
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Automating Model Acquisition by Fault Knowledge Re-use, DR, the

Diagnostic Remodeler Algorithm
Abu-Hakima, Suhayya

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=f616d170-520b-4765-8023-10c71c9b5578

https://publications-cnrc.canada.ca/fra/voir/objet/?id=f616d170-520b-4765-8023-10c71c9b5578

Abstract

This paper addresses the problem of automated model

acquisition through the re-use of fault knowledge. The

Diagnostic Remodeler (DR) algorithm has been imple-

mented for the automated generation of behavioural com-

ponent models with an explicit representation of function

by re-using fault-based knowledge. DR re-uses as its first

application the fault-based knowledge of the Jet Engine

Troubleshooting Assistant (JETA). DR extracts a model of

the Main Fuel System using real-world engine fault knowl-

edge and two types of background knowledge as input:

device dependent and device independent background

knowledge. To demonstrate DR’s generality, it has also

been applied to a coffee maker fault knowledge base to

extract the component models of a full coffee device.

Introduction

Fault-based reasoning (FBR) is used in many diagnostic

systems. Knowledge in FBR is largely based on mainte-

nance manuals and interviews with experts intended to

capture heuristic knowledge about the maintenance and

repair of a device or process. The maintenance and repair

is directed at keeping a device functioning in a predictable

manner. The knowledge in these systems is often repre-

sented as hand-coded rules or frames which are organized

into troubleshooting hierarchies. At the top level of the

hierarchy is the general knowledge representing a problem

with a device. This general problem is refined systemati-

cally until the leaf nodes of the hierarchy which represent

physical repairs to the device are reached. Once these

repairs are achieved by a human technician some diagnos-

tic systems re-test to confirm that the symptoms and diag-

nosed faults are cleared through backtracking in the

hierarchy.

Model-based reasoning (MBR) for diagnosis concentrates

on reasoning about the expected and correct functioning of

a device. A device is modelled based on its components

and their expected behaviour [Hamscher and Struss 90].

Such models range from quantitative ones to qualitative

ones and all attempt to approximate device behaviour as

accurately as possible. Once a device model is stabilized

then a device’s observed behaviour can be predicted from

the model. If a discrepancy in behaviour is detected then

possible fault candidates are generated based on assump-

tions that describe correct model behaviour. Sequential

diagnosis is used to choose observations, augment a pre-

diction for the candidate faults and update the list of candi-

dates until a dominant candidate is found.

In MBR there are many conflicting definitions for models.

They range from causal models represented as semantic

networks with links specifying the relations between com-

ponent nodes to full blown numerical simulations for com-

plex systems and processes that have taken decades to

perfect. Generating models is a key problem in MBR.

Some researchers generate causal models, others generate

models with structure and behaviour while others generate

functional models for devices. Knowledge in models has

thus far been hand-coded by experts that understand

device component behaviour and function.

In the first phase of the DR algorithm fault-based knowl-

edge from a real-world troubleshooting system is re-used

to extract component-connection relations. In the second

phase of the algorithm, the extracted components are

matched against background knowledge to derive specific

behaviours. In addition, any gaps in the fault knowledge

component-connection links are tagged. These gaps can be

used to uncover inconsistencies in the fault knowledge.

Fault-based knowledge from the Jet Engine Troubleshoot-

ing Assistant [Halasz et al. 92] is re-used to demonstrate

how DR can successfully extract “black box” models of

the components that make up the main fuel system of a jet

engine. In a second application, DR is used to extract the

component models of a coffee maker device from its trou-

bleshooting knowledge in conjunction with some addi-

tional background knowledge. The second example is

used to illustrate the generality of the DR algorithm and its

potential wide applicability for the automated extraction

of component models through re-use of fault knowledge.

Automating Model Acquisition by Fault Knowledge Re-Use,
DR, the Diagnostic Remodeler Algorithm

NRC 38315

Suhayya Abu-Hakima
Knowledge Systems Laboratory

Institute for Information Technology
Building M-50, Montreal Road

National Research Council of Canada
Ottawa, Canada K1A 0R6

internet: suhayya@ai.iit.nrc.ca
tel: (613) 991-1231
fax: (613) 952-7151

Hypothesis of Diagnostic Remodeler (DR) Algorithm

Humans use failure-driven reasoning for successful device

diagnosis and repair. As humans reason about diagnosis

and repair they build primitive mental models of how a

device functions and fails. The hypothesis for the Diag-

nostic Remodeler algorithm is that knowledge of failure

and repair embodied in most well-structured diagnostic

knowledge-based systems can be used to derive black box

component models of a device. DR extracts component

models that represent structure, behaviour and function

from fault and background knowledge.

A great deal of effort is expended hand-coding complex

knowledge bases for diagnostic fault-based reasoning (see

DX-93 paper by [Abu-Hakima 93] and [Abu-Hakima 94a;

94b] for more background). The artifacts these diagnostic

systems are developed for are often expensive machines

which have been designed and continuously modified so

that no existing accurate schematic or design of their

behaviour or resultant function remains. The J85-CAN-15

is a jet engine which is the first application of the Jet

Engine Troubleshooting Assistant, JETA [Halasz et al.

92]. JETA is a typical well-structured fault-based reason-

ing system similar to MDX [Chandrasekaran et al. 79].

The J85-CAN-15 engine was designed in the 1950’s and

has easily had at least one modification a year since its

launch. As a result of modifications and stresses of daily

use (flying in the arctic and flying in desert heat) the jet

engine is a very different device than was originally

designed and sometimes displays inexplicable behaviour.

No existing design schematics can completely capture the

engines’s behaviour or completely predict its function. It is

also a very difficult device to diagnose. For these reasons a

tool such as JETA was developed. As is typical with FBR

systems, JETA does not diagnose novel faults. Learning

the device component model, its behaviour and functional-

ity using the FBR knowledge provides the technician with

a DR model that can be used as input to an off-the-shelf

model-based diagnostic tool.

DR Algorithm Approach

If we follow the de Kleer [de Kleer and Williams 87]

approach to MBR which represents a device and its func-

tion as a set of components with behaviour. A device can

be diagnosed by assuming a faulty component and enu-

merating the behavioural states that the fault propagates in

the remainder of the device [Davis 84; Hamscher and

Struss 90; Struss 89]. This is compared to the behaviour

that a technician is observing in attempting to isolate a

problem. MBR for diagnosis can detect novel faults since

the behaviour of the device is the basis of its knowledge

representation and reasoning. Fault-based reasoning uses

the faults in the functioning of a device rather than its

actual behaviour, hence FBR cannot detect novel faults.

However, MBR can lead to a combinatorial explosion in

producing a diagnosis for complex systems (for example,

an aircraft engine) and it does not lend itself to causal

explanation [Struss and Dressler 89].

I have implemented the DR algorithm (introduced in

[Abu-Hakima 93]) intended to address the automated gen-

eration of a model of a device by the re-use of its fault

knowledge. This implies the automated generation of

MBR knowledge from FBR knowledge.

Method

DR is an algorithm that takes as input the fault knowledge

of a device. It is also necessary to take as input some back-

ground knowledge related to the device to attempt to learn

its full component behaviour and function. DR initially

extracts from the fault knowledge base all references to

device components related to a subsystem of interest.

Given these components the algorithm backtracks through

a diagnostic hierarchy of nodes to generate hypotheses for

component connectivity. To establish component connec-

tivity, DR examines symptomatic or parametric knowl-

edge that activates the diagnostic nodes. As confirmed by

DR’s successful results, as one moves upward in a typical

well-structured troubleshooting hierarchy, the knowledge

at the higher level nodes is more general and describes

higher level problems with device operation. As one

moves down in the hierarchy and is closer to the terminal

nodes that represent device components, the knowledge is

more symptomatic in nature. Symptomatic knowledge is

knowledge of specific component parameter failures

which can be re-used to generate hypotheses about param-

eters or behaviours attached to specific components.

DR Algorithm Steps

Two phases clearly divide the operation of the DR algo-

rithm. In the first phase, an existing well-structured knowl-

edge base (e.g. one that diagnoses a complex electro-

mechanical system) is used as input to DR. Two types of

background knowledge, device dependent and device

independent knowledge are used as second phase inputs to

DR. Device independent background knowledge is in a

component library and is general in nature. It includes

general knowledge that a pump delivers some liquid from

a source to a sink and needs a control signal (such as pres-

sure for example) to increase or decrease the flow of liq-

uid. The pump library component model also includes

some knowledge about feedback control in moderating the

flow of a liquid to a source based on the level of the liquid

at the sink. The device dependent knowledge includes the

specific details on the input and output (I/O) parameters

for different device control modes.

The objective of the DR algorithm is to discover and refine

a component behavioural model with explicit function. In

the most general sense, the algorithm must identify the

components of the device, generate links between those

components, and generate hypotheses for the behaviour

and function of the components.

To achieve this the DR algorithm must perform five steps:

1. identify the terminal nodes in the diagnostic hierarchy
-these represent component nodes that have no child

or sibling refinements
2. identify the component nodes in diagnostic hierarchy

related to the subsystem to be modelled (if required)
-perform a pattern match with known name or its deriv-

atives (possibly acronyms) that match subsystem
3. identify the parents and siblings of the nodes

-backtrack from terminal to parent nodes and tag
-tag shared parents of a node
-tag siblings of a parent

4. extract relations (behaviours) between sibling nodes
-cluster nodes related by parental nodes
-movement from the terminal nodes to parent node

represents symptomatic information (parameters)
5. match device model against background knowledge

and output gaps for verification to the user
-map out the identified components of the subsystem
-relate the components through shared parameters
-match derived component model with device depen-

dent knowledge to derive parameter I/O behaviours
-match derived component model with library compo-

nent model to extract function and uncover gaps

DR Re-Use of Fault-Based Knowledge

To achieve the knowledge-rich modelling proposed as the

output for DR, one requires the use of a well-structured

and explicit knowledge representation that can adequately

represent diagnostic causality. This is achieved by extract-

ing a model of the connections between the components in

the subsystem to be modelled. These connections are fur-

ther used to extract the variables (for example engine

speed, fuel flow, etc.) that typify the behaviour between

components.

In typical troubleshooting systems, frames are used since

they offer a great deal of flexibility in constructing and

reasoning about knowledge. DR uses four of the frame

slots in a typical troubleshooting system to determine

component connections. The slots used are the node name,

the node type, the child node of, and the child node rank-

ing. Replace node types are the terminal nodes first identi-

fied for a specific subsystem. The subsystem is identified

through the node name itself. The child node of is used to

determine the parent of a terminal (component) node. The

child node ranking is used to determine the siblings of a

terminal node. The parent node as mentioned earlier repre-

sents symptomatic or parametric knowledge between sib-

ling nodes.

DR Background Knowledge

Two types of background knowledge, device dependent

and independent, are used by the second phase of the DR

algorithm to tag the direction and the positive or negative

I/O behaviours between components.

Device dependent background knowledge is used to iden-

tify the type of a component (for example a pump, a filter,

a variable control, a vessel, a source, etc.) and any specif-

ics about inputs or outputs related to operational modes.

The traditional approach used in modelling feedback in

engineering, requires that both the modes of component

operation, and their respective I/O parameters that act as

behavioural control variables in a particular mode be

explicitly identified.

Thus, for the main fuel control (MFC) component of JETA

device dependent knowledge identifies that the MFC is a

control with 7 fuel scheduling modes that vary from accel-

eration to deceleration with a variety of speeds in between.

For each mode there are key parameters that represent

component behaviours. They include engine speed (N),

pilot demanded speed (Nd), throttle position or power

lever angle (PLA), compressor inlet temperature (T2), fuel

flow (Wf), compressor discharge pressure (P3) and inlet

guide vanes (IGV) which indicate air bleed valve posi-

tions. In the excerpt of device dependent background

knowledge below each of the MFC modes has a specific

set of behaviours represented as lists of input-output pairs.

Below are both the general, and the MFC-specific expres-

sions for device dependent background knowledge.

% glossary(KB,Component, ProperName,[Component-
Type,for,[Modes]], [InputOutputPairs]).

% main fuel control terms from JETA's Glossary Frames
and J85 Control
% Parameters/Modes
glossary('JETA','MFC',main_fuel_control,
 [control,for,
 [steady_speed_control,speed_cutback_control,
 acceleration_fuel_limit_control,

 deceleration_fuel_limit_control,
 variable_geometry_scheduling,
 proportional_speed_control,fru_fuel_selection]],
 [[['N','PLA+'],['Nd+','WF/P3+']], [['N','T2_limit'],['Nd-']],

 [['N+','T2'],['WF/P3+']], [['N-'],['WF/P3-','WF_min']],
 [['N','T2'],['IGV','bleed valve positions']],
 [['N','PLA'],['WF/P3']],
 [['WF/P3','P3'],['WF']]]).

Device Independent Background Knowledge is the sec-

ond type of background knowledge and forms a re-usable

component library. For each of the components the func-

tion of the component is first represented. Function here

implies, the purpose of the device component as defined

by Sticklen and his colleagues [Sticklen et al. 88]. In addi-

tion, the inputs and the outputs of the component are made

explicit. In the case of a regulated component that has a

control signal, a regulation parameter is identified. Finally

the behaviour function that maps the inputs and outputs of

the component is described. In the case of a proportional

relation (increasing input and increasing output, or

decreasing input and decreasing output) a behaviour is

identified. More complex components which have com-

plex behavioural relations dependent on specific modes

are also tagged. In the case of the main fuel control with its

7 modes of operation that reflect it as a component that has

feedback, a piecewise linear behaviour is extracted. This

behaviour is a set of behaviours that represent each mode

of MFC operation as either proportional or inverse propor-

tional. For a pump, the device independent component

model is:

component(pump,Pump_name,Fluid,Control,_,F,I,O,R,B):-
 F = function(Pump_name, delivers(Fluid)),
 I = input(Pump_name,fluid(Fluid)),
 O = output(Pump_name,fluid(Fluid)),
 R = regulator(Pump_name,Control),
 behaviour_proportional(Fluid,Control,Behaviour),
 B = behaviour(for(Pump_name),

behaviour_is_proportional(Fluid,Control,Behaviour)).

For a filter (for example a fuel filter or a coffee filter), the

device independent component model is:

component(filter,Filter_name,Fluid,Control,_,F,I,O,R,B):-
 F = function(Filter_name, filters(Fluid)),
 I = input(Filter_name,fluid(Fluid)),
 O = output(Filter_name,fluid(Fluid)),
 R = regulator(Filter_name,none),
 behaviour_proportional(Fluid,Control,Behaviour),
 B = behaviour(for(Filter_name),

behaviour_is_proportional(Fluid,Control,Behaviour)).

A control component with variable number of inputs, out-

puts and control variables has piecewise-linear behaviour:

component(control,Name,Ins,Outs,Modes,F,I,O,R,B):-
 Outputs = [Main_Output|Outs],
 F = function(Control_name,controls(Main_Output)),
 I = input(Control_name,control(Inputs)),
 O = output(Control_name,control(Outputs)),
 R = regulator(Control_name,regulation_control(Inputs)),
 typify(Inputs,Ouputs,Modes,

Control_var_list,Behaviours_list),
 B = behaviour(Control_name,

behaviour_is_piecewise_linear(Control_var_list,
Behaviours_list)).

DR Aircraft Engine Results &Device Model

An analysis of the JETA fault knowledge shows layers of

knowledge represented as a directed network which can be

reduced to leaves of diagnostic trees. The topmost layer is

an entry point to jet engine faults and subsequent layers

organize the faults into various branches. The second layer

is phases of engine operation and its branches lead to vari-

ous symptomatic nodes labelled as snags. These snags in

turn are refinable down to repair and replacement nodes

which represent the terminal nodes of the diagnostic hier-

archy1. If one examines the knowledge encoded in these

terminal nodes more closely one discovers that they repre-

sent faults directly on physical engine components. These

physical component fault nodes can be grouped into those

affecting one of thirteen subsystems by their nomencla-

ture. One can follow the five steps of the DR algorithm to

discover the behavioural and functional component model

for the main fuel system of the jet engine.

Step 1: One can identify 9 replace nodes through the JETA

node frame slot ‘node-type’.

Step 2: If one takes a specific subsystem, the MFS (Main

Fuel System), one can extract the names of 3 fuel system

replacement nodes by pattern matching with the node

nomenclature *N-MFS-XXX (this is an internal represen-

tation that was used by the knowledge engineer to distin-

guish between nodes):

1. main fuel control (MFC)
2. overspeed governor for MFC (OSG)
3. main fuel pump supplying MFC (MFP)

Step 3:For each of the 3replacement nodes parents con-

necting sibling nodes can be extracted.

• MFC and MFP nodes share parent fuel flow loss
• OSG shares with MFC engine speed hang-up parent

• MFC shares fuel flow loss parent with fuel nozzles, FN

• pressurizing and drain valve (PDV) shares low fuel
flow parent with FN

Step 4:A causal topological network can be the basis for

hypothesized component-behaviour relations. Sibling

nodes are clustered based on shared parent links. Example

DR output relations that form part of the network include:

[main_fuel_nozzles,
is_a([nozzle,for,[fuel_flow_control]]),
and_is_connected_to(main_fuel_control),
with_connectivity_parameter(

[measured_rpm_engine_speed,
single_spool_engine_speed,weight_of_fuel_flow])],

[[main_fuel_control,
is_a([control,for,

[steady_speed_control,speed_cutback_control,
acceleration_fuel_limit_control,
deceleration_fuel_limit_control,
variable_geometry_scheduling,
proportional_speed_control,
fru_fuel_selection]]),

and_is_connected_to(main_fuel_pump),
with_connectivity_parameter([weight_of_fuel_flow])],

[main_fuel_nozzles,
is_a([nozzle,for,[fuel_flow_control]]),
and_is_connected_to(pressurizing_and_drain_valve),
with_connectivity_parameter(fuel_pump_inlet_pressure[])],

1. The diagnostic hierarchy is sometimes referred to as a net-

work since it includes relations that are not directly inherited that

allow the JETA reasoner to jump around between nodes thus

forming more of a network than a hierarchy.

Step 5: Step 4 output is matched against device indepen-

dent/dependent background knowledge and gaps identi-

fied. In the case of inconsistencies, in phase 1 of the DR

algorithm parameters which are not explicitly related to

components through background knowledge may point to

inaccuracies that should be corrected. The complete com-

ponent model for the main fuel nozzles (FN) with the

identified gaps is:

[function(main_fuel_nozzles,flow_control(WF+)),
input(main_fuel_nozzles,flow(WF+)),
output(main_fuel_nozzles,flow(WF+)),
regulator(main_fuel_nozzles,regulation_control(N+)),
behaviour(main_fuel_nozzles,

behaviour_is_proportional(WF+,N+,
[increase_in(N+),increases(WF+),
decrease_in(N+),decreases(WF+)]))],

[[main_fuel_nozzles,
[[gap_for_mode,fuel_flow_control,

extracted,EGT,input,[N+,WF],output,[WF+]],
[gap_for_mode,fuel_flow_control,

extracted,N,input,[N+,WF],output,[WF+]],[]]]],

Note that EGT is exhaust gas temperature and is an incon-
sistent link. The parameters engine speed (N) and fuel flow
(Wf) are expected and the sign on N is missing as
expected.

The partial view of the extracted MFS subsystem is shown

in Figure 1.

Figure 3: Main Fuel System model extracted by DR

Note that the main fuel pump and main fuel control filters

extracted by DR were omitted to simplify the diagram.

Thus, DR succeeds in extracting the 7 components (5

shown excluding the 2 filters and the fuel tank) and their

respective connections in Phase 1. In the second phase the

device dependent and device independent background

knowledge is used to derive the direction and relations

Overspeed

Governor

(OSG)

Pressurizing

& Drain Valve

(PDV)

Main

Fuel

Nozzles

Fuel

Tank

Main

Fuel

Pump

Main

Fuel

Control

(MFC) (MFP)

(FN)

Engine speed+

Engine speed

Fuel

Flow+
Fuel

Flow

Fuel+

Flow

Fuel

Flow+

Engine speed+

Fuel

Flow+

Fuel Pump Inlet Pressure (Pa)

Fuel

Flow+

Engine speed

Power Lever Angle (PLA)+

Compressor Inlet Temperature (T2)

between the extracted parameters. Any gaps between

JETA and the background knowledge are highlighted so

that the fault-based knowledge can be made consistent or

modified.

DR Coffee Maker Results & Device Model

To test the generality of the DR algorithm and relax some

of its assumptions, I generated a 30-node knowledge base

for the diagnosis of a coffee maker (a very different device

than an aircraft engine). The coffee maker device had a

variety of terminal nodes (not only replace types). DR

selected all terminal nodes and assumed that they repre-

sented device components. Then, as before, parental nodes

were used to identify sibling nodes and connections

between them. Only 3 of the node slots of the frames of

fault-based knowledge were used, the node name, the

child node of and the child node ranking slots. From these

slots the 5 steps (with step 1 relaxed) of the DR algorithm

were used to generate the model in Figure 2.

Figure 4: Coffee Maker device model as extracted by DR

A regulator, a switch, a heater, a holder and a filter were

the device independent component models added to the

library for background knowledge. In addition, 10 expres-

sions that represented the device dependent background

knowledge giving the type of component and the input/

output behaviour parameters were used by DR. Thus, it

was possible to successfully generate a component behav-

iour model for a full device (rather than only a subsystem)

with explicit function and behaviour descriptions for each

of the coffee maker components. To provide the reader

with some detail, below are the DR generated component

models for 2 of the 10 components, specifically for the

coffee drip and the water temperature heating control.

Plug

Switch

Water

Heating

Element

Coffee

Heating

Element

Coffee

Filter

Coffee

Grounds

Holder

Water

Resevoir
Coffee

Drip

Coffee

Pot

power

power

heat+

water+

grounds

water+

coffee+

coffee+

heat+

power

Water

Temperature

Control

heat+

power

[function(coffee drip,regulates(coffee+)),
input(coffee drip,coffee+),output(coffee drip,coffee+),
regulator(coffee drip,coffee+),
 behaviour(for(coffee drip),

behaviour_is_proportional(
[increase_in(coffee+),increases(coffee+),
decrease_in(coffee+),decreases(coffee+)])),

[function(water temperature heat control,regulates(heat+)),
input(water temperature heat control,heat+),
output(water temperature heat control,water+),
regulator(water temperature heat control,heat+),
behaviour(for(water temperature heat control),
behaviour_is_proportional(

[increase_in(heat+),increases(water+),
decrease_in(heat+),decreases(water+)])),...

Discussion

There are several issues that I intended to answer in the

implementation of the DR algorithm. The first is what is

the exact form of the automatically acquired model when

some or no background knowledge is used. If no back-

ground knowledge is used, is the model much more than a

causal rather than a component behaviour model with

explicit representation of function? The answer here is that

a minimum amount of device dependent knowledge is

used to map the fault-based syntax to more meaningful

text as shown in the sample output for modelling JETA’s

main fuel system in DR step 4. If no device independent

background knowledge (component library knowledge) is

used, then the extraction of gaps between the fault-based

encoded knowledge and a general one is not possible.

Using no background knowledge, it is possible to extract a

component-to-component model with explicit parametric

links representing connections in FBR knowledge.

Extracting the directions and relationships on these behav-

ioural paths requires generalized device independent back-

ground knowledge.

The DR algorithm has been implemented as a general

algorithm useful in generating models for devices through

the re-use of fault knowledge. Its FBR knowledge used as

input makes it specific to generating a model for a particu-

lar device. Its device independent background knowledge

is re-usable across domains as different as a jet engine

MFS is from a coffee maker. I have demonstrated this

through the use of the DR algorithm for modelling two

very different devices, a subsystem of an aircraft engine

and a full coffee maker device. The DR algorithm requires

a highly structured frame-based FBR knowledge base.

One key question is what criteria will allow it to extract a

component model from rule versus frame-based knowl-

edge?

Conclusions

This paper addresses the problem of automated model

acquisition for diagnosis. The DR algorithm automates the

generation of component models with an explicit repre-

sentation of behaviour and function. The DR algorithm re-

uses FBR knowledge with two types of background

knowledge to generate component models of a device. The

ratio of background to fault knowledge (measured in lines

of code) used by DR for the jet engine MFS was 14%

(~170 to 1200) [Abu-Hakima 94a]. This measure helps

illustrate that for a small additional investment in back-

ground knowledge, black box models for complex devices

can be generated by DR through fault knowledge re-use.

References

Abu-Hakima, S. [1994a], Automated model acquisition through
fault knowledge re-use, DR, the Diagnostic Remodeler Algo-
rithm, PhD thesis, Carleton University, Ottawa, Canada (1994).

Abu-Hakima, S. [1994b], Diagnostic techniques in knowledge-
based systems: a review of approaches, applications and issues.
100 p. NRC ERA (1994).

Abu-Hakima, S. [1993], Automatic Knowledge Acquisition in
Diagnosis. Proceedings of DX-93, Fourth International Work-
shop on Principles of Diagnosis. Aberystwyth, Wales. 236-250.
(1993), NRC #35111.

Althoff, K-D., Maurer, F., and Rehbold, R. [1990],“Multiple
knowledge acquisition strategies in MOLTKE.” Current trends
in knowledge acquisition, Published by IOS, Amsterdam, Neth-
erlands. pp. 21-40, (1990).

Boose, J.H. [1991], “Knowledge acquisition tools, methods and
mediating representations”, Knowledge Acquisition for
Knowledge-Based Systems, Edited by H. Motoda, R. Mizoguchi,
J. Boose and B. Gaines. Published by IOS Press, the Netherlands.
pp. 25-62, (1991).

Chandrasekaran, B., Gomez, F., Mittal, S. and Smith, J.W.
[1979], “An approach to medical diagnosis based on conceptual
structures”. Proceedings of the Joint Conference on Artificial
Intelligence, 134-142.(1979).

Davis, R. [1984], “Diagnostic reasoning based on structure and
behaviour”, Artificial Intelligence, Vol. 24, pp. 347-410 (1984).

de Kleer, J., Williams, B.C. [1987], “Diagnosing Multiple
Faults”, Artificial Intelligence, vol. 32, (1987).

Halasz, M., Davidson, P., Abu-Hakima, S., and Phan, S.
[1992], JETA: A Knowledge-based Approach to Aircraft Gas
Turbine Engine Maintenance. Journal of Applied Intelligence, 2,
pp. 25-46, Kluwer Academic Publishers, NRC 31832, (1992).

Hamscher, W. and Struss, P. [1990], “Model-Based Diagno-
sis”, AAAI-90 Tutorial Notes, Received at the eighth national
conference of artificial intelligence, Boston, Massachusetts. July
29, 1990. pp. 1-179, (1990).

Malin, J.T., and Liefker, D.B. [1991], “Representing functions/
procedures and processes/structures for analysis of effects of fail-
ures on functions and operations”, Proceedings of 1991 NASA
Goddard Conference on Space Applications of Artificial Intelli-
gence, Greenbelt, Maryland, pp. 141-151, (May 13-15 1991).

Sticklen, J., Chandrasekaran, B., and Bond, W.E. [1988],
“Distributed causal reasoning for knowledge acquisition: a func-
tional approach to device understanding”, 3rd AAAI sponsored
Knowledge Acquisition Workshop for Knowledge-Based Sys-
tems, Banff, Canada, pp. 34-1 to 34-18, (1988).

Struss, P. [1989], “New Techniques in Model-based Diagnosis”,
Proceedings of Knowledge-based Computer Systems, Bombay,
India, (11-13 December 1989).

Struss, P., Dressler, O. [1989], “Physical Negation - Integrating

Fault Models into the General Diagnostic Engine”, Proceedings

of the 11th International Joint Conference on Artificial Intelli-

gence (IJCAI-89), Detroit, MI, (20-25 August 1989)

