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INTRODUCTION

Description of the fluid flow through porous medium is
important in many industrial applications. This flow is
generally described by a parabolic function of the pres-
sure drop in the flow direction as a function of the flow
rate (i.e. Forchheimer's equation). Using that equation,
the pressure drop can be described knowing the perme-
ability constant (Darcian and Non-Darcian), the viscosity
and density of the fluid as well as its velocity. The per-
meability can be measured experimentally by measuring
the pressure drop when the fluid flow through a porous
medium at different velocities. The permeability cannot,
however, always be easily measured experimentally and
new techniques need to be developed. For example, per-
meability perpendicular to a thin planar medium, such
as paper or textile, can be difficult o determine experi-
mentally. Besides, in many applications it is important to
describe fluid flow in 3D into complex porous medium
to optimize the performance of a devices such as re-
actors, porous electrodes, catalysts support and filters,
Thus, the development of models to describe the flow
through porous medium should help developing and op-
timizing the design of such devices.

The goal of this work is to provide numerical model-
ing tools for the characterization of the flow through such
medium. In this study, the experiments were conducted
in metallic foams. Numerical solutions were obtained for
various flow regimes and a general relationship between
the dimensionless pressure gradient and the Reynolds
number was proposed. The numerical solutions were
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obtained using a multi-scale approach. In a first study,
the geometry of the foam was extracted from the volu-
metric data generated from X-ray micro-CT scans and
a level set function was constructed that represents the
surface of the metallic structure. The three-dimensional
Navier-Stokes equations describing the fluid flow inside
the metallic foam was solved on simple quasi-structured
meshes of tetrahedrons using a finite element immersed
boundary method. In a second step the flow at the macro
scale,(in this case the scale of the experimental appara-
tus), was solved numerically by modeling the presence of
the foam though a source term providing the same pres-
sure drop as the one computed on the micro scale. Such
simulation gives the opportunity to solve the flow in com-
plex configurations where the porous medium is only a
part of the computational domain. The computed pres-
sure drop as a function of the flow rate on the macro scale
configuration replicating an experimental setup was then
compared with the experimental data for various foam
thicknesses. The numerical results for the macro scale
simulations confirm several experimental observations:
the pressure drop depends on the way the set-up is de-
signed and the pressure drop dependence on the sample
thickness decreases as the ratio of the foam section ex-
posed to the flow to the total foam section approaches 1.
Simulation results agree very well with the experimental
data, thus opening the way for more extensive numerical
studies of the flow inside porous media. Such approach
could be used for the optimization of the design of new
devices involving flow through porous materials.



FLOW MODELING

Model equations and boundary conditions

The equations of motion are the steady-state incom-
pressible Navier-Stokes equations:

pu-Vu = —Vpiv. [u (Vu+(Vu)T)] +E(1)

Voo = 0, (2)

where p is the density, u the velocity vector, p the
pressure, | the dynamic viscosity, and f a volumetric
force vector. The interface I'; between the fluid and solid
regions is defined using a level-set function Wy which is
defined as a signed distance function from the immersed
interface:

d(x,x;), xin the fluid region,
Y(x) = 0, x on the fluid/solid interface,
—d(x,x;), xin the solid region,

(3)
where d(x, x;) is the distance between the point P(x) and
the fluid/solid interface. Hence, points in the fiuid region
will take on positive values of W, whereas y will be
negative for points in the solid region.

The boundary conditions associated to the
momentum-continuity equations are

u=Up(x),
1 (Vu+Va') - f— pi = t(x),

for x € ['p, (4)
for xe I, (5)

where I'p is the portion of the fluid boundary 9 Q r where
Dirichlet conditions are imposed, and t is the traction im-
posed on the remaining fluid boundary I', = aQN\Ip.
Dirichlet boundary conditions are imposed at the inter-
face between fluid and solid regions. Because this inter-
face is not represented by the finite element discretiza-
tion, a special procedure is used to enforce velocity
boundary conditions on this surface. This approach is de-
scribed in details in reference [1].

Solution algorithm

The numerical solutions are obtained using a multi-
scale approach. In a first study, the 3D Navier-Stokes
equations describing the fluid flow at pore level are
solved. For this, the level set function representing the
metallic foam surface (solid boundary) is constructed us-
ing micro-CT scan reconstructions. The resulli ng surface
information is used within a finite element immersed
boundary method to solve the flow inside the metallic
foam. The micro scale solution of the flow takes into ac-
count the details characterizing the geometry of the foam
and is used to determine the permeability coefficients in

the Forchheimer’s model. In a second step, a numerical
approach is used to solve the flow at the macro scale,
(in this case the scale of the experimental apparatus), by
modelling the presence of the foam via a source term
providing the same pressure drop as the one computed at
the micro scale. Such a simulation gives the opportunity
to solve the flow in complex configurations in which the
foam is only a part of the computational domain.

The immersed boundary method

The flow equations were solved using a finite element
method coupled with an immersed boundary approach
[1]. In the present work, the entire domain including fluid
and solid regions were discretized. A special treatment
was applied when solving for nodes in the solid region.
The mesh was intersected by the fluid/solid interface at
points located along element edges. Those points were
considered as additional degrees of freedom in the fi-
nite element formulation. The fluid/solid interface was
defined by a level-set function and the additional nodes
were determined as those for which Wy = 0. Moreover,
because the level-set function is interpolated using lin-
ear shape functions, the intersection between the inter-
face and a tetrahedral element is a plane, either a trian-
gle or a quadrilateral. Elements cut by the interface are
therefore decomposed into sub-elements which are either
entirely in the fluid or entirely in the solid regions. The
addition of degrees of freedom associated to the nodes on
the interface would normally result in a modification of
the global matrix resulting from the finite element equa-
tions. In such a case, the implementation is more chal-
lenging and the increase in computational cost is inherent
as dynamic data structures and renumbering are needed.
The present approach does not need the explicit addition
of the degrees of freedom associated to those nodes. The
procedure is described in details in reference [1].

Imposition of prescribed pressure drop

The permeability of the metallic foam was obtained
using the Forchheimer’s equation representing an empir-
ical relationship between the pressure drop Ap and the
mean flow rate u:

Ap | P o

— = —up+— 6

E b0 g0 "
where & and k; are model coefficients. In dimensionless
form the Forchheimer's equation is written as follows:

Ap 11 1

L Reky ks

with ;I = k],f[{; and k, = ka /Ly.



Finite element solution

The incompressible Navier-Stokes equations are
solved by a SUPG formulation [2, 3]. The SUPG
method contains additional stabilization terms which are
integrated only on the element interiors. These terms
provide smooth solutions to convection dominated flows
and deal with the velocity-pressure coupling so that
equal-order interpolation results in a stable numerical
scheme [2]. This makes possible the use of elements that
do not satisfy the Babuska-Brezzi condition as is the case
of the linear P1 — P element [4]. SUPG also stabilizes
the resulting linear systems, making them amenable
for robust iterative solution. This last advantage is of
critical importance for large scale applications. For the
Navier-Stokes equations and the linear elements used
here SUPG and GLS methods are identical.

The nonlinear equations for the velocity and pressure
were solved with a few Picard steps followed by Newton-
Raphson iterations. The resulting linear systems were
generated directly in a compressed sparse row format,
and solved using the bi-conjugate gradient stabilized (Bi-
CGSTAB) iterative method with an ILU preconditioner.
An important reason for using the SUPG formulation is
that it also stabilizes the linear systems, making them
tractable by iterative solvers.

VALIDATION: FLOW AROUND AN
ARRAY OF SPHERES

The IB method was first verified on a test problem corre-
sponding to the flow around spheres placed on a simple
cubic lattice. A non-dimensional solution was obtained
by defining reference values for the variables describ-
ing both the immersed geometry and the flow. The refer-
ence length was taken equal to the distance between the
center of adjacent spheres L and the reference velocity
was given by the inlet velocity V;. Following the work of
Martys et al. [S] computations were carried out without
considering the inertia in the momentum equations (low
Reynolds number approach). The dimensionless viscos-
ity and inlet velocity were set to 1 and the dimesionless
diameter of the spheres D = D/L was varied between
0.2 and 1.4, resulting in the solid fraction of the bed of
spheres varying from 4.19- 103 10 0.959.

Given the symmetry of the arrangement of spheres,
only one array having the size of the transverse section
cqual to the distance between the centroids of two ad-
jacent spheres were considered. Computations were car-
ried out for 5 and respectively 9 spheres in the flow di-
rection, The surface of the spheres on which Dirichlet
boundary conditions should be imposed is represented
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FIGURE 1. Pressure distribution and computational mesh,

FIGURE 2. Flow field around the spheres,

by the level-set function:

W (x.y.2) = min(yo, ((x—x)2 + (y - ;)2
He=2)’)""=D/2), fori= 1N, (8)

where N is the number of spheres in the array, Wy is
an arbitrary positive value larger than the size of the
computational domain (say Wo = 100) and (x;,y;,z;) are
the centroid coordinates of the sphere i. The level-set
W =0 will then indicate the location of the boundary. The
region having y > 0 is the flow region inside which the
flow equations were solved and the region having y < 0
represents the volume of the spheres. The solid fraction
of the bed of spheres for a given sphere radius R — D/2
is given by:

fs =Vs/Viar 9)

where V; is the volume of one sphere and V,,, = L7 is
the volume of the cubic box of size L within which the
sphere is located. In dimensionless variables (L=1) the
volume of the box is equal to unity and the volume of the
sphere is given by:

3
Vo= 41:?—. for R < 0.5 (10)
4nR’ 7
v, = T—4nR3+E4—(12R2—L2). for R > 0.5 (11)

The expression in equation (11) takes into account the
overlapping of the spheres when R > 0.5,

The solution for the pressure distribution on the sur-
face of the spheres is shown in Figure | for an array of
5 spheres of diameter 0.7. The pressure distribution and
the mesh are also shown in a mid-plane along the flow
direction. The mesh has 20 elements in directions trans-
verse to the flow. The solid boundary of the spheres cuts
through the elements, as the mesh is not constructed to fit
the geometry of the immersed objects. The flow field for
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FIGURE 3.  Permeability of an array of spheres.

the same case is presented in Figure 2 in the plane con-
taining the centers of the spheres, indicating that homo-
geneous velocities are recovered on the sphere surface.
Hereafter we present the results obtained for the pres-
sure drop in the flow and the resulting permeability coef-
ficient for various diameters of the spheres. The perme-
ability k of the array of spheres is determined from the
Darcy’s law and is given by:
0T
k= \Z (12)

where & is the average flow rate.

The solution for the permeability of the array of

spheres is shown in Figure 3 as a function of the solid
fraction. The results obtained by Chapman and Higdon
[6] are also presented as a reference. Similar results were
reported by Martys er al. [5] using a lattice Boltzmann
method. As can be seen, the permeability decreases as
the solid fraction increases, reaching a value close to zero
when the solid fraction approaches the maximum value
of 1. The present numerical results agree very well with
those reported by Chapman and Higdon [6].

APPLICATION: FLOW THROUGH A
METALLIC FOAM MATRIX

The present test problem is the flow of water through a
metallic foam. The foam is an open cell nickel chromium
foam from Recemat (NC-1723) having average pore size
of 0.9mm as shown in Figure 4. Experimental measure-
ments were reported by Innocentini et al. [7] for the flow
through various thicknesses of the foam, ranging from
4.3mm to 38.6mm. The setup is illustrated in Figure 5.
The ratio between the surface of the nominal flow sec-
tion to the surface of the sample is 0.87.
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FIGURE 5. Details of the experimental setup,

Micro-scale simulations

For the micro-scale simulations the metallic foam sur-
face of a small sample having 3.03mm x 3.03mm x
4.04mm is determined using micro-CT scan reconstruc-
tions. The scan has a resolution of 0.0101mm, thus pro-
viding data at 300 x 300 x 400 points. This informa-
tion is then used to initialize the level-set function rep-
resenting the surface of the metallic foam. The waler
density and viscosity are taken as p = 996.1kg/m* and
H=83-10"Pg.-s.

Three series of simulations were carried out: (case 1)
for the flow in the z-direction, (case 2) for the flow in the
x-direction, and (case 3) for the flow in the x-direction
in a sample having twice the length of the original sam-
ple (6.06mm instead of 3.03mm). The computational do-
main for each case extends 2mm before the foam sample
and 20mm in the wake.The mesh is uniform in the re-
gion covering the foam and has either 60x60x80 nodes
or 75x75x100 nodes. The pressure distribution for the
case | at a velocity of 0.308m/s and the finner mesh
is shown in Figure 6, whereas the velocity vectors in a
cross-section along the flow direction are plotted in Fig-
ure 7. The pressure decreases in the direction of the flow.
Regions of higher pressure are observed where the flow
impacts the foam walls and lower pressure is obtained in
the wake behind the foam structure. Figure 7 indicates
that the flow accelerates in the sections which are not
filled by the foam material and several recirculation re-
gions are observed behind the foam structure.
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FIGURE 6. Pressure distribution for case 1.
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FIGURE 7. Velocity vectors for case 1,

The pressure gradient in the flow direction was com-
puted as a function of the inlet velocity. First, the case
I was computed for the two mesh sizes in order to de-
termine the dependence of the solution on the mesh. In-
cluding the regions before and after the foam, the two
meshes have 1,872,000 elements, 390,705 nodes for the
60x60x80 mesh and respectively 3,487,500 elements and
722,000 nodes for the 75x75x 100 mesh. As can be seen
from Figure 8, the solution depends very little on the
mesh size for this level of refinement.

The effect of the size of the sample was verified by
comparing the cases 2 and 3. In both cases the flow was
in the x-direction and simulations for case 3 were carried
out on a sample twice as long as the one for the case 2.
The size of the sample is shown to have little effect on
the pressure gradient in the foam (see Figure 9). This is
an indication that the size of the sample is representative
for computing the permeability of the foam.

The numerical results from cases 1, 2 and 3 were
used to compute the coefficients k; and &, in the Forch-
heimer’s equation. The results were compared with those
obtained experimentally and good agreement with the
computed pressure gradients is obtained for ky =2.16-
10-%m* and k; =9.5-10 “m [8]. The pressure gradient
given by the Forchheimer’s equation is compared with
the computed pressure gradient in Figure 9.
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FIGURE 8. Influence of the mesh size for case 1.
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FIGURE 9. Forchheimer model data vs computed solutions,

Macro-scale simulations

The micro scale simulations provide the pressure drop
as a function of the flow rate and hence the permeabil-
ity coefficients of the foam (the coefficients used in the
Forchheimer’s equation). This information is then used
to perform macro-scale simulations describing the exper-
imental setup shown in Figure 5. The solution was com-
puted on a cylindrical domain having 47mm in diame-
ter, a length of 282mm upward from the foam location
and 200mm downward from the foam. As in the experi-
ment, the foam thickness were 4.27mm, 8.6mm, 13.7mm,
21.0mm, 28.2mm, and 38.6mm. The pressure and veloc-
ity in a plane through the symmetry axis are shown in
Figures 10 and 11 respectively, for the case 1. = 38.6mm
and an inlet velocity of 0.305m/s.

The pressure drop determined by the presence of the
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FIGURE 10. Pressure distribution for L = 38 .6nun.



FIGURE 11. Velocity distribution for f, — 38.6mm.
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FIGURE 12.  Pressure gradients for /, — 8.6mm.

foam was calculated between two locations at 50mm
on each side of the foam. The numerical results are
compared with the experimental data in Figure 12 for L —
8.6mm and in Figure 13 for L = 38.6mm. As can be seen,
the agreement between the simulation and experiment
improves when increasing the thickness of the foam.
Figure 14 indicates that the pressure gradient sensitivity
to the foam thickness is small for this experimental setup.

CONCLUSION

This work presents a multi-scale methodology for char-
acterizing numerically the flow permeability through
porous medium. The approach was validated with an
open cell metallic foam. The proposed approach consid-
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FIGURE 13.  Pressure gradients for [, — 38.6mm,
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FIGURE 14, Solutions for different foam thickness,

ers both the foam details at the pore level and the actual
behavior when placed inside more complex flow config-
urations. Simulation results agree very well with the ex-
perimental data, thus opening the way for more exten-
sive numerical studies of the flow inside complex porous
medium. Such approach could be used for the design
and optimization of new devices involving flow through
porous materials.
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