
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Managing Long-Lived COTS-Based Systems
Vigder, Mark; Dean, John

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=f7235bf2-f533-40f5-aae6-bb3a0c71ab13

https://publications-cnrc.canada.ca/fra/voir/objet/?id=f7235bf2-f533-40f5-aae6-bb3a0c71ab13

13 August, 1998

1

1998 National Research Council of Canada

Managing Long-Lived COTS Based Systems
Dr. M.R.Vigder

J.C. Dean
National Research Council of Canada

{mark.vigder|john.dean}@nrc.ca

Abstract

Managing long-lived computer systems containing a large number of
Commercial Off-The-Shelf (COTS) software components requires a significant
investment of effort. This effort is spent on a number of activities, including
adding, replacing and deleting components, integrating and customizing
components, and monitoring and troubleshooting the system. Organizations
can reduce the time and cost required for these system management activities
and increase the usability and reliability of a system, by planning for system
management during acquisition. This paper describes how organizations can
use software architecture, software instrumentation, and component-based
configuration management to support the ongoing system management
activities.

Keywords: OTS, COTS, maintenance, management, software, component,
architecture, instrumentation, configuration management

1. Introduction

Modern computer systems can be constructed from many software components
acquired from many vendors and distributed over multiple networks. Employing
diverse off-the-shelf (OTS) components from so many different sources provides
challenges to an organization that must acquire, install, and manage the
computer system [1,2,4,7,8]. Commercial OTS software components make this
particularly challenging for the following reasons:

• Source code is not available (perhaps a blessing).

• Maintenance and release schedules are under the control of the COTS
software vendor.

• Software components provide too little, or too much, functionality.

• You are one of many customers and your voice may be lost in the crowd
when requesting changes to the product.

System management of traditional systems and management of COTS based
systems share many traits. However, keeping a COTS software based system
up and running requires that the system manager successfully undertakes a
number of activities that have specific COTS related aspects. Among those
activities are:

• Component life cycle management. As systems evolve new COTS

13 August, 1998

2

1998 National Research Council of Canada

components are added, unused components are removed and components
are replaced with newer versions or with similar components from different
vendors. Changes in configuration may require software components to be
moved to a different platform. Modifying the component set of a system is
invariably a labour intensive operation.

• Customization. COTS software must be customized (in ways supported by
the vendor, not through source code changes) and components must be
integrated to provide new services. This can be done at the desktop level
through scripting a set of user applications or on a departmental or
enterprise level by customizing and integrating back end server
applications.

• Behavioural Analysis. System characteristics must be monitored in order to
understand the current status of both the components and the system as a
whole. Software systems frequently break down and the managers must
identify and rectify the problem. The lack of access to the internal operations
of the components makes both monitoring and fault isolation a challenging
task.

This paper looks at how these activities can be facilitated through proper use of
architectures, instrumentation, and configuration management. Section 2 of the
paper describes three of the activities that have implications in the life cycle
management of COTS software-based systems. Section 3 describes properties
one can build into a system to facilitate these activities. Finally, Section 4
provides some conclusions.

2. Management Activities in a COTS Software Based
System

Ongoing maintenance of a software system involves a number of different
activities. These activities are needed to maintain the continued operation of the
system and to evolve and enhance the system. In this capacity a system
manager performs a combination of adding/replacing components, tuning the
functionality and services of the system, and probably a great deal of
troubleshooting. These activities can consume significant resources but the
process can be made more efficient by ensuring the existence of a number of
appropriate system properties. These properties support the system
management function by supplying information about, or by providing a
structural context for, the system.

2.1 Component life cycle management

A computer system contains many software components ranging from full-scale
applications down to small-scale components such as DLL’s and Java
Bean/ActiveX components. Many of these components evolve independently of
each other.

Part of a system manager’s responsibility is to manage these components. This

13 August, 1998

3

1998 National Research Council of Canada

involves updating components as new versions become available, adding new
components as the system evolves, deploying components at different sites and
removing components that are no longer required. Operations such as load
balancing may require the reconfiguration of the system by moving affected
components to other platforms. The activities involved in performing component
management include:

• Evaluation of the new or updated component to determine its suitability
within the context of the current system. Evaluation looks at architectural
compatibility, interactions with other components, performance, etc.

• When updating components, the manager must test, and possibly rewrite,
the "glue" code, scripts, wrappers, etc. associated with the updated
component.

• Testing the component within the system.

• Installation, deployment, moving and removing components, and all
associated configuration management activities.

2.2 Customization

Many software components require a level of customization. Customization for
COTS software does not involve modifying source code (otherwise, it is no
longer COTS but rather a custom piece of code.) There are however, many
other ways in which a COTS component can be customized, such as:

• Using plug-ins to add functionality to an application;

• Configuration or preference files;

• Scripting an application to add new services or to drive one application from
another;

• Combining services from different applications or components to provide
new user level services;

• Wrapping components to add or hide functionality, or to provide a new
interface;

• Providing standard templates or macros for an application.

Customizing COTS software components allows an organization to use a
generic component but to tailor it to the local business needs and workflow of
the organization.

Customization can be done at many levels. A user’s desktop can be tailored for
their personal requirements. At the enterprise level, an application may have
extensive customization and configuration to conform to the workflow,
accounting practices, etc. of the enterprise.

A system manager’s responsibilities for the customizations include:

• Determining which customizations must be under configuration

13 August, 1998

4

1998 National Research Council of Canada

management and verify that the CM processes are followed.

• Implementing a process for defining, implementing and testing the
customization.

• Deploying the customizations at the appropriate sites.

2.3 Behavioural analysis

System managers must be able to monitor and analyze the behaviour of a
system.

One purpose for system monitoring is to allow a manager to maintain and
improve the capability of a system. System monitoring requires the ability to
determine which software components are being used, how they are being
used, how they are interacting, and what problems are occurring. For example,
based on analysis of system behaviour a manager could reconfigure system
resources to improve performance.

A second purpose of system monitoring is for troubleshooting. Computer
systems running many different applications from many different vendors are
particularly prone to problems. When a problem occurs, system managers must
be able to identify the source of the problem. The problem could lie entirely
within a single component, or it may be the result of unforeseen consequences
as a result of component interactions. Regardless, a system manager must be
able to identify and isolate the cause of the problem. This is a non-trivial
problem particularly since there are many components, they are completely
black-box and purchased off-the-shelf, and they have been built by different
developers.

Fixing the problem first requires the system manager determining the
component(s) at fault and why the situation is occurring. Solving the problem
will likely require calling the help desks of one or more vendors who will need to
know specific details of why the manager believes it is their component causing
the problem.

3. Support for management activities

There are significant challenges for the System Manager in supporting each of
the broadly based activities described in Section 2. These challenges, while
also occurring in a traditional environment, are more clearly evident in a COTS-
based system and require that emphasis be placed in a number of key areas.
These areas include, the architectural definition process, configuration
management of the system and associated COTS components and
instrumentation of the system. This section will examine each of the activities in
turn and highlight specific techniques which, if applied appropriately, can help
in system management.

13 August, 1998

5

1998 National Research Council of Canada

3.1 Component Changes

3.1.1 Architectural support

In the area of component changes architectural layout is critical in determining
the ease with which a manager can substitute, add, move or remove
components [6]. An architecture that is designed to accommodate these
activities is one that provides for the isolation and efficient communication of
disjoint components.

A number of architectural and design styles can be used to achieve a level of
isolation and communication. For example, specific design patterns [3] can be
used including facades and adapters to achieve isolation, and mediators to
encapsulate interdependencies between components [3,7]. These patterns
allow data translation and routing to occur independently of the COTS
components.

Once architectural and design properties have been identified it can be verified
that these properties exist within the system, and that any changes to the system
preserve these properties. This verification can be done through a combination
of tools, such as static code analyzers and design inspections.

3.1.2 Configuration Management support

Managing the configuration of a traditional software system has been
accomplished through the monitoring of the source code that is produced. This
includes a mechanism to control and track changes to the source. Numerous
tools are available to support this task and the issues involved are well
understood. With the introduction of COTS software , Configuration Managers
no longer have access to the source for a COTS product and must supplement
traditional methodologies. A tracking method must be initiated at a more global
level wherein entire modules are tracked by version. This is in contrast to the
traditional micro-management techniques.

COTS software systems allow less control over the availability of updates and
therefore the CM must be more responsive to vendor update schedules and
paths. Configuration control decisions become less concerned with reacting to
engineering changes or bug fixes and more often involve deciding when to
incorporate a new version of a COTS product. Often this update activity will take
place just to maintain compatibility rather than to enhance the system or repair
defects. The scheduling of these updates may not be as critical but because of
the multiple COTS products will involve some effort.

Configuration management becomes an activity of:

• Tracking versions and version histories of COTS components.

• Identifying differences between versions of COTS components.

• Identifying which versions of sets of component are compatible or
incompatible with each other.

13 August, 1998

6

1998 National Research Council of Canada

• Tracking which versions of each component are installed at every site.

3.1.3 Instrumentation support

Instrumentation can provide valuable information regarding the status of the
components of a system. Among the information that can be gathered at run-
time are:

• What components are installed on the different platforms.

• What the history of component replacement has been.

• Current version data.

Tools to assist in, and record, the deployment of components should be
integrated into the system during implementation .

3.2 Customization

3.2.1 Architectural support

The capability and ease with which a system can be customized to meet local
requirements is dependent on the architecture of the system. A system that has
a proper architecture and design will allow for more customization during its
evolution and management. Builders and managers can follow design
guidelines that allow for customization.

One example of designing for customization is to select customizable
components. More software components and applications are being
constructed with technologies that allow for integration and customization.
Examples of such technologies are the inclusion of scripting capabilities within
the application (e.g., tcl, VB, JavaScript), and the ability to include third party
plug-ins.

Another guideline that can be followed is to employ an architecture that allows
for customization. For example, the customizations that implement business
processes can be encapsulated within mediators [3,7] that can be easily
modified. The mediators can be developed in languages designed for rapid
development (such as tcl, perl, or VB) while the components can be selected
such that they provide standard programmatic interfaces (e.g., ActiveX,
JavaBeans, or ODBC).

An important consideration when using COTS software is that it may be
necessary to customize one’s business process to match the software
capabilities rather than the other way around. Some COTS software is
designed to incorporate a particular set of predefined business processes (such
as SAP, PeopleSoft HRS). Software of this nature used outside of its intended
usage parameters tends to be extremely fragile.

3.2.2 Configuration Management support

The customization components developed must be maintained under

13 August, 1998

7

1998 National Research Council of Canada

Configuration Management on two levels. First, they are managed at the source
code level just as with traditional development. Second, they must be treated as
components of the system and maintained under CM as described in 3.1.2.

3.2.3 Instrumentation

The customizations are often the only means by which end-users can design
instrumentation into the system, as this is the only source code to which they
have access. For this reason it is important for system managers to understand
the types of instrumentation that is required to maintain the system, and to have
a process in place that verifies that the appropriate instrumentation is being
adopted when establishing the customizations.

3.3 Behavioural Analysis

3.3.1 Architectural support

As with traditional development, choosing the correct architecture for a system
can provide improved monitoring and troubleshooting capabilities. A key aspect
is to minimize coupling and maximize cohesion between components so that
problems and behaviour can be isolated. Architectural styles can support this,
for example by putting component interactions inside mediator components.

The architecture of a system should be designed to isolate faults. If there is a
problem within a component, the problem should be detected as soon as
possible and should not be propagated to other components of the system.
Architecture can support this by ensuring that the code developed to inhibit
direct component interaction has been designed to detect, isolate and log
component faults.

3.3.2 Configuration Management support

Many problems within a system are configuration problems. They are often
caused by incompatible versions of components trying to interact with each
other. Configuration management supports troubleshooting in the following
ways:

• It can be determined what versions of components are installed at each site.

• Known sets of compatible and incompatible component versions are
recorded.

• Component update history is maintained and can be related to when faults
were introduced into the system.

3.3.3 Instrumentation support

Instrumentation plays a critical role in monitoring and troubleshooting a system.
It is through the instrumentation that a system manager can determine the
performance characteristics, component usage, and resource availability within
the system. Organizations must understand their requirements for system

13 August, 1998

8

1998 National Research Council of Canada

monitoring, and design the system with the instrumentation to permit the
monitoring.

Troubleshooting COTS based systems is difficult because there frequently is no
straightforward way to determine which product is responsible for the
occurrence of a fault. It is impossible to examine the internal operation of a
COTS module because the source is not available. End-user organizations do
have some control over the wrappers, glue code and customizations. By
building the proper instrumentation into these components system managers
will have some tools available at their disposal to determine which component,
or set of components, is at fault.

4. Conclusion

System management of COTS software-intensive systems is a key part of the
process of integrating COTS products. We have shown that three important
aspects of system management are component life cycle management,
customization, and behavioural analysis. We have described how architectural
choices, instrumentation techniques and configuration management practices
can and should be adapted to support long-term system management in COTS
based systems.

Bibliography

[1] A.W. Brown and K.C. Wallnau. Engineering Of Component-Based
Systems. In Proceedings of the 1996 2nd IEEE International Conference
on Engineering of Complex Computer Systems, pages 414-422, 1996.

[2] J.C. Dean and M.R. Vigder. System Implementation Using Off-the-shelf
Software. In Proceedings of the 9th Annual Software Technology
Conference. Department of Defense, 1997.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software Addison-
Wesley Professional Computing Series, 1995

[4] D. Garlan and A. Robert and J. Ockerbloom. Architectural Mismatch or
Why it's hard to build systems out of existing parts. In 17th International
Conference on Software Engineering, pages 179-185, 1995.

[5] M.Shaw and D.Garlan. Software Architecture: Perspectives on an
Emerging Discipline, Prentice Hall Publishing, 1996.

[6] K.J. Sullivan and J.C. Knight. Experience Assessing an Architectural
Approach to Large-Scale Systematic Reuse. In 18th International
Conference on Software Engineering, pages 220-229, Berlin, 1996.

[7] M.R. Vigder and W.M. Gentleman and J.C. Dean. COTS Software
Integration: State of the Art. National Research Council of Canada,
Institute for Information Technology technical report NRC39198, January,
1996.

13 August, 1998

9

1998 National Research Council of Canada

[8] Component Based Software Engineering Selected Papers from the
Software Engineering Institute. Alan W. Brown editor. IEEE Computer
Society Press, Sept. 1996.

