ρU∞Lx/µ) is set
to 200 so that all flows examined in this study are reported to be two-dimensional, laminar and T -periodic
in time exhibiting a Von Kármán vortex street.

As can be seen in figure 1, the computational domain Ω extends 15D away from the rear cylinder edge to
allow for the simulation of the convection of several vortexes in the wake of the cylinder. The inflow and sides
of the computational domain are located six edge lengths away. The boundary conditions on Γ = ΓD ∪ ΓN

are set as follows. At the inlet and cylinder edges (ΓD), Dirichlet boundary conditions are applied; the no-
slip condition holds on the cylinder walls (u = [0, 0]T ) and the free-stream velocity (u = [cos(α), sin(α)]T )
is prescribed at the inlet. At the sides and outlet of the computational domain (ΓN ), the homogeneous
Neumann boundary condition is applied as described by (7).

The DNS is performed by solving the discretized version of equations (8)-(9) using the Taylor-Hood
(P2 − P1) finite-element and a mixed-formulation. Thus, the velocity variables are discretized by 6-noded
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Figure 1. Computational configuration

quadratic interpolation functions (third-order spatial accuracy) while the pressure is discretized by piecewise
linear continuous functions (second-order spatial accuracy). An implicit Crank-Nicolson time discretization
of these equations (second-order temporal accuracy) leads to a system of nonlinear algebraic equations which
are linearized by Newton’s method and solved using a sparse direct solver.

The mesh is defined by an adaptive refinement procedure used for solving the steady-state equations for
the baseline flow. Additional user-defined uniform refinement is applied in the wake region to allow for the
accurate calculation of the vortex street in the unsteady calculations. The resulting mesh contains 43, 000
nodes and is illustrated in Fig. 2. Furthermore, the non-dimensional time step for the integration scheme
is 0.01. Several refinement studies for both the space and time discretizations indicate sufficient numerical
accuracy.

Figure 2. Computational mesh

The DNS solution is initialized by prescribing the solution of the steady version of (3)-(4). During the
first instant of the calculation, a continuous perturbation is imposed to the inflow condition to speed up the
onset of the vortex shedding.

The numerical results have been validated by comparing the Strouhal number (St = fD/U∞ where f is
the vortex shedding frequency) and mean drag and lift coefficient on cylinders with different cross-sections
and at several Reynolds number and incidences to those in the literature as reported in 9,10.
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III. POD-Galerkin Reduced-Order Model

A. The proper orthogonal decomposition

Mathematically, we compute Φ for which the following quantity is maximum:

〈

|(u,Φ) |2
〉

‖Φ‖2 , (12)

where 〈.〉 denotes the ensemble average. Applying variational calculus, one can show that Equation (12) is
equivalent to a Fredholm integral eigenvalue problem represented as

∫

Ω

Rij(x,x′)Φj(x′) dx′ = λΦj(x), (13)

where i, j are the number of velocity components and R(x,x′) is the two-point space-time correlation tensor.
In the classical POD or direct method, originally introduced by Lumley,1 Rij is a two-point spatial-

correlation tensor and the eigenfunctions are the POD modes. In this approach, the average operator is
estimated in time. On the other hand, if the average operator is evaluated as a space average over the
domain of interest, the method is known as the method of snapshot .3 In this approach, we formulate a
temporal-correlation function from the snapshots and transform it into an eigenvalue problem as follows:

Cij =
〈

(ui,uj)
〉

, (14)

where (a, b) =
∫

Ω

a.b dΩ represents the inner product between a and b. The POD modes are then computed

by solving the eigenvalue problem
CQ = Qλ (15)

where Q and λ are the eigenvectors and eigenvalues, respectively. Since C is non-negative Hermitian, Q is
orthogonal by definition. The POD modes are computed as follows:

Φi =
1√
λi

WQi (16)

An important characteristic of these modes is orthogonality; that is, Φi.Φj = δij , where δij is the kronecker
delta. The optimality of the POD modes lies in capturing the greatest possible fraction of the total kinetic
energy for a projection onto the given set of modes.

The flow data or snapshots of the steady-state velocity field are sampled with a constant time interval
(∆Ts). The velocity field data (u, v) are assembled in a matrix W2N×S , as follows:

W =























u
(1)
1 u

(2)
1 . . . u

(S)
1

...
...

...

u
(1)
N u

(2)
N . . . u

(S)
N

v
(1)
1 v

(2)
1 . . . v

(S)
1

...
...

...

v
(1)
N v

(2)
N . . . v

(S)
N























(17)

Each column represents one time instant or a snapshot and S is the total number of snapshots for N grid
points in the domain. The vorticity field can also be used for POD, however, in the case of the velocity field,
the eigenvalues of W are a direct measure of the kinetic energy in each mode. Deane et al.4 observed that 20
snapshots are sufficient for the construction of the first eight eigenfunctions at ReD = 100− 200. In general,
numerical studies14 suggest that the first M POD modes, where M is even, resolve the first M/2 temporal
harmonics and require 2M number of snapshots for convergence.

We write the velocity field as the sum of the mean flow (ū) and the velocity fluctuations (u′). The mean
flow ū = 〈u〉, where 〈〉 is the time average of the assembled data, is subtracted from W. Then, the fluctuations
are expanded in terms of the POD eigenfunctions (Φi) following Eq. 1 Singular value decomposition (SVD)
of this matrix provides the divergence-free velocity POD modes (Φi).
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B. Reduced-order model by Galerkin projection

Using (1) and the fact that the POD is applied to an input collection that satisfies homogeneous Dirichlet
boundary condition on ΓD and is divergence free. By linearity, these properties are transmitted to the POD
basis vectors. Hence, taking w = φi for i = 1, . . . ,M in (8)-(9), one obtains :

∫

Ω

(

ρ
∂u

∂t
+ ρ(u · ∇)u

)

· φi dΩ = −
∫

Ω

τ (u) : ∇φi dΩ for i = 1, . . . ,M. (18)

Note that the incompressibility constraint (9) is automatically satisfied since each φj is solenoidal in the
decomposition (1), and its associated Lagrange multiplier, the pressure, is eliminated from (8) or (11). Using
the orthogonal decomposition in the set of M equations (18) leads to a set of ODEs for the time coefficients
q = [q1, . . . , qM ]T in the form of Eq. (2). In the present study, (2) is integrated in time using the explicit
forth-order Runge-Kutta scheme. Moreover, accurate initial conditions can be obtained from the DNS data.

IV. Sensitivity Analysis

This section aims at deriving the first-order total derivatives of the POD modes with respect to a generic
parameter α. This is referred to as the sensitivities of the POD vectors. In this study, they are computed
by a second-order centered finite-difference (FD) approximation :

DΦi

Dα
(x(α0);α0)

∣

∣

∣

∣

FD

=
Φi(x(α0 + ∆α);α0 + ∆α) − Φi(x(α0 − ∆α);α0 − ∆α)

2∆α
, (19)

where α0 is the parameter value at which the sensitivities are computed and ∆α is the step in the finite-
difference scheme. D.

Dα
represent the total derivative with respect to α. The parameter increment ∆α is

chosen sufficiently small for the FD computation to be accurate and sufficiently large for the difference
between the two nearby POD vectors to be at least one order of magnitude larger than the discretization
error.

The traditional approach in reduced-order modeling is to build the POD basis for one particular value
of the parameter of the system. It will be referred to as the baseline value, noted α0, which defined the
baseline state, solution and POD basis. We aim at producing reduced-order solutions at perturbed states
for α = α0 + ∆α. To do so, we first considered the following bases :

• Baseline POD basis (BL) : This is the classical approach where the POD basis built from the data at
the baseline state α0 is used in Eq. (1) to subsequently produce a reduced-order model at the perturbed
state α. These spatial modes are only available on the baseline geometry but they can easily be mapped
on the perturbed geometry.

• Perturbed POD basis (PR) : the reduced-order model is constructed by using the POD modes extracted
from the solution data obtained by a full-order simulation at the perturbed state α. This is a costly
approach since each new reduced-order simulation at a new state required full-order data at this state.
Thus, it has little interest in practice but will be used in the remainder of this study as a reference
low-dimensional solution.

Following previous studies for value parameters in Ref. 8, 9 and shape parameters in Ref. 10, 11, 13, we
examine two different ideas for constructing improved reduced-order bases using the Lagrangian sensitivity
of the POD modes at the baseline state :

• Extrapolated basis (ET) : we treat each POD mode as a function of both space and parameter α :
Φi = Φi(x;α). A change ∆α in the parameter from its baseline value α0 is reflected in the modes
through a first order expansion in the parameter space :

Φi(x;α) = Φi(x(α0);α0) + ∆α
DΦi

Dα
(x(α0);α0) + O(∆α2). (20)

The effectiveness of this approach clearly depends on whether or not the POD modes exhibit a nearly
linear dependence with respect to the parameter α. However, the dimension of the reduced basis is
preserved and the reduced approximation of the solution variables still expressed using Eq. (1). Once
again, the spatial functions are only available on the baseline geometry over which they have been
computed but they can be mapped on the perturbed geometry.
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• Expanded basis (EP) : the sensitivities of the modes can be shown to span a different subspace than
the POD modes (see e.g. Ref. 8). Thus, it is natural to expect that if the approximated solution
is selected in the union of the two subspaces generated by the POD modes and their sensitivities a
broader class of solutions can be represented. It amounts to expand the baseline basis constituted of
the M first eigenfunctions with their M sensitivities :

[

φ1; . . . ;φM ; DΦ1

Dα
; . . . ; DΦM

Dα

]

. The underlying
assumption behind this approach is that the subspace spanned by the mode sensitivities is well-suited
to address the change in the solutions induced by a change in the parameter. However, the dimension
of the reduced basis has doubled and the reduced approximation of the flow variables is now expressed
from :

u(x, t) ≈ ū(x) +
M
∑

i=1

qi(t)Φi(x) +
2M
∑

i=M+1

qi(t)
DΦi

Dα
(x). (21)

V. Results and Discussion

A. POD and Sensitivity Analysis

In what follows, all reduced-order models and approximations will be trained and built at the baseline state
defined for the angle-of-attack α = 5˚. They will be used to predict flows for incidences ranging from 0˚ to
10˚ (i.e. ∆α = ±5˚.)
During one vortex shedding cycle at the baseline, m = 58 snapshots of the FE solutions were collected to
build the snapshot data matrix. The fluctuating kinetic energy captured by the POD modes is illustrated
by plotting the POD spectrum on a logarithmic scale in Fig. 3(a). There is a rapid decrease in the energy

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 0  10  20  30  40  50  60

λ m

m

(a) POD spectrum

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 0  10  20  30  40  50  60

D
 λ

m
 /

 D
 α

m

1
st

 order: ∆α=+0.00010
1

st
 order: ∆α=+0.00005

1
st

 order: ∆α=-0.00001
1

st
 order: ∆α=+0.00001

2
nd

 order: ∆α=+0.00001

(b) Finite-difference sensitivities

Figure 3. POD spectrum and its FD sensitivity at baseline (α = 5˚)

distribution so that the effectiveness of the POD is rapidly large. Figure 3(b) shows the values of the
sensitivity of the POD eigenvalues. For verification purposes, we compare sensitivities computed by several
finite-differences (first and second-order for different steps in the finite-difference.) As can be seen, the
agreement between FDs is very good showing that the finite-difference calculation has converged. Note that
the eigenvalue sensitivity decreases with the mode number in a (roughly) similar way as the eigenvalues do.
This shows that the ordering of the eigenvalues will be preserved through changes in the parameter. Finally,
the order of magnitude of the eigenvalue sensitivities is similar to that of their corresponding eigenvalues.

Figure 4 shows the contours of the streamwise and normal components of the first three spatial POD
vectors at the baseline having a odd spectral number. Clearly, the POD modes are almost even or odd
functions in y as it is the case for the symmetric configuration at no incidence (α = 0˚) as reported in
the literature. Here, given that the baseline configuration is asymmetric, this is only approximately true.
However, the POD modes can still be grouped by pairs (hence we have only shown modes having a odd
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spectral number), as for symmetric configurations, since this property comes from the temporal periodicity
of the flows, which here is preserved through any parameter change, and makes the temporal eigenfunctions
Fourier modes (see 8 for details). This is also the reason why the eigenvalues decay pairwise in Fig. 3(a).

(a) Streamwise component of φ1 (b) Normal component of φ1

(c) Streamwise component of φ3 (d) Normal component of φ3

(e) Streamwise component of φ5 (f) Normal component of φ5

Figure 4. Iso-lines of the components of three baseline POD modes

A qualitative picture of the structure of the POD mode sensitivities is given in Fig. 5 where contours of
the streamwise and normal components of the first three POD mode sensitivities with odd spectral number
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are presented. Clearly, they contain different structures than the original POD modes. The sensitivities
shown in Fig. 5 are linearly independent of the POD basis components and thus span a different subspace.
Note also that their influence is not only significant in the vicinity of the cylinder but mostly in its wake.

(a) Streamwise component of φα

1
(b) Normal component of φα

1

(c) Streamwise component of φα

2
(d) Normal component of φα

2

(e) Streamwise component of φα

3
(f) Normal component of φα

3

Figure 5. Iso-lines of the components of three baseline POD sensitivity modes
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B. Reduced-order approximations

This section reports the performance of reduced-order approximations and models built from the bases
described in Section IV for the short term dynamic of flows. To focus on the influence of the basis used
in the reduced-order modeling, all ROM simulations are initialized using the DNS data at the considered
state and use the appropriate centering (note, however, that in the context of the extrapolated idea, the
mean flow can be extrapolated using the sensitivity of the mean flow which is easily calculated from the flow
sensitivities at the baseline; and for the expanded approach, the low-dimensional basis can be expanded by
the sensitivity of the mean flow to take into account the mean flow modification through parameter changes;
the interested reader is referred to 9 for details.) We compare the low-dimensional solutions (referred to as
ROM ) to the full-order solution obtained by a finite-element calculation at the perturbed state. We also
look at the error in the low-order approximations where the time coefficients are obtained by projection on
the DNS data (referred to as POD). Figure 6 reports errors for bases of dimension 6, 12 and 24. As can be
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Figure 6. Iso-lines of the components of three baseline POD modes

seen, the two sensitivity-based bases provide better approximations than the baseline basis. This is true for
all parameter perturbations but the best improvements are obtained around the baseline as expected. At
the baseline, all bases perform the same (for a fixed dimension) since they all contain at least the first M
POD modes at this state. The baseline and extrapolated bases are the same and only the expanded basis
is different due to the additional POD mode sensitivities. This result shows that the baseline sensitivity
modes do not represent a significant part of the energy in the baseline data and that the POD modes alone
provide an efficient low-dimensional basis for the baseline flow. However, when one moves away from the
baseline state, the baseline POD basis loses its ability to approximate flow solutions so that the baseline
approach becomes inaccurate. At these points, the mode sensitivities provide relevant directions to account
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for perturbations in solutions due to parameter changes. Close to the baseline, this additional information
is enough to yield representation errors as low as for the perturbed basis. When one goes further from the
baseline in the parameter space this is no longer true. This means that for large parameter perturbations,
the first-order POD mode sensitivities can not account for all changes in the solutions. However, at these
states, the extrapolated and expanded bases provide better approximations than the baseline basis.
It is worth noting that errors in low-order approximations obtained by projection (POD) or by solving a
dynamical system (ROM) are the same (except for M = 24 at the baseline). It shows that these ROM
capture the dynamics of their basis components well.
More surprisingly, the extrapolated and expanded approaches yield approximations of similar accuracy for all
parameter values. This is in contradiction with previous studies where the expanded approach has performed
significantly better for large parameter changes and thus was considered a more robust approach far away
from the baseline.
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