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in Stretch Blow Molding

B. Lanctot, F. Thibault' and R. DiRaddo
Industrial Materials Institute, NRC, Boucherville, Quebec, Canada

Abstract

Stretch blow melding is the process of choice for the production of PET containers, for the food and
beverage industry as well as the pharmaceutical sector. The stretch blow molding process involves three
stages, the reheat stage where previously injection molded preforms are heated to the desired forming
temperature distribution, followed by the forming and the solidification stages. The process is a high
volume process with costly tooling for both the preform and the container.

The design of the tooling, via virtual technologies is preferable so as 10 minimize costly tooling reworks.
Industry has readily accepted the use of finite element technologies in the prediction of the stretch blow
molding process. This acceptance is now generating large amounts of information that are invaluable for
future designs. The challenge is now to structure and make use of this information in as efficient a way as
possible.

A design database structure has been set up for information representation from past designs, including a
design, preform and bottle databases. A process database including results of finite element simulations
and the corresponding experimental validations are also integrated into the system. Mathematical
methodology has been established to represent preform design. The design database and a series of user-
defined heuristic design rules for stretch blow molded containers are used to extract unknown input needed
in the design methodology. The heuristic knowledge represents the different product characteristics based
on mechanical requirements. They wili be converted into fuzzy rules for the data extraction. Those rules
and the data extraction will evolve and adapt themselves 1aking into account new design database, new
rules and modified rules. The model inputs are the bottle fill level capacity, bottle diameter, bottle length
and bottle transition length, whereas the outputs of the model are the preform shape and weight.

Introduction

PolyEthylene Terephtalate (PET) is a low cost semi-crystalline polymer. It is easy to process due to its
strain hardening properties allowing a more uniform deformation. PET is a long molecular polymer chain
and the molecules tend to align in the stretched direction, generating molecular orientation that produced
the strain hardening effect. This will create anisotropy and non-uniform properties in the final product.
Blow ratio is used to describe the stretched level. The axial blow ratio represents the stretch in the length
direction, the hoop blow ratio represents the stretch in the circumferential direction and the blow up ratio
(BUR) gives an indication of the overall deformation [1] (see figure 1).

The polymer molecular orientation generates residual stresses in the container. Releasing those stresses
when filling the bottle with a hot fill product the bottle might deform or rupture. Letting the polymer
relaxed while processing the bottle allows the polymer to crystallize reducing residual stresses and
molecular orientation [2]. Since PET is a porous material, crystallinity and polymer additive can helps to
reduce the oxygen and CO, diffusion through the polymer.

Depending of the bottle content, the manufacturing will aim different types of bottile properties.
Carbonated soft drink (CSD) bottles have a high molecular orientation to withstand the internal pressure.
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Bottles containing pasteurize product filled at 85°C (hot fill) have a high crystallinity level to resist the
filling thermal shock. Bottles containing food have a high crystallinity level to reduce oxygen diffusion.
Water bottles have a high molecular orientation 10 reduce the final weight, since the polymer represents
hatf of the production cost [1].
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Fig. 1. Blow ratio.

Stretch blow molding design environment

The Industrial Materials Institute (IMI) of the National Research Council of Canada (NRC) with the
participation of AMCOR Pet Packaging developed a stretch blow molding design environment software.
The aim of this software is to reduce product development time and improve product performance. The
design environment software is based on simulation technology (BlowSim software) previously developed
at IML.

BlowSim is a finite element modeling (FEM) solver that simulates the entire stretch blow molding process,
from the reheat stage to the solidification stage. BlowSim calculates the temperature, thickness, stress,
molecular orientation and crystallinity distribution throughout the entire stretch blow molding process.
The molecular orientation and crystallinity distribution are used to evaluate the mechanical properties
(Young modulus distribution) of the final product. Knowing the mechanical properties and assuming a
Hook’s law for the material model, bottle mechanical performance can be determined using BlowSim.

The design environment will help the designer to quickly simulate the stretch blow molding process.
Mechanical performances are predicted using the thickness and Young modulus distributions obtained
from the process simulation. Three types of load can be simulated: top load, vacuum and pressure. The
stress distribution of all the predicted loads is combined and a maximum stress distribution is generated.
One optimization module manipulates the final bottle thickness distribution to target user-defined
mechanical requirement (yicld stress}. A second optimization module manipulates the processing
conditions to target the final bottle thickness distribution, Finally, a third optimization module finds the
parameterized preform geometry to target a final bottle thickness distribution.

Initial preform design

The preform geometry and processing conditions are usually unknown when designing a new botile.
Initial designs have a significant influence on the development time and the final design, so it is important
to have a good initial design. Using an existing preform may decrease development and tooling cost while
designing a new preform might reduce the weight and improve the final bottle performance. Using virtual
technologies allow to rapidly evaluate both options. The design environment includes a module that



rapidly proposes initial preform geometry, also called Preform Design Advisor (PFDA). The PDA is the
subject of this paper.

Preform Design

The complete preform design mathematical methodology will not be discussed herein since this
information is confidential and belongs the AMCOR Pet Packaging Company. A summary of the preform
design rules used in this work can be simplified as:
1. Select the design weight and blow ratio (hoop and axial) based on the bottle geometry, mechanical
and client requirement.
2. Calculate the preform length and diameter using the bottle geometry and blow ratios.
3. Set the preform thickness by distributing the weight along the preform.

Preform Design Problematic

Some design input parameters (weight, blow ratios, etc) are usually unknown. They are usually chosen
based on designer and company knowledge and experience. This soft data is often not or partly considered
because the result depends on how the designer uses the data. Also, it is usually believed that the soft data
is hard to use and hard to extract information from it.

The designer and company experience may be encapsulated in past design database. Using the designer
knowledge of the complex relationship between different parameters, a search and extrapolation from the
design database can provide the needed data.

Preform Design Criteria
The designer can let the PDA extract all the needed data from the database or can fix some inputs.
Designer can also impose criteria on inputs or on the search and extrapolation. If the designer fixes inputs,

they will not be extracted from the database. The designer can restrict the range of some inputs as well.
The data search and extrapolation can be restricted to a specified product type and specified finish.

Database

Past designs are structured in a design database as illustrated in Figure 2. This structure is set up to avoid
information duplication and allow maximum efficiency.
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Fig. 2. Past design database structure.

The design database associates the preform and bottle geometries and includes the processing information.
The preform, botile and finish databases contain the parameterized geometries. allowing to represent the
geometry in a design perspective and to easily modified them. The process database includes an indication



of the design fitness, represented by the design reliability level. This parameter lets the user defined the
quality of a design, usually based on the satisfaction of the mechanical requirement and the weight. The
simulation and experimental databases are very helpful to determine this parameter.

Design database are regrouped in design lists. The design lists altow regrouping designs that have similar
design philosophy. Those philosophies can be based on the bottle product type, mechanical loads or
requirements, processing conditions, bottle geometry characteristics, ete. Judiciously grouping designs
allow the list to inherit the design properties that satisfy a mechanical performance and client requirements.

Data extraction

In a company, numerous past designs are usually available. However, a large number may be out of date,
by a design perspective, and a large varicty of client requirements can be found. For a specified design
type, the number of relevant past designs is often reduced between 5 and 50.

Extrapolation methodologies could be used to extract the needed information from the database. However
traditional extrapolation methodologies cannot take into account complex relationship between parameters.
Some soft computing techniques can be used to represent or get the complex relationship from many inputs
and outputs parameters [3}. The combination of soft computing techniques and databases may provide the
needed data.

Using the design list of past designs and the knowledge of the complex parameters relationship, a fuzzy
system can be built. The fuzzy rules represent the designer knowledge of the parameters relationship. The
fuzzy inputs are the bottle geometry parameters. The fuzzy outputs are the unknown design input
parameters.

More information could by extracted from the fuzzy system (fuzzy output). Additional design features
could also be extracted from the databases, like the preform transition radii and preform draft angles (see
figure 3).
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Fig. 3. Preform nomenclature.

Preform transition radii help having a gradual thickness transition in the preform to avoid demarcation on
the final bottle. The preform draft angles help demolding the preform when ¢jected. Those additional
features can be added after the initial design so they do not change the basic preform design rather than
improving it. Consequently those features can be based on the bottle geometry and the preform basic
geometry.

To take into account the designer knowledge of the parameters relationship, the PDA allows the designer
to define the extrapolation rules. The rules are weighted to allow the designer to balance their influence.
The PDA includes a default extrapolation rule, if an unknown design input parameter is removed from all
the rules, the module will reincorporate this parameter in the defauli rule or add the default rule. Those
extrapolation rules are converted into fuzzy rules hefore the data extraction is made. The fuzzy rules are
weighted taking into account the extrapolation rules weight and the database design refiability level.



The fuzzy inputs are defined by the extrapolation rules. The fuzzy inputs can be bottie and preform
geometrical parameters, bortle fill fevel capacity, bottle diameter, bottle length, etc. The fuzzy inputs can
also be ratio of those parameters, botrle diameter divided by bottle length multiply by bortle fill level
capacitv. The fuzzy input membership function may be wildly spread or regrouped. To ensure that the
parameter domain is completely defined, Gauss membership functions are used for the fuzzy inputs.

The user’s define extrapolation rules are defined as the following:
The Design weight and axial blow ratio depend on the botile fill level capacity with a weight of 100.

The axial blow ratio depends on the botrle fill level capacity divided by the bottle length with a weight of
65.

Domain Balance

The extrapolation rule, the criteria and the design list may change for every design; the fuzzy system must
be set no matter the user inputs.

Using uniform standard deviation for the fuzzy input membership function may cause problem. First some
part of the domain may not be defined, where the sum of the membership functions is less then 0.05.

Secondly, if all the membership functions are regrouped, the domain may shift toward the regrouped
values.

To set the standard deviation of the fuzzy input membership function, three conditions must be satisfied:
1. At every inner membership function average value, the influence of all the other membership
function must batance themselves:
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Fig. 4. First condition to set the fuzzy input membership standard deviation.

2. At any point between the two extreme membership function average value, the sum of all the
membership functions evaluated at this point must be greater then 0.5:
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Fig. 5. Second condition to set the fuzzy input membership standard deviation.




3. At any point smaller then the second membership function average value or greater then the
second last membership function average value, the sum of all the membership function evaluated
at this point must be smaller then 1.0:

Vx|x<p,vx>pu .,y MF(x)<1.0 3.
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Fig. 6. Third condition to set the fuzzy input membership standard deviation.

Where n is the number of membership function, g is the membership function / average value and

Aﬁ:(x) is the membership function / evaluated at x.

The third condition ensures that extrapolation outside the two extreme membership function average value
is mostly made using the extreme membership function. If the third condition is not used, the extreme
membership function standard deviations would tend to be minimized since they are not taking into
account in the first condition.

To guarantee the repeatability of the design, a global optimum of the standard deviation values distribution
must be found. Genetic algorithm (GA) [4] is used to find the distribution of the input membership
function standard deviation. Since the problem to solve is difficult and that GA does not guaranty to find
the global optimum, special features are included in the GA: generation overlap, macro GA, forced macro
GA, niching, particutar convergence criteria and civilization overlap.

The generation overlap lets a given number of the best chromosomes from one generation to be transferred
directly to the next generation. [If generation overlap is not used the algorithm is no able to solve the
problem.

Macro GA is performed when the convergence criteria are not reached and the population distribution
congregated. The Macro GA keeps the overlap population and randomly recreates the rest of the
population. This is done to get out of local optimum.

If the convergence criteria are not reached for a consecutive number of generations after a macro GA was
done, forced micro GA is made which randomly recreates the population keeping the overlap population.

Niching also help to avoid local optimum by averaging the fitness value with the level of scattering.

Three convergence criteria are used:
e the best chromosome does not change for a consecutive number of generation;
e the overlap population average fitness value decreases less then a given percentage for a
consecutive number of generation;
» the overlap population fitness standard deviation decreases less then a given percentage for a
consecutive number of generation.

The GA objective function is formulated so the global optimum fitness value is known. If the giobal
optimum is not reached after the first GA, a second GA is performed using a number of the best
chromosomes from the previous GA. This is called the civilization overlap and the number of
chromosomes transfer to the next civilization is usually less then half then in the generation overlap.



A global optimum is usually found within three civilizations if the maximal fitness value exists. Figure 7
shows an example where the maximal fitness value does not exist. 1f the global optimum is not found, the
optimum distribution obtain will be used and a warning message will inform the designer.

Fig. 7. Representation of a bad fuzzy input distribution.

Test case

3 CSD bottles with fill level capacity of 355 m/, 600 mi and 1.5 { were designed using the preform design
advisor (PDA) and past CSD designs. To understand the design list influence, past CSD designs are
regrouped in 3 categories: sparkling water bottles, silhouette botiles and light CSD bottles.

e The sparkling water bottles include designs from 500 mfto 1.5 /.

¢ The silhouette bottles are thicker bottles so they do not deform with the internal pressure, they

include designs from 475 m{ to 750 mi.

e The light CSD bottles represent the rest of CSD bottles and include designs from 250 mito 3 /.
Using the previous groups, four different design lists are used in the PDA:

1. all the CSD designs (sparkling water bottles, silhouette bottles and light CSD bottles);

2. sithouette bottles;

3. light CSD bottles;

4. sithouette bottles and light CSD bottles.

No criteria were used. So all the unknown design input parameters were extracted from the design hist. To
observe the repeatability of the design methodology, each design was performed 10 times. Tables 1 to 3
resume the results for the 3 boitles studied. The results are compared with the design obtain using the
completed CSD design list (all).

Table 1: Proposed preform geometry for the 355 m/ bottle.

Weight Length Body Thickness
(g (mm) (mm)
average Hw My Mr
All istd 0.1 0.3 0.06
min Hw - 0.1 y -0.3 pr - 0.1
max pHy + 0.1 gy, + 0.6 py +0.05
average pw+3.4 pH-6.0 py+1.9
. std 0.1 0.49 0.14
Silhouette -
min Uwt+ 3.4 u, - 6.20 pr+ 1.6
max Pw+ 3.5 pe - 5.1 pr+2.0
average Hw + 1.7 pu +12.0 pr-0.4
Light CSD stc‘i 0.05 0.08 0.02
min pwt 1.6 p 119 ur-0.4
max Uy + 1.7 py +12.1 ur - 0.4
average pw + 0.9 pL-1.3 pr+0.2
Silhouette + std 0.4 0.16 0.17
Light CSD  pmin Hw + 0.6 p - 1.5 py +0.02
max Hw+ 1.6 p- 1.1 ur+0.4




Table 2: Proposed preform geometry for the 600 ! botile

Weight Length Body Thickness
(g) {mm) (mm}
All Hw 1y ur
Silhouette uw + 0.8 u +0.6 pr+0.2
Light CSD Lwt+3.2 M+ 21 pr+ 0.1
Silhouette + Light CSD|  pyw + 1.1 ug+3.6 pr + 0.2
Table 3: Proposed preform geometry for the 1.5 7/ bottle
Weight Length Body Thickness
(8) (mm) (mm)
All Hw i My
Silhouette My - 12.0 u+0.5 pr- 1.7
Light CSD pw - 1.4 py +20.2 pur-0.4
Sithouette + Light CSD pw - 1.5 g +20.2 pr-0.4

Results and Discussion

The small standard deviation and value ranges indicate that the results are very repeatable. The domain
balance always converges to the same optimum solution. Moreover, 20 different distributions were tested
500 times and they always converge to the same solution within a numerical precision.

For the 355 mi and 600 m! botiles, lighter and shorter preforms were proposed when using the complete
design list (All). This was expected since this list is the only one taking into account the sparkling water
design. Longer preforms were proposed using the light CSD list, this was also expected because those
designs have a higher hoop blow ratio to maximize the circumferential strain hardening properties.

The proposed preforms for the 600 m/f bottle using the sithouette bottle list should be heavier than the one
proposed using the light CSD bottle list. This is not the case because the light CSD botile list is composed
of some bottles between 250 m/ to 450 m{ and the majority of bottles around 1 /, 2 /and 3 /. A heavier
preform is proposed because the extraction is pulled toward the design with higher fill levet capacity to
compensate the hole in the domain. This was expected since, in the GA, the maximum fitness value is
never reached when balancing the light CSD bottle list.

For the 1.5 / bottle, the proposed preforms using the silhouetie bottles list is 12 g lighter then ones
proposed using the other lists. The silhouette bottle list domain of validity is from 400 m{ to 800 m/ and
since the weight is directly extracted, the extraction gives the value at 800 m/. However the length is
caiculated using the axial blow ratio, the length is extrapolated at 1.5 / using the axial blow ratio at 800 m/.
The design philosophy from the weight is not respected although it is respected for the preform length,

This has showed that the proposed methodology for the data extraction is reproducible, It has also been
shown that the past design lists have a big influence on extracted data. If the lists are badly built, the
extracted data may be inaccurate and may not represent adequately the list design philosophies.

Remarks and Conclusion

In this work, a preform design methodology has been presented. The methodelogy is based on design
mathematical rules and extrapolation techniques using soft computing for unknown inputs. Using a list of
past designs having the same design philosophy and extrapolation rules, the unknown or missing data are
extracted and preform geometry is proposed. The past designs and extrapolation rules represent the
designer and company knowledge and experience. New designs may be added to the design list and
extrapolation rules can be modified and added to the module allowing it to evolve and adapts with time. It



is important to judiciously group the preform so the preform inherits the satisfaction on the client
requirements.
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