

# NRC Publications Archive Archives des publications du CNRC

Heat, air and moisture transfer terminology: parameters and concepts Radu, Adrian; Barreira, Eva; Saber, Hamed; Hens, Hugo; Vinha, Juha; Vasilache, Maricica; Bomberg, Mark; Koronthalyova, Olga; Matiasovsky, Peter; Becker, Rachel; Kalamees, Targo; Peixoto de Freitas, Vasco; Maref, Wahid

#### Publisher's version / Version de l'éditeur:

CIB Publication; no. 369, 2012-12-31

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=f26e4a1a-2068-4f51-a60e-bedf6fee8f01 https://publications-cnrc.canada.ca/fra/voir/objet/?id=f26e4a1a-2068-4f51-a60e-bedf6fee8f01

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <a href="https://nrc-publications.canada.ca/eng/copyright">https://nrc-publications.canada.ca/eng/copyright</a> READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

**Questions?** Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

**Vous avez des questions?** Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.





# Heat, Air and Moisture Transfer Terminology

bication 369

**Parameters and Concepts** 



International Council for Research and Innovation in Building and Construction



# HEAT, AIR AND MOISTURE TRANSFER TERMINOLOGY

**PARAMETERS AND CONCEPTS** 

CIB – W040 HEAT AND MOISTURE TRANSFER IN BUILDINGS

EDITED BY

VASCO PEIXOTO DE FREITAS EVA BARREIRA







#### CIB

# HEAT, AIR AND MOISTURE TRANSFER TERMINOLOGY – PARAMETERS AND CONCEPTS

#### 2012

#### COORDINATOR

Vasco Peixoto de Freitas Portugal

#### AUTHORS

| Adrian Radu              | Romania  |
|--------------------------|----------|
| Eva Barreira             | Portugal |
| Hamed Saber              | Canada   |
| Hugo Hens                | Belgium  |
| Juha Vinha               | Finland  |
| Maricica Vasilache       | Romania  |
| Mark Bomberg             | USA      |
| Olga Koronthalyova       | Slovakia |
| Peter Matiasovsky        | Slovakia |
| Rachel Becker            | Israel   |
| Targo Kalamees           | Estonia  |
| Vasco Peixoto de Freitas | Portugal |
| Wahid Maref              | Canada   |

#### ACKNOWLEDGEMENTS TO:

| Ana Guimarães | Portugal |
|---------------|----------|
| Dariusz Gawin | Poland   |
| João Delgado  | Portugal |
| Nuno Ramos    | Portugal |
| Shuichi Hokoi | Japan    |

#### CONTACT ADDRESS:

Vasco Peixoto de Freitas Building Physics Laboratory – LFC Porto University, Faculty of Engineering Rua Dr. Roberto Frias, 4200-465 Porto, Portugal Phone: +351 225 081 478 E-mail: lfc-scc@fe.up.pt Web: http://www.fe.up.pt/~lfc-scc

#### EDITION:

CIB – International Council for Research and Innovation in Building and Construction FEUP – Porto University, Faculty of Engineering LFC – Building Physics Laboratory

FINANCIAL SUPPORT (PRINT): FCT – Fundação para a Ciência e Tecnologia

COVER DESIGN: Ana Stingl

ISBN – print: 978-972-752-147-0 ISBN – e-book: 978-90-6363-070-6 LEGAL DEPOSIT: 352612/12

All rights reserved. No part of this publication may be reproduced, stored in retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording and/or otherwise, without prior written permission of Publishers.



**FEUP edições** Rua Dr. Roberto Frias, s/n 4200-465 PORTO (Portugal) t. (+351) 225 081 498 f. (+351) 225 081 893 http://feupedicoes.fe.up.pt



### SUMMARY

This publication compiles the heat, air and moisture transfer terminology existing in books, standards and other reference documents. A small introduction is provided in Chapter 1 to present the CIB Commission W040 – Heat and Moisture Transfer in Buildings and to summarise the Commission activities since its formation in 1969. Chapter 2 indicates the guidelines for the use of this document. In Chapter 3 both parameters and concepts are presented, their definition according to the literature and the symbol(s) and unit(s) that are commonly used to describe it. Finally, Chapter 4 lists all the reference documents that were taken into consideration to develop this document.



# CONTENT

| INTRODUCTION              | 3  |
|---------------------------|----|
| STRUCTURE OF THE DOCUMENT | 9  |
| PARAMETERS AND CONCEPTS   | 11 |
| REFERENCES                | 42 |



# **CHAPTER 1**

INTRODUCTION



#### THE CIB W040 - HEAT AND MOISTURE TRANSFER IN BUILDINGS

CIB is the acronym of INTERNATIONAL COUNCIL FOR RESEARCH AND INNOVATION IN BUILDING AND CONSTRUCTION. CIB was established in 1953 as an Association whose objectives were to stimulate and facilitate international cooperation and information exchange between governmental research institutes in the building and construction sector, with an emphasis on those institutes engaged in technical fields of research.

CIB has since developed into a worldwide network of over 5000 experts from about 500 member organizations with a research, university, industry or government background, who collectively are active in all aspects of research and innovation for building and construction. A CIB Commission is a worldwide network of experts in a defined scientific area who meet regularly and exchange information on a voluntary basis. The scope, objectives and work programme of each Commission are defined by its members and officially approved by the CIB Programme Committee. All the Commissions have at least one Coordinator, who is appointed by its members and by the CIB Programme Committee.

The Commission W040 – Heat and Moisture Transfer in Buildings is one of the CIBs oldest groups and was officially created in 1969 when the first meeting occurred, in Berlin, Germany. By that time the Coordinator was Bob Vos from the Netherlands. In 1983, during Leuven meeting Bob Vos resigned and Hugo Hens from Belgium was elected. At the Sopron meeting, in 1993, Ingemar Samuelson from Sweden became the new coordinator. Since 2008, after the Copenhagen meeting, the Coordinator of W040 – Heat and Moisture Transfer in Buildings is Vasco Peixoto de Freitas from University of Porto, Portugal.

#### **ACTIVITIES OF CIB W040**

#### SCOPE

The Commission W040 is essentially concerned with the phenomena related with heat and moisture transfer in buildings and encouraging the systematic application of that knowledge to the design, construction and management of buildings. Researchers are invited to present their work at the meetings, where the information is discussed and after the meeting it is spread to the participants' institutions and countries.



The main objectives of W040 are:

- to explore the phenomena of heat, moisture, air and salts transfer in buildings, components and materials;
- to define, measure and discuss the hygrothermal properties of materials and building components;
- to discuss the hygrothermal advanced models;
- to analyse case studies.

#### MEMBERS

The Commission W040 has, at the moment, around 60 members from Austria, Belgium, Canada, Chile, Denmark, Estonia, Finland, Germany, India, Iran, Israel, Italy, Lithuania, Netherlands, New Zealand, Nigeria, Poland, Portugal, Romania, Slovakia, Sudan, Sweden, Switzerland, United Arab Emirates and United Kingdom.

Members of this Working Commission have to be either a Representative of a CIB Member Organisation or an Individual CIB Member. They are elected by the working party at the ordinary meetings. All members must participate actively in W040's meetings, present their own research and take part in discussions. In addition, members must provide information on the work of W040 in their home countries and also keep W040 informed of current research in those countries.

Since the CIB W040 was created, several personalities can be distinguished by their enormous contribution given to the Commission activities, namely, Bob Vos, Hugo Hens, Mark Bomberg and Arne Elmroth. Their actions as coordinators or members were, and still are, essential to increase the working group and to achieve the proposed objectives along the years.

#### PUBLICATIONS

The last publications are the following:

| YEAR | TITLE                                                                                                                  | TYPE OF PUBLICATION |
|------|------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1975 | Quantities, symbols and units for the description of heat and moisture transfer in buildings: Conversion factors, 1975 | Report              |
| 1989 | Proceedings of the W040 Meeting, Victoria<br>BC, Canada,1989                                                           | Proceedings         |



| YEAR | TITLE                                                                                                         | TYPE OF PUBLICATION |
|------|---------------------------------------------------------------------------------------------------------------|---------------------|
| 1991 | Proceedings of the W040 Meeting, Lund,<br>Sweden, 1991                                                        | Proceedings         |
| 1993 | Proceedings of the W040 Meeting, Sopron,<br>Hungary, 1993                                                     | Proceedings         |
| 1995 | Moisture Problems in Building, Proceedings of<br>the International Symposium in Porto,<br>Portugal, 1995      | Proceedings         |
| 1997 | Heat and Moisture Transfer in Buildings -<br>Minutes and Proceedings of W040 Meeting in<br>Kyoto, Japan, 1997 | Proceedings         |
| 1999 | Heat and Moisture Transfer in Building –<br>Papers of W040 Meeting in Prague, Czech<br>Republic, 1999         | Proceedings         |
| 2004 | CIB W040 Conference – Papers of W040<br>Meeting in Glasgow, United Kingdom, 2004                              | Proceedings         |

# MEETINGS / CONFERENCES

Since 1969, the CIB W040 commission organized the following meetings / conferences in different places all over the world:

| YEAR | EVENT                                                                                                                                               | LOCATION                       |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 1969 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings                                                                                | Berlin – Germany               |
| 1971 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings                                                                                | Lund – Sweden                  |
| 1972 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings                                                                                | Holzkirchen – Germany          |
| 1973 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings                                                                                | Birmingham – United<br>Kingdom |
| 1974 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings, in conjunction<br>with the 2nd Symposium on Moisture<br>Problems in Buildings | Rotterdam – Netherlands        |
| 1976 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings                                                                                | Washington – United<br>States  |
| 1978 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings                                                                                | Trondheim – Norway             |
|      |                                                                                                                                                     |                                |



| YEAR | EVENT                                                                                                                                                | LOCATION                 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 1981 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings                                                                                 | Horsholm – Denmark       |
| 1983 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings                                                                                 | Leuven – Belgium         |
| 1985 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings                                                                                 | Holzkirchen – Germany    |
| 1987 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings                                                                                 | Borås – Sweden           |
| 1989 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings                                                                                 | Victoria – Canada        |
| 1991 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings                                                                                 | Lund – Sweden            |
| 1993 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings                                                                                 | Sopron – Hungary         |
| 1995 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings, in conjunction<br>with the Symposium on Moisture Problems in<br>Building Walls | Porto – Portugal         |
| 1997 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings                                                                                 | Kyoto – Japan            |
| 1999 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings                                                                                 | Prague – Czech Republic  |
| 2001 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings, in conjunction<br>with the 15th CIB World Building Congress                    | Wellington – New Zealand |
| 2004 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings                                                                                 | Glasgow – United Kingdom |
| 2006 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings, in conjunction<br>with the 2006 Building Science Forum                         | Syracuse – United States |
| 2008 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings, in conjunction<br>with the 8th Nordic Symposium on Building<br>Physics         | Copenhagen – Denmark     |
| 2009 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings, in conjunction<br>with the 4th International Building Physics<br>Conference    | Istanbul – Turkey        |



| YEAR | EVENT                                                                                                                                                                                         | LOCATION                                     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 2010 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings, in conjunction<br>with the Conference Buildings XI - Thermal<br>Performance of Exterior Envelopes of Whole<br>Buildings | Clearwater Beach, Florida –<br>United States |
| 2011 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings, in conjunction<br>with the 9th Nordic Symposium on Building<br>Physics                                                  | Tampere – Finland                            |
| 2012 | CIB Commission Meeting on Heat and<br>Moisture Transfer in Buildings, in conjunction<br>with the 5th International Building Physics<br>Conference                                             | Kyoto – Japan                                |



# **CHAPTER 2**

# STRUCTURE OF THE DOCUMENT



The CIB W040 commission started in 2009 (Istanbul meeting) to develop a document which compiled all heat, air and moisture transfer terminology existing in books, standards and other reference documents. This new "Heat, Air and Moisture Transfer Terminology – Parameters and Concepts" is systematized with the following structure:

- 1<sup>st</sup> column the parameter or concept is indicated by alphabetic order;
- 2<sup>nd</sup> column the definition of the parameter / concept is presented;
- 3<sup>rd</sup> column the symbol(s) that are commonly used is(are) displayed;
- 4<sup>th</sup> column the unit(s) that are commonly used is(are) displayed;
- 5<sup>th</sup> column the reference documents are indicated.

| PARAMETER /<br>CONCEPT           | DEFINITION                                                                                                                                                                                                                                                                       | SYMBOL(S)          | UNIT(S) | REFERENCE              |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|------------------------|
| Water vapour<br>partial pressure | Part of the total atmospheric pressure exerted by water vapour.                                                                                                                                                                                                                  | $p_{\nu}$          | Ра      | [3], [5],<br>[8], [15] |
|                                  | <b>Vapour saturation pressure</b> –<br>Pressure resulting from the presence<br>of the maximum possible water<br>vapour content in air. Vapour<br>saturation pressure is a function of<br>temperature. In pores it also<br>becomes a function of the equivalent<br>pore diameter. | ₽ <sub>v,sat</sub> | Pa      | [7], [8]               |

It is expected that this document may be a valid contribution for the systematization of knowledge on heat, air and moisture transfer terminology.



# **CHAPTER 3**

# PARAMETERS AND CONCEPTS



| PARAMETER /<br>CONCEPT                | DEFINITION                                                                                                                                                                                                                                              | SYMBOL(S)          | UNIT(S)                                | REFERENCE                   |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------|-----------------------------|
| Absorptance                           | Fraction of the incident radiant energy that is absorbed:                                                                                                                                                                                               | α                  | -                                      | [1], [3], [7],<br>[8], [11] |
|                                       | $\alpha = \frac{\Phi_a}{\Phi_i}$                                                                                                                                                                                                                        |                    |                                        |                             |
|                                       | where $\Phi_i$ is the radiant heat flow rate<br>incident in W and $\Phi_a$ is the radiant<br>heat flow rate absorbed in W.                                                                                                                              |                    |                                        |                             |
| Absorption<br>coefficient of water    | It is a coefficient that quantifies the<br>amount of water entry into a porous<br>material due to absorption when its<br>surface is in direct contact with liquid<br>water.<br>Absorption coefficient of water is<br>defined by the following relation: | $A_{w}$            | kg/(m <sup>2</sup> ·s <sup>1/2</sup> ) | [2], [7],<br>[15]           |
|                                       | $m_s = A_w \cdot \sqrt{t}$                                                                                                                                                                                                                              |                    |                                        |                             |
|                                       | where $m_s$ is the mass of sorbed<br>moisture from a water surface per<br>unit of contact area in kg/m <sup>2</sup> and <i>t</i> is<br>the time in s.                                                                                                   |                    |                                        |                             |
| Air barrier                           | A material layer or system that stops<br>air flow across it under air pressure<br>gradient.                                                                                                                                                             |                    |                                        | [8]                         |
| Air change rate /<br>Ventilation rate | Air flow rate divided by the indoor air volume of the domain:                                                                                                                                                                                           | п                  | s⁻¹; h⁻¹                               | [1], [7], [9]               |
|                                       | $n = \frac{R_a}{V}$                                                                                                                                                                                                                                     |                    |                                        |                             |
|                                       | where $R_a$ is the air flow rate in m <sup>3</sup> /s or m <sup>3</sup> /h and $V$ is the volume in m <sup>3</sup> .                                                                                                                                    |                    |                                        |                             |
|                                       | n = 1 h <sup>-1</sup> means that an air volume                                                                                                                                                                                                          |                    |                                        |                             |
|                                       | equivalent to the indoor air volume is<br>exchanged with fresh outdoor air<br>each hour.                                                                                                                                                                |                    |                                        |                             |
| Air flow rate                         | Mass or volume of air transferred to<br>or from a system / domain, per unit                                                                                                                                                                             | R <sub>a</sub> ; V | m³/s; m³/h                             | [1], [7],<br>[15]           |
|                                       | time, that is induced by an air<br>pressure difference, caused by wind,<br>stack effect or mechanical systems.                                                                                                                                          | M <sub>a</sub> ; M | kg/s                                   |                             |



| PARAMETER /<br>CONCEPT   | DEFINITION                                                                                                                                                                                                  | SYMBOL(S)        | UNIT(S)                                                                                        | REFERENCE          |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------|--------------------|
|                          | <b>Density of air flow rate / Air flux</b><br>– Air flow rate per unit area.<br>Mass of air transported per unit of                                                                                         | r <sub>a</sub> ; | m³/(m²·s)<br>m³/(m²·h)                                                                         | [1], [15],<br>[16] |
|                          | time across a unit of surface<br>perpendicular to the direction of the<br>flow.<br>Air flow rate density is a vector.                                                                                       | т <sub>а</sub> ; | kg/(m²⋅s)                                                                                      |                    |
| Air flow resistance      | Reciprocal of air permeance:                                                                                                                                                                                | Sa               | m <sup>2</sup> ·s·Pa/m <sup>3</sup>                                                            | [15]               |
| All now resistance       | $S_a = \frac{1}{K_a}$                                                                                                                                                                                       | Ja               | m²⋅s⋅Pa/kg                                                                                     | [13]               |
|                          | The air flow resistance of a specific material layer can also be derived from the equation:                                                                                                                 |                  |                                                                                                |                    |
|                          | $S_a = \frac{d}{k_a}$                                                                                                                                                                                       |                  |                                                                                                |                    |
|                          | where <i>d</i> is the thickness of the layer<br>in m and $k_a$ is its air permeability in<br>kg/(m·s·Pa).                                                                                                   |                  |                                                                                                |                    |
| Air permeability         | The density of air flow rate per one<br>unit gradient of air pressure in the<br>direction of the flow.                                                                                                      | k <sub>a</sub>   | kg/(m·s·Pa)<br>m³/(m·s·Pa)                                                                     | [1], [16]          |
| Air permeance            | Ratio between the density of air flow<br>rate and the pressure difference<br>across the bounding surfaces under<br>1-D steady state conditions.<br>Defined by the following relation:                       | Ka               |                                                                                                | [1], [15],<br>[16] |
|                          | $r_a = K_a \cdot (p_1 - p_2)$                                                                                                                                                                               |                  |                                                                                                |                    |
|                          | where $r_a$ is the density of air flow rate<br>either in m <sup>3</sup> /(m <sup>2</sup> ·s)·or in kg/(m <sup>2</sup> ·s)<br>and $p_1$ and $p_2$ are the air pressures<br>on each side of the layers in Pa. |                  |                                                                                                |                    |
|                          | - For a leak                                                                                                                                                                                                |                  | m³/(s∙Pa)                                                                                      |                    |
|                          | - For a meter of joint and crack                                                                                                                                                                            |                  | or<br>kg/(s·Pa)<br>m³/(m·s·Pa)<br>or                                                           |                    |
|                          | - For unit surface of a flat layer                                                                                                                                                                          |                  | or<br>kg/(m·s·Pa)<br>m <sup>3</sup> /(m <sup>2</sup> ·s·Pa)<br>or<br>kg/(m <sup>2</sup> ·s·Pa) |                    |
| Air saturation<br>degree | Ratio between the current air content and the maximum possible air content.                                                                                                                                 | Sa               | %;-                                                                                            | [8]                |



| PARAMETER /<br>CONCEPT | DEFINITION                                                                                                                                                                                                                         | SYMBOL(S)               | UNIT(S)           | REFERENCE         |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------|-------------------|
| Black body             | Ideal body that absorbs all incident<br>radiation independent of wavelength,<br>direction and polarization.                                                                                                                        |                         |                   | [7], [8],<br>[11] |
|                        | At given temperature, a black body<br>emits the maximum thermal energy<br>for each wavelength (maximum<br>spectral excitance).                                                                                                     |                         |                   |                   |
| Black body<br>exitance | Expressed by the Stefan-Boltzmann law:                                                                                                                                                                                             | М°                      | W/m <sup>2</sup>  | [11]              |
|                        | $M^{\circ} = \sigma \cdot T^{4}$<br>where $\sigma$ is the Stefan-Boltzmann<br>constant ( $\sigma$ = 5.67 x 10 <sup>-8</sup> W/(m <sup>2</sup> ·K <sup>4</sup> ))<br>and $T$ is the absolute temperature of<br>the black body in K. |                         |                   |                   |
|                        | <b>Black body spectral exitance</b> -<br>Expressed by Planck's law which<br>relates $M_{i}^{\circ}$ to wave length and                                                                                                             | $\mathcal{M}^o_\lambda$ | W/m³<br>W/(m²∙µm) | [11]              |
|                        | absolute temperature of the black body:                                                                                                                                                                                            |                         |                   |                   |
|                        | $\mathcal{M}_{\lambda}^{o} = \frac{C_{1} \cdot \lambda^{-5}}{\exp\left(\frac{C_{2}}{\lambda \cdot T}\right) - 1}$                                                                                                                  |                         |                   |                   |
|                        | where<br>$C_1 = 2 \cdot \pi \cdot h \cdot C_0^2 = 3.741 \cdot 10^{-16} W / m^2$                                                                                                                                                    |                         |                   |                   |
|                        | $C_2 = \frac{h \cdot C_0}{k} = 0.014388 \ m \cdot K$<br>h - Planck constant                                                                                                                                                        |                         |                   |                   |
|                        | <i>k</i> - Boltzmann constant                                                                                                                                                                                                      |                         |                   |                   |
|                        | $C_0$ - speed of electromagnetic waves in vacuum.                                                                                                                                                                                  |                         |                   |                   |
|                        | A curve $M^o_{\lambda} = f(\lambda)$ with a maximum                                                                                                                                                                                |                         |                   |                   |
|                        | at $\lambda_{max}$ can be drawn for each<br>temperature. $\lambda_{max}$ is a function of<br>temperature, but the product $\lambda_{max} \cdot T$                                                                                  |                         |                   |                   |
|                        | is constant (Wien's ``displacement<br>law"):                                                                                                                                                                                       |                         |                   |                   |
|                        | $\lambda_{\max} \cdot T = 2.898 \cdot 10^{-3} \ m \cdot K$                                                                                                                                                                         |                         |                   |                   |
|                        | $M^o$ and $M^o_\lambda$ are hemispherical terms.                                                                                                                                                                                   |                         |                   |                   |
|                        | The emission of a black body is by definition diffuse, i.e., $L^{\circ}$ and $L^{\circ}_{\lambda}$ are                                                                                                                             |                         |                   |                   |



| PARAMETER /<br>CONCEPT                                                   | DEFINITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SYMBOL(S) | UNIT(S)           | REFERENCE               |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|-------------------------|
|                                                                          | independent of the direction<br>(Lambert's law).<br>The total and the spectral radiance of<br>a black body are expressed as:<br>$\mathcal{L}^{o} = \frac{\mathcal{M}^{o}}{\pi}$ $\mathcal{L}^{o}_{\lambda} = \frac{\mathcal{M}^{o}_{\lambda}}{\pi}$                                                                                                                                                                                                                                                                                                           |           |                   |                         |
| Building envelope                                                        | A building element (e.g. walls, roofs)<br>that separates the indoor<br>environment from the outdoor<br>environment.                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                   | [8]                     |
| Bulk density                                                             | Mass divided by volume occupied by the material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ρ         | kg/m <sup>3</sup> | [2], [8],<br>[10], [14] |
|                                                                          | <b>Bulk density of dry material</b> -<br>Mass of 1 m <sup>3</sup> of the dry material.<br>"Dry material" does not necessarily<br>mean "oven dry". For each class of<br>material it may be necessary to adopt<br>prescribed standard conditions of<br>drying at specified temperature or<br>temperature and RH.                                                                                                                                                                                                                                                | ρο        | kg/m <sup>3</sup> | [16]                    |
| Capillary suction                                                        | The difference between the mean<br>pressure of pore water and the<br>pressure at the free water table<br>under identical temperature and<br>atmospheric pressure when both<br>water quantities have identical<br>salinity and other components of<br>chemical potential.                                                                                                                                                                                                                                                                                      | 5         | Pa                | [3], [15]               |
| Classification of<br>materials in<br>relation with<br>radiative transfer | <b>Opaque medium</b> : Medium which<br>does not transmit any fraction of the<br>incident radiation through it. The<br>absorption, emission, reflection of<br>radiation can be handled as surface<br>phenomena.<br><b>Semi-transparent medium</b> :<br>medium in which the incident<br>radiation is progressively attenuated<br>inside the material by absorption or<br>scattering or both. The absorption,<br>scattering and emission of radiation<br>are bulk (volume) phenomena.<br>The radiative properties of an opaque<br>or semi-transparent medium are |           |                   | [11]                    |



| PARAMETER /<br>CONCEPT | DEFINITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SYMBOL(S) | UNIT(S) | REFERENCE |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|-----------|
|                        | generally a function of the incident<br>radiation's spectral and directional<br>distribution of temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |         |           |
|                        | Some opaque and semi-transparent<br>mediums are homogenous (i.e.<br>isotropic) and some are<br>heterogeneous (i.e. non-isotropic).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |           |
| Coloured bodies        | For coloured bodies, the emissivity, absorptivity and reflectivity depend<br>on wavelength (which is function of<br>temperature) and direction. For each<br>temperature and direction, Kirchoff's<br>law ( $\varepsilon = \alpha$ ) applies. Lambert's law,<br>however, is no longer applicable since<br>it requires an emission independent<br>from direction. Per wavelength, the<br>spectral emittance differs from a<br>black body. The average emissivity at<br>a temperature <i>T</i> follows from the<br>ratio between the emittance of the<br>coloured body and that of a black<br>body at the same temperature.<br>To simplify things, coloured bodies<br>are considered as grey bodies, but<br>with temperature dependent<br>emissivity. For the emittance and<br>irradiance at strongly different<br>temperatures, Kirchoff's law no<br>longer applies. This is the case for<br>ambient radiation and solar radiation.<br>Therefore, $\alpha_S \neq \varepsilon_L$ , with $\alpha_S$ the short<br>wave absorptivity for sunlight and $\varepsilon_L$<br>the long wave emissivity for ambient<br>radiation. |           |         | [8]       |
| Condensation           | Phase change of water vapour into liquid water where the humidity by volume of air reaches the humidity by volume at saturation ( $\phi = 100\%$ ).<br>Interstitial condensation – Refers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |         | [7], [8]  |
|                        | to the condensation of moisture on<br>surfaces between material layers<br>inside the building component.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |         |           |
|                        | <b>Surface condensation</b> – Refers to vapour condensation on the surface of the building component.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |         |           |



| PARAMETER /<br>CONCEPT   | DEFINITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SYMBOL(S)          | UNIT(S)            | REFERENCE               |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-------------------------|
| Degree of<br>saturation  | The ratio between the moisture<br>content in a porous material and its<br>maximum moisture content. Can also<br>be defined as the fraction of open<br>pores filled with moisture against<br>those accessible for moisture.                                                                                                                                                                                                                                                   | S <sub>w</sub>     | %;-                | [2], [8],<br>[15], [16] |
| Dew point<br>temperature | The temperature at which moist air<br>becomes saturated at atmospheric<br>pressure. Condensation occurs at any<br>temperature below the dew point.                                                                                                                                                                                                                                                                                                                           | $	heta_d$<br>$T_d$ | °C<br>K            | [1], [5]                |
| Dry bulb<br>temperature  | Air temperature measured in a thermometer shielded for radiation.                                                                                                                                                                                                                                                                                                                                                                                                            | θ<br>Τ             | °C<br>K            | [5]                     |
| Dynamic viscosity        | The ratio of viscous shear stress and the velocity gradient in the normal flow.                                                                                                                                                                                                                                                                                                                                                                                              | η                  | N⋅s/m <sup>2</sup> | [2], [8]                |
| Emission                 | <ul> <li>Process in which heat (from molecular agitation in gases or atomic agitation in solids, etc.) is transformed into electromagnetic waves.</li> <li>The evaluation of the emission properties of real materials is made relative to the black body placed in the same conditions of temperature. In general, these properties depend on the nature and surface aspect of the body and vary with wavelength, direction of emission and surface temperature.</li> </ul> |                    |                    | [11]                    |
| Emissivity               | Real surfaces can not emit the same<br>amount of energy as a black body<br>surface. The ratio between the real<br>exitance of a surface, <i>M</i> in W/m <sup>2</sup> , and<br>the total exitance of a black body,<br>$M^{\circ}$ in W/m <sup>2</sup> , at the same<br>temperature defines emissivity:<br>$\varepsilon = \frac{M}{M^{\circ}}$                                                                                                                                | ε                  | -                  | [1], [7],<br>[11]       |
| Energy                   | Energy exists in many forms such as work, internal energy, enthalpy.                                                                                                                                                                                                                                                                                                                                                                                                         | U                  | J                  | [2], [8]                |
|                          | <b>Specific energy</b> – Energy divided by<br>the mass of the system (e.g. specific<br>work, specific internal energy, specific<br>enthalpy).<br>In any system, the energy is                                                                                                                                                                                                                                                                                                | U                  | J/kg               | [8]                     |



| PARAMETER /<br>CONCEPT       | DEFINITION                                                                                                                                                                                                                | SYMBOL(S)  | UNIT(S)                    | REFERENCE         |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------|-------------------|
|                              | conservative according to the first law<br>of thermodynamic.<br><b>Primary energy</b> – Energy capacity<br>of the row fuels or renewable<br>sources.                                                                      |            |                            |                   |
|                              | Final energy – Energy received by the beneficiary.                                                                                                                                                                        |            |                            |                   |
| Enthalpy                     | Thermodynamic property that<br>includes internal energy and flow<br>work and is defined as:<br>$H = U + P \cdot V$                                                                                                        | Н          | J                          | [2], [8]          |
|                              | where $U$ is the internal energy in J, $P$ is the pressure in Pa and $V$ the volume in m <sup>3</sup> .                                                                                                                   |            |                            |                   |
|                              | Specific enthalpy – enthalpy per<br>unit of mass.                                                                                                                                                                         | h          | J/kg                       | [1], [8]          |
|                              | Free enthalpy                                                                                                                                                                                                             | G          | J                          | [2], [8]          |
|                              | Specific free enthalpy                                                                                                                                                                                                    | g          | J/kg                       | [8]               |
|                              | Specific enthalpy of<br>evaporation/condensation or<br>melting/fusion – Energy per unit<br>mass released or absorbed during<br>evaporation / condensation or<br>melting / solidifying without a change<br>in temperature. | 1          | J/kg                       | [8]               |
| Exitance                     | Radiant heat flow rate emitted by a<br>surface per unit area of the emitting<br>surface:<br>$M = \frac{\partial \Phi}{\partial A}$                                                                                        | М          | W/m <sup>2</sup>           | [7], [8],<br>[11] |
| Gas diffusion<br>coefficient | Rate of gas diffusion density through<br>a material per unit gradient of its<br>concentration.                                                                                                                            | D          | m²/s                       | [15]              |
| Gas permeability             | Product of the gas permeance and<br>the perpendicular distance between<br>the surfaces of a flat layer of<br>material.                                                                                                    | k          | kg/(m·s·Pa)<br>m³/(m·s·Pa) | [15]              |
| Gas permeability coefficient | Product of the diffusion coefficient and the solubility coefficient.                                                                                                                                                      | $\delta_c$ | m²/(s·Pa)                  | [15]              |



# Heat and Moisture Transfer in Buildings

| PARAMETER /<br>CONCEPT | DEFINITION                                                                                                                                                                                                                                       | SYMBOL(S)      | UNIT(S)                                                | REFERENCE              |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------|------------------------|
| Gas permeance          | Mass of gas passing through a flat<br>layer of material per unit of time,<br>area and pressure difference. This<br>property is used for heterogeneous<br>materials and layered systems.                                                          | K              | kg/(m <sup>2</sup> ·s·Pa)<br>m³/(m <sup>2</sup> ·s·Pa) | [15]                   |
| Grey body              | Thermal radiator whose emissivity is independent of wavelength.                                                                                                                                                                                  |                |                                                        | [8], [11]              |
| HAM                    | Combined <u>H</u> eat, <u>A</u> ir and <u>M</u> ass<br>transfer.                                                                                                                                                                                 |                |                                                        |                        |
| Heat                   | Quantity which indicates the energy in the form of heat. Heat is a scalar.                                                                                                                                                                       | Q              | J                                                      | [1], [2],<br>[8], [9]  |
| Heat capacity          | The heat capacity equals the value $dQ/dT$ when the temperature of a volume of material changes by a value $dT$ in K as a result of adding or removing a quantity of heat $dQ$ in J:<br>$C = \frac{dQ}{dT}$                                      | С              | J/K                                                    | [2], [9]               |
|                        | <b>Specific heat capacity of dry</b><br><b>material</b> – Heat added or removed<br>when changing the temperature of<br>unit mass of dry material by 1 K.                                                                                         | C <sub>0</sub> | J/(kg∙K)                                               | [1], [8],<br>[9], [16] |
|                        | <b>Specific heat capacity</b> – If the material is wet, the specific heat capacity is calculated as:                                                                                                                                             | С              | J/(kg∙K)                                               |                        |
|                        | $c = c_0 + 4187 \cdot \left(\frac{w}{\rho_0}\right)$                                                                                                                                                                                             |                |                                                        |                        |
|                        | where <i>w</i> is the moisture content in kg/m <sup>3</sup> and $\rho_0$ is the bulk density of dry material in kg/m <sup>3</sup> .<br>The above relation assumes that the specific heat capacity of water is a constant equal to 4187 J/(kg·K). |                |                                                        |                        |
|                        | Specific heat capacity at<br>constant pressure – For an ideal<br>gas is given as:<br>$c_p = \frac{\gamma \cdot R}{\gamma - 1}$                                                                                                                   | Cρ             | J/(kg·K)                                               | [9], [14]              |
|                        | where $R$ is the gas constant in                                                                                                                                                                                                                 |                |                                                        |                        |

where *R* is the gas constant in  $J/(kg\cdot K)$  and  $\gamma$  is the specific heat ratio.



| PARAMETER /<br>CONCEPT | DEFINITION                                                                                                                                                                                                                                                                                                                     | SYMBOL(S)                           | UNIT(S)          | REFERENCE                   |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------|-----------------------------|
|                        | Specific heat capacity at<br>constant volume – For an ideal gas<br>is given as:<br>$c_{\nu} = \frac{R}{\gamma - 1}$                                                                                                                                                                                                            | C <sub>v</sub>                      | J/(kg∙K)         | [9]                         |
|                        | where <i>R</i> is the gas constant and $\gamma$ is                                                                                                                                                                                                                                                                             |                                     |                  |                             |
|                        | the specific heat ratio.                                                                                                                                                                                                                                                                                                       |                                     |                  |                             |
|                        | <b>Volumetric heat capacity of dry</b><br><b>material</b> – Defined as the heat<br>(energy) required to change the<br>temperature of a unit volume of dry<br>material by 1 K.                                                                                                                                                  | $ ho_{_0}\cdot c_{_0}$              | J/(m³·K)         | [16]                        |
|                        | <b>Volumetric heat capacity</b> – If the material is wet, the volumetric heat capacity is calculated as:                                                                                                                                                                                                                       | $ ho_{\scriptscriptstyle 0}\cdot c$ | J/(m³⋅K)         |                             |
|                        | $\rho_{\scriptscriptstyle 0}\cdot c = \rho_{\scriptscriptstyle 0}\cdot c_{\scriptscriptstyle 0} + 4187\cdot w$                                                                                                                                                                                                                 |                                     |                  |                             |
|                        | where $w$ is the moisture content in kg/m <sup>3</sup> and $\rho_0$ is the bulk density of dry material in kg/m <sup>3</sup> .<br>The above relation assumes that the specific heat capacity of water is a                                                                                                                     |                                     |                  |                             |
|                        | constant equal to 4187 J/(kg·K).                                                                                                                                                                                                                                                                                               | Ŧ                                   | 14/              |                             |
| Heat flow rate         | Quantity of heat transferred to or<br>from a system per unit time:<br>$\Phi = \frac{dQ}{dt}$ Heat flow rate is a scalar.                                                                                                                                                                                                       | Φ                                   | W                | [7], [8],<br>[9], [11]      |
|                        | <b>Radiant heat flow rate</b> – The<br>amount of radiant heat per unit of<br>time:<br>$\Phi_r = \frac{dQ_r}{dt}$                                                                                                                                                                                                               | $\Phi_r$                            | W                | [8]                         |
|                        | <b>Density of heat flow rate or Heat</b><br><b>flux</b> – Quantity of heat transported<br>per unit of time across a unit of<br>surface perpendicular to the flow<br>direction. It may also be defined as<br>the derivative to the area of the heat<br>flow rate:<br>$q = \frac{d\Phi}{dA}$ Heat flow rate density is a vector. | q                                   | W/m <sup>2</sup> | [1], [7], [8],<br>[9], [16] |



| PARAMETER /<br>CONCEPT | DEFINITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SYMBOL(S)             | UNIT(S)          | REFERENCE                           |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|-------------------------------------|
|                        | <b>Density of linear heat flow rate</b> –<br>Heat flow rate per unit length:<br>$q_{i} = \frac{d\Phi}{dl}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>q</i> /            | W/m              | [9]                                 |
|                        | <b>Density of radiant heat flow rate</b><br>– The radiant heat flow per unit of<br>surface area:<br>$q_r = \frac{d\Phi_r}{dA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>q</i> <sub>r</sub> | W/m <sup>2</sup> | [8]                                 |
| Heat transfer          | Energy transfer by conduction,<br>convection, radiation and enthalpy<br>flow, or a combination of these.<br><b>Conduction</b> – Energy transferred<br>when vibrating atoms collide and free<br>electrons move collectively. Heat is<br>transferred by conduction between<br>solids at different temperature in<br>contact with each other, between<br>points at a different temperature<br>within the same solid, within fluids<br>and in the contact between fluids.<br>Conduction occurs from higher to<br>lower temperatures, needs a medium<br>and there is no observable<br>macroscopic movement linked to it.<br><b>Convection</b> – Energy transferred by<br>the displacement of molecule groups<br>at different temperature. It is by<br>nature a consequence of movement<br>and occurs close to the contact<br>between fluids and solids. Convection<br>can be defined as forced, natural and<br>mixed depending on whether the<br>movement is caused by an external<br>force, a difference in fluid density or<br>both. In forced convection an exterior<br>source may compel heat to flow from<br>low to high temperatures. Convection<br>needs a medium and in liquids and<br>gases includes conduction, as heat<br>transfer between the molecules<br>occurs by conduction.<br><b>Radiation</b> – Heat transfer caused by<br>the emission and absorption of<br>electromagnetic waves. Every surface<br>at a temperature above 0 K emits |                       |                  | [1], [3], [7],<br>[8], [9],<br>[11] |



| PARAMETER /<br>CONCEPT                          | DEFINITION                                                                                                                                                                                                                                                                                                                                                                                       | SYMBOL(S) | UNIT(S)           | REFERENCE          |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|--------------------|
|                                                 | electromagnetic energy. If surfaces<br>have different temperatures heat<br>exchanges occurs. Heat transfer<br>trough radiation does not need a<br>medium and follows physical laws<br>which diverge strongly from<br>conduction and convection.<br><b>Enthalpy flow</b> – Heat transfer linked<br>to convection but considers the heat<br>transported by a gas or fluid,<br>permeating a medium. |           |                   |                    |
| Humidity by mass /<br>Humidity ratio            | Mass of water vapour within a unit mass of dry air. At saturation, the notation $x_{sat}$ is used.                                                                                                                                                                                                                                                                                               | X         | kg/kg             | [8], [15]          |
| Humidity by<br>volume / Vapour<br>concentration | Mass of water vapour within a unit volume of the gaseous mixture.<br>Humidity by volume is the same as the partial mass density of water vapour $\rho_v$ .<br>At saturation, the notations $v_{sat}$ and $\rho_{v,sat}$ are used.                                                                                                                                                                | ν         | kg/m <sup>3</sup> | [8], [15],<br>[16] |
| Hygroscopic range                               | Is the range of relative humidity in a material between 0 and 98% RH.                                                                                                                                                                                                                                                                                                                            |           |                   | [7], [8]           |
| Hygroscopicity                                  | Refers to the property of a porous<br>material to adsorb moisture from the<br>air and to desorb it back into air. The<br>more hygroscopic a material is the<br>higher its moisture capacity is.                                                                                                                                                                                                  |           |                   | [7], [8]           |
| Hygrothermics                                   | Domain of building physics / building<br>science concerning the heat, air and<br>mass transfer in buildings and their<br>components.                                                                                                                                                                                                                                                             |           |                   | [7], [8]           |
| Ideal gas law                                   | Both air and vapour are considered to<br>follow the ideal gas law, which is<br>given as:<br>$P \cdot v = R \cdot T$<br>where <i>P</i> is the pressure of the gas in<br>Pa, <i>v</i> is the molar volume of the gas<br>in m <sup>3</sup> /mol, <i>T</i> is the absolute                                                                                                                           |           |                   | [1]                |
|                                                 | temperature in K and $R$ is the gas constant ( $R = 8.3143$ J/(mol·K)).                                                                                                                                                                                                                                                                                                                          |           |                   |                    |
| Internal moisture<br>excess                     | Under steady state conditions: Rate<br>of moisture production in a space, <i>G</i><br>in kg/s, divided by the air change<br>rate, <i>n</i> in s <sup>-1</sup> , and the volume of the                                                                                                                                                                                                            | Δν        | kg/m <sup>3</sup> | [3]                |



| PARAMETER /<br>CONCEPT                          | DEFINITION                                                                                                                                                                                                                                                                                                      | SYMBOL(S) | UNIT(S)          | REFERENCE         |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|-------------------|
|                                                 | space, $V$ in m <sup>3</sup> :<br>$\Delta v = v_i - v_e = \frac{G}{n \cdot V}$<br>where $v_i$ and $v_e$ are the humidities by<br>volume of a building's indoor air and<br>outdoor air.                                                                                                                          |           |                  |                   |
| Intrinsic<br>permeability of a<br>porous medium | Is defined by the following relation:<br>$\vec{r}_{a} = \frac{k}{\eta} \cdot grad \ p$<br>where $\vec{r}_{a}$ is the vector density of air<br>flow rate in m <sup>3</sup> /(m <sup>2</sup> ·s), <i>p</i> is pressure<br>in Pa and $\eta$ is the dynamic viscosity<br>of air in N·s/m <sup>2</sup> .             | k         | m²               | [15]              |
| Irradiance /<br>Irradiation                     | Radiant heat flow rate received by a surface per unit area:<br>$E = \frac{\partial \Phi}{\partial A}$                                                                                                                                                                                                           | E         | W/m <sup>2</sup> | [7], [8],<br>[11] |
| Kinematic viscosity                             | The dynamic viscosity of a fluid divided by its density.                                                                                                                                                                                                                                                        | V         | m²/s             | [2], [8]          |
| Long wave<br>(terrestrial)<br>radiation         | Radiation with wavelength greater<br>than 3 µm from terrestrial surfaces<br>and the atmosphere.<br>The exchange of long wave radiation<br>occurs permanently between<br>buildings, the terrestrial environment<br>and the atmosphere.                                                                           |           |                  | [5]               |
| Luminosity                                      | The ratio between the radiant heat<br>flow rate in a direction and the<br>apparent surface, seen from that<br>direction. $\mathcal{L}$ is a vector.<br>The luminosity describes how a<br>receiving surface sees an emitting<br>surface.<br>$\mathcal{L} = \frac{d^2 \phi_R}{\cos(\phi) \cdot dA \cdot d\omega}$ | L         | W/(m²∙rad)       | [8]               |
| Mass flow rate                                  | The quantity of mass, which migrates<br>per unit of time.<br>Mass flow rate is a scalar.                                                                                                                                                                                                                        | М         | kg/s             | [8]               |



| PARAMETER /<br>CONCEPT   | DEFINITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SYMBOL(S) | UNIT(S)   | REFERENCE |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|
|                          | <b>Density of mass flow rate / Mass</b><br><b>flux</b> – The quantity of mass flowing<br>per unit of time through a unit of<br>surface perpendicular to the flow<br>direction.<br>Mass flow rate density is a vector.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | т         | kg/(m²·s) | [8], [15] |
| Mass transfer            | Transport of mass (especially<br>moisture or air) by various<br>mechanisms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |           | [15]      |
| Medium<br>classification | <ul> <li>Anisotropic medium – Relevant<br/>properties are a function of direction.</li> <li>Heterogeneous medium –<br/>Relevant properties are a function of<br/>the position in the medium due to the<br/>presence of dissimilar constituents.</li> <li>Homogeneous medium – Relevant<br/>properties are not a function of the<br/>position in the medium but may be a<br/>function of time, temperature, etc.</li> <li>Homogeneous porous medium –<br/>Local porosity is independent of<br/>position in the medium.</li> <li>Isotropic medium – Relevant<br/>properties are not a function of<br/>direction but may be a function of<br/>position in the medium, of time,<br/>temperature, etc.</li> <li>Porous medium – Heterogeneous<br/>medium due to the presence of finely<br/>distributed voids in the solid phase.<br/>This medium may be considered as<br/>homogeneous for hygrothermal<br/>modelling.</li> <li>Stable medium – Relevant<br/>properties are not a function of time,<br/>but may be a function of time,<br/>but may be a function of coordinates,<br/>direction, temperature, etc.</li> <li>Porous media can be subdivided<br/>according to the geometry of their<br/>structure:</li> <li>Fibrous porous medium – Made of<br/>a continuous gas phase with solid<br/>inclusions having their length as<br/>dominant dimension.</li> <li>Granular loose fill medium – Made</li> </ul> |           |           | [10]      |



| PARAMETER /<br>CONCEPT         | DEFINITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SYMBOL(S)             | UNIT(S)    | REFERENCE          |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|--------------------|
|                                | of a continuous gas phase with solid<br>inclusions whose shape does not<br>have a predominant dimension.<br><b>Cellular porous medium</b> –Made of<br>a continuous solid phase with more<br>or less gas filled spherical inclusions.                                                                                                                                                                                                                                             |                       |            |                    |
|                                | <b>Interconnected porous medium</b> –<br>Made of a continuous solid phase<br>containing cavities that are<br>interconnected in a way the gaseous<br>phase is also continuous.                                                                                                                                                                                                                                                                                                    |                       |            |                    |
| Moisture                       | Water in the gaseous, liquid or solid phase.                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |            | [15]               |
| Moisture capacity              | <b>Specific moisture capacity</b> – The increase in the mass of moisture in unit mass of the material that follows from a unit increase in capillary suction.                                                                                                                                                                                                                                                                                                                    | ξ                     | kg/(kg∙Pa) | [1], [8],<br>[16]  |
|                                | <b>Volumetric moisture capacity</b> –<br>Change in the moisture content per<br>unit volume of material that follows<br>from a unit change in capillary<br>suction.                                                                                                                                                                                                                                                                                                               | $ ho_{_{0}}\cdot \xi$ | kg/(m³·Pa) | [1], [16]          |
| Moisture<br>conductivity curve | Relation between moisture<br>conductivity of a porous material and<br>the relative humidity of the ambient<br>air at equilibrium obtained at<br>precisely controlled temperature and<br>relative humidity.                                                                                                                                                                                                                                                                       |                       |            |                    |
| Moisture diffusivity           | Within the hygroscopic range<br>moisture diffusivity stands for the<br>ratio between vapour permeability<br>and volumetric moisture capacity.<br>Beyond the hygroscopic range<br>moisture diffusivity stands for the<br>ratio between moisture permeability<br>and volumetric moisture capacity.<br>Moisture diffusivity is defined by the<br>following relation:<br>$\vec{g} = -D_w \cdot grad w$<br>where $\vec{g}$ is the vector density of<br>moisture flow rate and win the | D <sub>w</sub>        | m²/s       | [2], [15],<br>[16] |
|                                | moisture flow rate and <i>w</i> is the<br>moisture content mass per volume.<br>At the low RH e.g. that measured by                                                                                                                                                                                                                                                                                                                                                               |                       |            |                    |



| PARAMETER /<br>CONCEPT        | DEFINITION                                                                                                                                                                                                                                                                                                                               | SYMBOL(S)           | UNIT(S)                | REFERENCE                    |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|------------------------------|
|                               | dry cup water vapour transmission<br>(about 25% RH) moisture diffusivity<br>represents pure vapour flow at the<br>upper end, at the capillary saturation<br>it represents pure liquid transfer and<br>anywhere in between it represents a<br>mixture of liquid and air that includes<br>vapour with varying fraction of liquid<br>water. |                     |                        |                              |
| Moisture flow rate            | Mass of moisture transferred to or<br>from a system per unit of time.<br>Moisture flow rate is a scalar and may<br>relate to water vapour only, liquid<br>water only, or both together.                                                                                                                                                  | G                   | kg/s                   | [7], [15]                    |
|                               | <b>Density of moisture flow rate /</b><br><b>moisture mass flux</b> – Mass of<br>moisture transported per unit of time<br>across a unit area perpendicular to<br>the flow direction:<br>$g = \frac{dG}{dA}$                                                                                                                              | g<br>m <sub>m</sub> | kg/(m <sup>2</sup> ·s) | [7], [15],<br>[16]           |
|                               | where <i>G</i> is the moisture flow rate and <i>A</i> is the area.                                                                                                                                                                                                                                                                       |                     |                        |                              |
|                               | Density of moisture flow rate is a vector and may relate to water vapour only, liquid water only or both together.                                                                                                                                                                                                                       |                     |                        |                              |
| Moisture in an<br>open-porous | The presence of moisture in an open-<br>porous material is defined as:                                                                                                                                                                                                                                                                   |                     |                        | [1], [2], [3],<br>[15], [16] |
| material                      | <b>Moisture content</b> – mass of water present in the open pores divided by the volume of dry material.                                                                                                                                                                                                                                 | W                   | kg/m <sup>3</sup>      |                              |
|                               | <b>Moisture ratio</b> – mass of water present in the open pores divided by the dry mass of the material.                                                                                                                                                                                                                                 | И                   | kg/kg                  |                              |
|                               | <b>Moisture ratio by volume</b> – volume of water present in the open pores divided by the volume of dry material.                                                                                                                                                                                                                       | Ŵ                   | m³/m³                  |                              |
|                               | In porous materials the moisture<br>content may vary between dry state<br>and fully saturated state when the<br>open pores are completely filled with<br>water.                                                                                                                                                                          |                     |                        |                              |



| PARAMETER /<br>CONCEPT                                 | DEFINITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SYMBOL(S)      | UNIT(S)     | REFERENCE  |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|------------|
|                                                        | Maximum moisture content –<br>moisture content that corresponds to<br>the saturation state. This maximum<br>moisture content can only be<br>obtained experimentally if the process<br>is carried out in vacuum (index: <i>max</i> ).<br>Capillary saturation moisture<br>content – Moisture content that<br>corresponds to the saturation state<br>obtained under 1-D process of free<br>water intake under standard<br>temperature and air atmospheric<br>pressure conditions with evaporation<br>shield on the opposite side of the test<br>specimen (index: <i>cap</i> ). |                |             |            |
|                                                        | <b>Critical moisture content</b> –<br>Moisture content that corresponds to<br>the lowest moisture content<br>necessary to initiate moisture<br>transport in the liquid phase. Below<br>this level, moisture is transported<br>only in the vapour phase (index: <sub>cr</sub> ).                                                                                                                                                                                                                                                                                              |                |             |            |
|                                                        | Equilibrium moisture content –<br>The balance of moisture content of a<br>porous material with ambient air<br>humidity at steady-state condition.<br>Maximum hygroscopic moisture<br>content – Moisture content that<br>corresponds to the maximum amount<br>of water in material captured from<br>the ambient humid air under<br>isothermal conditions. The relative<br>humidity value, which corresponds                                                                                                                                                                   |                |             |            |
| Moisture<br>permeability /<br>Moisture<br>conductivity | this moisture content, is<br>approximately 98% RH (index: hygr).<br>Ratio between the density of<br>moisture flow rate and the suction<br>gradient in the direction of the<br>moisture flow. Suction includes<br>capillary, gravity, electro-osmotic,<br>freezing and external pressure<br>components. In experimental<br>determination of material<br>characteristics components other<br>than capillary suction are eliminated<br>to simplify the process of testing.<br>It is defined by the following relation:                                                          | k <sub>w</sub> | kg/(m·s·Pa) | [15], [16] |



| PARAMETER /<br>CONCEPT | DEFINITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SYMBOL(S) | UNIT(S)                                  | REFERENCE         |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------|-------------------|
|                        | $\vec{g} = -k_w \cdot grad \ s$<br>Where $\vec{g}$ is the vector density of<br>moisture flow rate in kg/(m <sup>2</sup> ·s) and $s$<br>is the total suction in Pa.<br>Moisture permeability/ conductivity is<br>primarily used to describe liquid<br>transfer, though also vapour is                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                                          |                   |
| Moisture transfer      | <ul> <li>included.</li> <li>Moisture can be transported both in vapour and liquid phase. The moisture transfer is caused by:</li> <li><b>Diffusion</b> occurs due to a difference in vapour concentration, which results in a net transfer of water molecules to the region with the lowest concentration.</li> <li><b>Convection</b> is caused by air flows due to a difference in total pressure. Moving air always carries water vapour and may drag along water droplets or snow crystals.</li> <li><b>Wind pressure</b> can force liquid water through cracks in the building envelope.</li> <li><b>Capillary suction</b> is the result of differences in pore water pressure.</li> <li><b>Gravity</b> induces downwards flows of liquid water.</li> </ul> |           |                                          | [7], [8],<br>[15] |
| Mould index            | Describes the visible mould growth<br>intensity on the surface of a material.<br>The higher the index, the more mould<br>growth on the surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | М         |                                          |                   |
| Porosity               | Total volume of voids in unit volume<br>of porous material. Porosity can be<br>defined by the expression:<br>$\xi = 1 - \frac{\rho - \rho_g}{\rho_s - \rho_g}$ where $\rho$ is the apparent density of<br>the material, $\rho_s$ is the density of the<br>solid matrix and $\rho_g$ is the density of<br>the gas in the voids.                                                                                                                                                                                                                                                                                                                                                                                                                                  | ξ<br>Ψ    | -<br>%<br>m <sup>3</sup> /m <sup>3</sup> | [8], [10]         |



| PARAMETER /<br>CONCEPT | DEFINITION                                                                                                                                                                                                                                                   | SYMBOL(S)    | UNIT(S)          | REFERENCE |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|-----------|
|                        | <b>Local porosity</b> – Porosity at a point<br>in a material for an elementary<br>volume enclosing that point large<br>enough to define a meaningful<br>average.                                                                                             | ξρ           | -<br>%<br>m³/m³  | [10]      |
|                        | <b>Open porosity</b> – Volume of open<br>pores per volume-unit material. What<br>fraction of the porous system is<br>"open" depends on the fluid<br>migrating through the material. In<br>general, open porosity is smaller than<br>total porosity.          | $\psi_o$     | -<br>%<br>m³/m³  | [8], [16] |
| Psychrometric<br>chart | Psychrometric chart is a practical tool<br>that graphically approximates the<br>properties of moist air (saturation<br>moisture ratio or partial vapour<br>pressure and relative humidity) as a<br>function of its temperature.                              |              |                  | [1]       |
| Radiance               | Radiant heat flow rate per unit solid<br>angle around the direction $\vec{\Delta}$ and the<br>projected area normal to this<br>direction:<br>$\mathcal{L}_{\Omega} = \frac{\partial^2 \Phi}{\partial \Omega \cdot \partial (\mathcal{A} \cdot \cos \theta)}$ | $L_{\Omega}$ | W/(m²∙sr)        | [11]      |
| Radiation intensity    | Radiant heat flow rate per unit solid<br>angle around the direction $\vec{\Delta}$ :<br>$I_{\Omega} = \frac{d\Phi}{d\Omega}$<br>Intensity is a vector.                                                                                                       | $I_{\Omega}$ | W/sr             | [8], [11] |
| Radiosity              | Radiant heat flow rate emitted and<br>reflected by an opaque surface per<br>unit of its area:<br>$J = \frac{\partial \Phi}{\partial A}$ where $\Phi$ is the radiant heat flow rate<br>emitted and reflected in W and A is<br>the area in m <sup>2</sup> .    | J            | W/m <sup>2</sup> | [7], [11] |
| Reference year         | A year-long set of hourly values of<br>appropriate meteorological<br>parameters representative for the<br>severe or mean local climate over a<br>long period of time (f.e. 30 years).<br>TRY: test reference year                                            |              |                  | [5]       |



| PARAMETER /<br>CONCEPT | DEFINITION                                                                                                                                                                                                                                                                                                                    | SYMBOL(S)        | UNIT(S)          | REFERENCE                           |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-------------------------------------|
|                        | TMY: typical meteorological year<br>DRY: design reference year<br>MRY: moisture reference year                                                                                                                                                                                                                                |                  |                  |                                     |
| Reflectance            | Fraction of the incident radiant<br>energy that is reflected:<br>$\rho = \frac{\Phi_r}{\Phi_i}$                                                                                                                                                                                                                               | ρ                | -                | [1], [3], [7],<br>[8], [11]         |
|                        | $\Phi_i$<br>where $\Phi_i$ is the radiant heat flow rate<br>incident in W and $\Phi_r$ is the radiant<br>heat flow rate reflected in W.                                                                                                                                                                                       |                  |                  |                                     |
| Relative humidity      | Actual water vapour partial pressure<br>at a given temperature divided by<br>vapour pressure at saturation at the<br>same temperature:                                                                                                                                                                                        | φ;φ;RH           | - ; %            | [2], [3], [5],<br>[7], [8],<br>[15] |
|                        | $\varphi = \frac{\rho_v}{\rho_{v,sat}}$ or $RH = \frac{\rho_v}{\rho_{v,sat}} \cdot 100$                                                                                                                                                                                                                                       |                  |                  |                                     |
|                        | where $p_v$ is the water vapour partial<br>pressure in Pa and $p_{v,sat}$ is the vapour<br>saturation pressure in Pa.<br>Assuming ideal gas behaviour that                                                                                                                                                                    |                  |                  |                                     |
|                        | relation may also be written as:<br>$\varphi = \frac{v}{v_{sat}}$                                                                                                                                                                                                                                                             |                  |                  |                                     |
|                        | where $\nu$ is the humidity by volume of<br>air in kg/m <sup>3</sup> and $\nu_{sat}$ is the humidity<br>by volume at saturation evaluated at<br>the same temperature, in kg/m <sup>3</sup> .                                                                                                                                  |                  |                  |                                     |
| Solar irradiance       | Radiation power per unit area on a plane of any slope and orientation generated by the incident solar radiation.                                                                                                                                                                                                              | Gs               | W/m <sup>2</sup> | [5]                                 |
|                        | The following special quantities can<br>be distinguished according to the<br>conditions of reception:                                                                                                                                                                                                                         |                  |                  |                                     |
|                        | <b>Global solar irradiance</b> –<br>Irradiance on a surface by solar<br>radiation from the full hemisphere.<br>On a horizontal surface global solar<br>irradiance contains as well beam as<br>diffuse solar radiation. On tilted<br>surfaces also a portion of the ground<br>reflected global solar radiation is<br>included. | G <sub>s,g</sub> | W/m <sup>2</sup> | [5]                                 |



| PARAMETER /<br>CONCEPT                         | DEFINITION                                                                                                                                                                                                                                                                                                                                                                            | SYMBOL(S)        | UNIT(S)           | REFERENCE                    |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|------------------------------|
|                                                | <b>Direct solar irradiance</b> – Irradiance<br>on a surface by directional solar<br>radiation from the visible solar disk.                                                                                                                                                                                                                                                            | G <sub>s,b</sub> | W/m <sup>2</sup>  | [5]                          |
|                                                | <b>Beam solar irradiance</b> – Irradiance<br>on a surface perpendicular to the<br>solar beam.                                                                                                                                                                                                                                                                                         | $G_{s,b}$        | W/m <sup>2</sup>  | [5]                          |
|                                                | <b>Diffuse solar irradiance</b> –<br>Irradiance on a surface by that part<br>of the solar radiation that is scattered<br>over the celestial hemisphere.                                                                                                                                                                                                                               | G <sub>s,d</sub> | W/m <sup>2</sup>  | [5]                          |
|                                                | <b>Reflected solar irradiance</b> –<br>Irradiance on tilted surface by solar<br>radiation reflected globally by all<br>surrounding surfaces and the<br>surfaces beneath. The ratio between<br>reflected and global solar irradiance is<br>called the albedo.                                                                                                                          | G <sub>s,r</sub> | W/m <sup>2</sup>  | [5]                          |
| Solar irradiation                              | Radiant energy per unit of area<br>received by a surface of given<br>inclination and orientation during a<br>period of time. The same components<br>as indicated for solar irradiance<br>intervene.                                                                                                                                                                                   | Hs               | MJ/m <sup>2</sup> | [5]                          |
| Sorption curve                                 | Relation between moisture content in<br>a porous material and the relative<br>humidity of the ambient air at<br>equilibrium obtained at precisely<br>controlled temperature and relative<br>humidity. Sorption curve is a part of<br>Moisture retention curve.                                                                                                                        |                  |                   | [1], [3], [8],<br>[15], [16] |
|                                                | The sorption curve differs from desorption. Measuring difficulties limits experimental determination to a relative humidity at 95 % to 98 %.                                                                                                                                                                                                                                          |                  |                   |                              |
| Steady state                                   | Condition for which all relevant parameters do not vary with time.                                                                                                                                                                                                                                                                                                                    |                  |                   | [10]                         |
| Suction curve /<br>Moisture retention<br>curve | Relation between the moisture<br>content in a porous material and<br>suction (negative difference between<br>atmospheric pressure and pore<br>pressure) in pore water. This relation<br>includes hygroscopic region (sorption<br>curves) and above hygroscopic<br>region. Generally there are curves for<br>sorption (wetting from a dry material)<br>and for desorption (drying from |                  |                   | [15]                         |



| PARAMETER /<br>CONCEPT                              | DEFINITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SYMBOL(S)     | UNIT(S)  | REFERENCE                  |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|----------------------------|
|                                                     | moisture content above the capillary saturation).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |          |                            |
| Surface coefficient of heat loss or gain            | Heat flow rate from or to a surface<br>per unit area and per unit difference<br>of temperature between the indoor<br>and outdoor environments:                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fs            | W/(m²·K) | [9]                        |
|                                                     | $F_{s} = \frac{\Phi}{A \cdot \Delta T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |          |                            |
|                                                     | where $\Phi$ is the heat flow rate in W, A<br>is the area in m <sup>2</sup> and $\Delta T$ is the<br>difference of temperature between<br>the indoor and outdoor environments.                                                                                                                                                                                                                                                                                                                                                                                                                      |               |          |                            |
|                                                     | The heat flow rate may include heat<br>transmission, enthalpy flow, solar<br>radiation, etc. The area could be the<br>whole envelope, the floor area, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |          |                            |
| Surface film<br>coefficient for<br>vapour diffusion | Describes the effect of a laminar air<br>layer that sticks to each surface and<br>only allows vapour diffusion as<br>transport mode.<br>The surface film coefficients for<br>diffusion $\beta_{\nu}$ and $\beta_{p}$ are defined by the<br>following relations:                                                                                                                                                                                                                                                                                                                                     |               |          | [2], [7],<br>[8], [15]     |
|                                                     | a) $g_v = \beta_v \cdot (v_a - v_s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\beta_{\nu}$ | m/s      |                            |
|                                                     | b) $g_v = \beta_p \cdot (p_{v,a} - p_{v,s})$<br>where $g_v$ is density of vapour flow<br>rate in kg/(m <sup>2</sup> ·s), $v_a$ and $v_s$ are the<br>humidities by volume in the ambient<br>air and at the surface in kg/m <sup>3</sup> and<br>$p_{v,a}$ and $p_{v,s}$ are the water vapour<br>partial pressures in the ambient air<br>and at the surface in Pa.<br>If the Lewis relation with the<br>convective surface film coefficient for<br>heat transfer ( $h_c$ ) holds, than the<br>surface film coefficients for diffusion<br>can be written as:<br>$\beta_p = 7.7 \cdot 10^{-9} \cdot h_c$ | $eta_{ ho}$   | s/m      |                            |
| Surface film<br>coefficient for heat<br>transfer    | Density of heat flow rate at a surface<br>in steady state divided by the<br>temperature difference between that<br>surface and the environment:                                                                                                                                                                                                                                                                                                                                                                                                                                                     | h             | W/(m²·K) | [1], [2], [7],<br>[8], [9] |



| PARAMETER /<br>CONCEPT                             | DEFINITION                                                                                                                                                                                                                       | SYMBOL(S)      | UNIT(S)  | REFERENCE     |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|---------------|
|                                                    | $h = \frac{q}{T_s - T_a}$                                                                                                                                                                                                        |                |          |               |
|                                                    | where $q$ is the density of heat flow<br>rate at a surface in W/m <sup>2</sup> , $T_s$ is<br>surface temperature in K and $T_a$ the<br>operative temperature in the<br>environment seen by the surface in K.                     |                |          |               |
|                                                    | <b>Convective surface film</b><br><b>coefficient for heat transfer</b> –<br>Defined by the following relation:<br>$q_c = h_c \cdot (T_s - T_a)$                                                                                  | h <sub>c</sub> | W/(m²·K) |               |
|                                                    | where $q_c$ is the density of convective<br>heat flow rate at the surface in W/m <sup>2</sup> ,<br>$T_s$ is the surface temperature in K and<br>$T_a$ is the temperature of a well<br>chosen spot in the ambient air in K.       |                |          |               |
|                                                    | <b>Radiative surface film coefficient</b><br><b>for heat transfer</b> – Defined by the<br>following relation:<br>$q_r = h_r \cdot (T_s - T_r)$                                                                                   | h <sub>r</sub> | W/(m²·K) |               |
|                                                    | where $q_r$ is the density of radiant<br>heat flow rate at the surface in W/m <sup>2</sup> ,<br>$T_s$ the is surface temperature in K and<br>$T_r$ the radiant temperature of the<br>environment as seen by the surface<br>in K. |                |          |               |
| Surface film<br>resistance for<br>vapour diffusion | The reciprocal of the surface film coefficient for vapour diffusion, $\beta_{\rho}$ .                                                                                                                                            | Zs             | m/s      | [2], [7], [8] |
| Surface film<br>resistance for heat<br>transfer    | The reciprocal of the surface film coefficient for heat transfer.                                                                                                                                                                | Rs             | m²·K/W   | [1], [2]      |
| Temperature                                        | Potential that determines heat<br>transfer. There are two scales for<br>temperature in the SI-system:                                                                                                                            |                |          | [1], [2], [8] |
|                                                    | <b>Empirical: Degree Celsius</b> , where 0 °C is the triple point of water and 100 °C is the boiling point of water at 1 atmosphere.                                                                                             | θ<br>t         | ٥C       |               |
|                                                    | <b>Thermodynamic: Kelvin</b> , where 0<br>K is the absolute zero and 273.15 K is<br>the triple point of water.<br>$T = \theta + 273.15$                                                                                          | Τ              | К        |               |



## CIB W040 Heat and Moisture Transfer in Buildings

| PARAMETER /<br>CONCEPT | DEFINITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SYMBOL(S)       | UNIT(S) | REFERENCE |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|-----------|
|                        | <b>Operative temperature</b> –<br>Temperature of an imaginary<br>environment in which, with equal wall<br>(enclosing areas) and ambient air<br>temperatures and some standard rate<br>of air motion, the human body would<br>lose the same amount of heat by<br>radiation and convection as it would<br>in some actual environment at<br>unequal wall and air temperatures<br>and for some other rate of air motion.<br>Operative temperature can be<br>calculated using the following<br>simplification:<br>$\theta_{op} = \frac{\theta_i + \theta_r}{2}$<br>where $\theta_i$ is interior air temperature in<br>°C and $\theta_r$ is radiant temperature in<br>°C. | θ <sub>ορ</sub> | ٥C      | [4]       |
| Temperature factor     | Difference between the temperature<br>of a surface indoors, $\theta_{si}$ in °C, and the<br>external air temperature, $\theta_e$ in °C,<br>divided by the difference between the<br>air temperature indoors, $\theta_i$ in °C, and<br>the air temperature outdoors, $\theta_e$ in<br>°C:<br>$f_{si} = \frac{\theta_{si} - \theta_e}{\theta_i - \theta_e}$                                                                                                                                                                                                                                                                                                           | f <sub>si</sub> | -       | [3], [8]  |
| Thermal bridges        | Refers to spots on the envelope<br>where 2-D or 3-D heat transfer exists<br>and causes loss or gain different from<br>that in adjacent locations. There are<br>two types of thermal bridges:<br><b>Geometric thermal bridges</b> – A<br>consequence of the three dimensional<br>character of a building: angles and<br>corners, inner and outer reveals<br>around windows, etc.<br><b>Structural thermal bridges</b> – A<br>consequence of construction details,<br>for example for reasons of structural<br>integrity: steel or concrete girders<br>and columns penetrating the<br>envelope, discontinuities in the<br>thermal insulation, etc.                    |                 |         | [7], [8]  |



| PARAMETER /<br>CONCEPT  | DEFINITION                                                                                                                                                                                                                                                                                         | SYMBOL(S) | UNIT(S)                        | REFERENCE                   |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------|-----------------------------|
| Thermal<br>conductance  | Thermal conductance is the heat flux through a flat body induced by a unit temperature difference between the surfaces of that body. It is the reciprocal of thermal resistance from surface to surface under conditions of uniform density of heat flow rate:<br>$\mathcal{K} = \frac{1}{R}$      | K         | W/(m²·K)                       | [1], [7], [9]               |
|                         | <b>Linear thermal conductance</b> –<br>Reciprocal of linear thermal<br>resistance from surface to surface<br>under conditions of uniform density<br>of linear heat flow rate:<br>$K_{I} = \frac{1}{R_{I}}$                                                                                         | K,        | W/(m∙K)                        | [9]                         |
| Thermal<br>conductivity | The thermal conductivity of a material<br>is the density of heat flow rate per<br>one unit of the thermal gradient in<br>the direction of the flow. That<br>definition stems from Fourier's law for<br>heat conduction:<br>$\vec{q} = -\lambda \cdot grad T$                                       | λ         | W/(m∙K)                        | [1], [2],<br>[9], [16]      |
|                         | Thermal conductivity is a scalar for<br>isotropic materials and a tensor for<br>anisotropic materials. Its value<br>depends on density, temperature,<br>moisture content and sometimes age<br>(as an indicator of changes in the<br>material structure or composition) of<br>the layer considered. |           |                                |                             |
| Thermal diffusivity     | The ratio between the thermal conductivity in W/(m·K) and the volumetric heat capacity of a material in J/(m <sup>3</sup> ·K):<br>$a = \frac{\lambda}{\rho_0 \cdot c}$                                                                                                                             | а         | m²/s                           | [1], [7], [8],<br>[9], [16] |
|                         | The thermal diffusivity stands for how fast temperature changes are propagating in a material.                                                                                                                                                                                                     |           |                                |                             |
| Thermal effusivity      | Square root of the product of thermal conductivity in $W/(m\cdot K)$ and volumetric heat capacity in $J/(m^3\cdot K)$ :                                                                                                                                                                            | b         | J/(m²⋅s¹/²⋅K)<br>W⋅s¹/²/(m²⋅K) | [7], [9]                    |



| PARAMETER /<br>CONCEPT                       | DEFINITION                                                                                                                                                                                                                                                          | SYMBOL(S)      | UNIT(S)         | REFERENCE                   |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|-----------------------------|
|                                              | $b = \sqrt{\lambda \cdot \rho_0 \cdot c}$                                                                                                                                                                                                                           |                |                 |                             |
|                                              | Thermal effusivity reflects the ability of a material to absorb heat.                                                                                                                                                                                               |                |                 |                             |
| Thermal expansion coefficient                | The thermal expansion coefficient is a<br>thermodynamic property of a<br>material. It relates the change in<br>temperature to the change in a<br>material's linear dimensions. It is the<br>fractional change in length per<br>degree of temperature change.        | α              | K <sup>-1</sup> | [2], [8]                    |
| Thermal moisture<br>diffusion<br>coefficient | The thermal moisture diffusion<br>coefficient is the density of moisture<br>flow rate, in kg/(m <sup>2</sup> ·s), per one unit<br>of the temperature gradient, in K.<br>That definition stems from the<br>following equation:<br>$\vec{g} = -D_{\tau} \cdot grad T$ | $D_T$          | kg/(m·s·K)      | [15]                        |
|                                              | (at uniform moisture content).                                                                                                                                                                                                                                      |                |                 |                             |
| Thermal resistance                           | Temperature difference in K divided<br>by the density of heat flow rate, in<br>W/m <sup>2</sup> , in the steady state condition:<br>$R = \frac{T_1 - T_2}{q}$ For a plane layer for which the<br>concept of thermal conductivity                                    | R              | m²·K/W          | [1], [7], [8],<br>[9], [16] |
|                                              | applies and when this property is<br>constant or linear with temperature:<br>$R = \frac{d}{\lambda}$ where <i>d</i> is the thickness of the layer<br>in m.                                                                                                          |                |                 |                             |
|                                              | <b>Linear thermal resistance</b> –<br>Temperature difference in K divided<br>by the linear density of heat flow<br>rate, in W/m, in the steady state<br>condition:<br>$R_{I} = \frac{T_{1} - T_{2}}{q_{I}}$                                                         | R <sub>I</sub> | m∙K/W           | [9]                         |
| Thermal<br>transmittance                     | Density of heat flow rate across a flat<br>assembly, in W/m <sup>2</sup> , at a temperature<br>difference of 1 K between the<br>surroundings of both surfaces.                                                                                                      | U              | W/(m²·K)        | [1], [8],<br>[9], [16]      |



| PARAMETER /<br>CONCEPT             | DEFINITION                                                                                                                                                                                                                                  | SYMBOL(S)                               | UNIT(S)  | REFERENCE                   |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|-----------------------------|
|                                    | $U = \frac{\Phi}{(T_1 - T_2) \cdot A}$<br>The reciprocal of the thermal transmittance is the total thermal resistance between the surroundings on each side of the assembly.                                                                |                                         |          |                             |
|                                    | <b>Linear thermal transmittance</b> –<br>Density of linear heat flow rate, in<br>W/m, at a temperature difference of<br>1 K between the surroundings on<br>each side of the assembly.<br>$U_{I} = \frac{\Phi}{(T_{1} - T_{2}) \cdot I}$     | $egin{array}{c} U_l \ \psi \end{array}$ | W/(m∙K)  | [8], [9],<br>[13], [16]     |
|                                    | $(r_1 - r_2) \cdot r$<br>The reciprocal of the linear thermal transmittance is the total linear thermal resistance between the surroundings on each side of the assembly.                                                                   |                                         |          |                             |
| Total pressure                     | According to Dalton's law, the total<br>pressure is the sum of partial<br>pressures of different species in a<br>mixture.                                                                                                                   | Р                                       | Ра       | [8], [16]                   |
| Transmittance                      | Fraction of the incident radiant<br>energy that is transmitted by a<br>surface:<br>$\tau = \frac{\Phi_t}{\Phi_i}$ where $\Phi_i$ is the radiant heat flow rate                                                                              | τ                                       | -        | [1], [3], [7],<br>[8], [11] |
|                                    | incident in W and $\Phi_t$ is the radiant heat flow rate transmitted in W.                                                                                                                                                                  |                                         |          |                             |
| Vapour<br>barrier/retarder         | Material layer whose main function is<br>to prevent/retard harmful diffusion of<br>water vapour into or within a building<br>component. The vapour<br>barrier/retarder can also function as<br>an air barrier/retarder.                     |                                         |          |                             |
| Volume coefficient<br>of heat loss | Heat flow rate from a building, in W,<br>divided by its volume, in m <sup>3</sup> , and the<br>difference in loss-weighted mean<br>temperature inside and the mean<br>temperature outside, in K:<br>$F_{v} = \frac{\Phi}{V \cdot \Delta T}$ | F <sub>v</sub>                          | W/(m³·K) | [9]                         |



### Heat and Moisture Transfer in Buildings

| PARAMETER /<br>CONCEPT                                         | DEFINITION                                                                                                                                                                                                             | SYMBOL(S)                | UNIT(S)            | REFERENCE              |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|------------------------|
| Volumetric thermal<br>expansion<br>coefficient                 | The volumetric coefficient of thermal expansion is given by:<br>$\beta = \frac{1}{V} \left( \frac{\partial V}{\partial T} \right)_{\rho}$                                                                              | β                        | K <sup>-1</sup>    | [8]                    |
| Water penetration coefficient                                  | Defined by the following relation:<br>$x = B_w \cdot \sqrt{t}$                                                                                                                                                         | B <sub>w</sub>           | m/s <sup>1/2</sup> | [2], [7],<br>[15]      |
| _                                                              | where <i>x</i> is the penetration depth of the water front during capillary suction from a water surface in m and <i>t</i> is the time in s.                                                                           |                          |                    |                        |
| Water vapour                                                   | Moisture in the gaseous phase.                                                                                                                                                                                         |                          |                    | [15]                   |
| Water vapour<br>diffusion                                      | Defined by the following relation:<br>$\vec{g}_v = -D_a \cdot grad v$                                                                                                                                                  | Da                       | m²/s               | [15]                   |
| coefficient in the<br>air                                      | where $\vec{g}_{_{\scriptscriptstyle V}}$ is the vector density of                                                                                                                                                     |                          |                    |                        |
|                                                                | water vapour flow rate in air in kg/( $m^2$ ·s) and v is the vapour concentration in the air in kg/ $m^3$ .                                                                                                            |                          |                    |                        |
| Water vapour<br>diffusion<br>equivalent air layer<br>thickness | Thickness of a motionless air layer<br>which has the same water vapour<br>diffusion resistance as the material<br>layer:                                                                                               | S <sub>d</sub>           | m                  | [3], [15]              |
|                                                                | $S_d = \mu \cdot d$                                                                                                                                                                                                    |                          |                    |                        |
|                                                                | where $\mu$ is the water vapour<br>resistance factor and $d$ is the<br>thickness of the layer of material in<br>m.                                                                                                     |                          |                    |                        |
| Water vapour flow                                              | The time rate of water vapour                                                                                                                                                                                          | $G_{\nu}$                | kg/s               | [1]                    |
| rate                                                           | transfer. Water vapour flow rate is a scalar.                                                                                                                                                                          | $M_{\nu}$                |                    |                        |
|                                                                | <b>Density of water vapour flow</b><br><b>rate</b> – Defined as the mass of vapour<br>transported per unit of time through<br>a unit of area perpendicular to the<br>flow direction.                                   | ${\cal G}_{ u} \ m_{ u}$ | kg/(m²⋅s)          | [3], [16]              |
| Water vapour<br>partial pressure                               | Part of the total atmospheric pressure exerted by water vapour.                                                                                                                                                        | $p_{\nu}$                | Ра                 | [3], [5],<br>[8], [15] |
|                                                                | <b>Vapour saturation pressure</b> –<br>Pressure resulting from the presence<br>of the maximum possible water<br>vapour content in air. Vapour<br>saturation pressure is a function of<br>temperature. In pores it also | p <sub>v,sat</sub>       | Ра                 | [7], [8]               |



| PARAMETER /<br>CONCEPT       | DEFINITION                                                                                                                                                                                                                                                                    | SYMBOL(S)      | UNIT(S)      | REFERENCE  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|------------|
|                              | becomes a function of the equivalent pore diameter.                                                                                                                                                                                                                           |                |              |            |
| Water vapour<br>permeability | Density of vapour flow rate per one<br>unit of the vapour concentration<br>gradient ( $\delta_{\nu}$ ) or vapour pressure<br>gradient ( $\delta_{\rho}$ ) in the direction of the<br>flow.                                                                                    |                |              | [15], [16] |
|                              | The two properties are defined by the following equations:                                                                                                                                                                                                                    |                |              |            |
|                              | a) permeability with regard to<br>humidity by volume<br>$\vec{g}_v = -\delta_v \cdot grad v$                                                                                                                                                                                  | $\delta_{ u}$  | m²/s         |            |
|                              | b) permeability with regard to partial water vapour pressure<br>$\vec{g}_{v} = -\delta_{p} \cdot grad p_{v}$                                                                                                                                                                  | $\delta_{ ho}$ | kg/(m·s·Pa)  |            |
|                              | where $\vec{g}_{\nu}$ is the vector density of<br>water vapour flow rate in kg/(m <sup>2</sup> ·s), $\nu$<br>is the water vapour concentration in<br>kg/m <sup>3</sup> and $p_{\nu}$ is the water vapour<br>partial pressure in the pores in Pa.                              |                |              |            |
| Water vapour                 | Defined by the following relation:                                                                                                                                                                                                                                            | $\delta_{p,a}$ | kg/(m·s·Pa)  | [15], [16] |
| permeability in the          | $\vec{g}_{v} = -\delta_{p,a} \cdot grad p_{v}$                                                                                                                                                                                                                                |                |              |            |
| air                          | where $\vec{g}_{v}$ is the vector density of                                                                                                                                                                                                                                  |                |              |            |
|                              | water vapour flow rate in air in kg/(m <sup>2</sup> ·s) and $p_{\nu}$ is the water vapour partial pressure in the air in Pa.                                                                                                                                                  |                |              |            |
| Water vapour<br>permeance    | Density of vapour flow rate across a layer per one unit of the vapour concentration or vapour pressure difference across the two parallel bounding surfaces under steady state conditions.<br>The quantities $W_{\nu}$ and $W_{\rho}$ are defined by the following relations: |                |              | [15], [16] |
|                              | a) permeance with regard to water<br>vapour concentration<br>$g_{\nu} = W_{\nu} \cdot (\nu_1 - \nu_2)$                                                                                                                                                                        | $W_{v}$        | m/s          |            |
|                              | b) permeance with regard to water<br>vapour partial pressures<br>$g_{v} = W_{\rho} \cdot (\rho_{v,1} - \rho_{v,2})$                                                                                                                                                           | $W_p$          | kg/(m²·s·Pa) |            |
|                              | where $g_v$ is the density of water<br>vapour flow rate perpendicular to the                                                                                                                                                                                                  |                |              |            |



## CIB W040 Heat and Moisture Transfer in Buildings

| PARAMETER /                       | DEFINITION                                                                                                                                                                                                                                     | SYMBOL(S) | UNIT(S)     | REFERENCE               |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|-------------------------|
| CONCEPT                           |                                                                                                                                                                                                                                                |           |             |                         |
|                                   | surfaces of the layer in kg/(m <sup>2</sup> ·s), $v_1$<br>and $v_2$ are the vapour concentrations<br>in kg/m <sup>3</sup> and $p_{\nu,1}$ , $p_{\nu,2}$ are the water<br>vapour partial pressures at both sides<br>of the layer in Pa.         |           |             |                         |
| Water vapour                      | Inverse of water vapour permeance.                                                                                                                                                                                                             |           |             | [15], [16]              |
| resistance                        | <ul> <li>a) water vapour resistance with<br/>regard to vapour concentration</li> </ul>                                                                                                                                                         | $Z_{\nu}$ | s/m         |                         |
|                                   | $Z_{\nu} = \frac{1}{W_{\nu}};  g_{\nu} = \frac{v_1 - v_2}{Z_{\nu}}$                                                                                                                                                                            |           |             |                         |
|                                   | b) water vapour resistance with<br>regard to water vapour partial<br>pressure                                                                                                                                                                  | $Z_{ ho}$ | m²·s·Pa /kg |                         |
|                                   | $Z_{\rho} = \frac{1}{W_{\rho}};  g_{\nu} = \frac{p_{\nu,1} - p_{\nu,2}}{Z_{\rho}}$                                                                                                                                                             |           |             |                         |
| Water vapour<br>resistance factor | Water vapour diffusion coefficient in air ( $D_a$ in m <sup>2</sup> /s) divided by the water vapour permeability ( $\delta_{\nu}$ in m <sup>2</sup> /s) of a porous material:                                                                  | μ         | -           | [2], [8],<br>[15], [16] |
|                                   | $\mu = \frac{D_a}{\delta_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                                                                                |           |             |                         |
|                                   | It can also be defined as:                                                                                                                                                                                                                     |           |             |                         |
|                                   | $\mu = \frac{\delta_{\rho,a}}{\delta_{\rho}}$                                                                                                                                                                                                  |           |             |                         |
|                                   | where $\delta_{p,a}$ is the water vapour<br>permeability in the air in kg/(m·s·Pa)<br>and $\delta_p$ is the water vapour<br>permeability with regard to partial<br>water vapour pressure in kg/(m·s·Pa).<br>The water vapour resistance factor |           |             |                         |
|                                   | indicates how much larger the<br>resistance of a porous material is<br>against diffusion compared to an<br>equally thick layer of stagnant air at a<br>same temperature.                                                                       |           |             |                         |
| Water vapour<br>transfer          | The water vapour flow induced by a partial vapour concentration/water vapour pressure difference or by moving humid air.                                                                                                                       |           |             | [1]                     |



# **CIB W040**

### Heat and Moisture Transfer in Buildings

| PARAMETER /<br>CONCEPT | DEFINITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SYMBOL(S)        | UNIT(S)                        | REFERENCE |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------|-----------|
| Wind-driven rain       | Rain falling on a vertical surface.<br><b>Wind-driven rain intensity</b> – It is<br>the component of the rain intensity<br>vector causing rain flux through a<br>vertical plane. WDR intensity can be<br>expressed as:<br>$R_{wdr} = R_h \frac{U}{V_t}$<br>where $R_h$ is the intensity of rainfall<br>falling through a horizontal plane in<br>m <sup>3</sup> /m <sup>2</sup> , <i>U</i> is the wind speed in m/s<br>and $V_t$ is the raindrop terminal<br>velocity of fall in m/s. | R <sub>wdr</sub> | m³/(m²⋅s)                      | [17]      |
|                        | Wind-driven rain amount                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $S_{wdr}$        | m <sup>3</sup> /m <sup>2</sup> |           |
|                        | Wind-driven rain coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                         | α                | s/m                            |           |
|                        | Free wind-driven rain coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                    | k                | s/m                            |           |



# CIB W040 Heat and Moisture Transfer in Buildings

# **CHAPTER 4**

REFERENCES



- [1] AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR-CONDITIONING ASHRAE (2009) *ASHRAE Handbook fundamentals*. ASHRAE, Atlanta, USA.
- [2] CIB W040 (1975) Quantities, symbols and units for the description of heat and moisture transfer in buildings: Conversion factors. IBBC-TNP, Report No. BI-75-59/03.8.12. CIB, Rijswijk, Netherlands.
- [3] EUROPEAN COMMITTEE FOR STANDARDIZATION CEN (2001) EN ISO 13788:2001 Hygrothermal performance of building components and building elements – Internal surface temperature to avoid critical surface humidity and interstitial condensation – Calculation methods. CEN, Brussels, Belgium.
- [4] EUROPEAN COMMITTEE FOR STANDARDIZATION CEN (2005) EN ISO 7730:2005 Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. CEN, Brussels, Belgium.
- [5] EUROPEAN COMMITTEE FOR STANDARDIZATION CEN (2005) *EN ISO 15927:2005 Hygrothermal performance of buildings – Calculation and presentation of climatic data.* CEN, Brussels, Belgium.
- [6] EUROPEAN COMMITTEE FOR STANDARDIZATION CEN (2007) *EN 15026:2007 Hygrothermal performance of building components and building elements – Assessment of moisture transfer by numerical simulation.* CEN, Brussels, Belgium.
- [7] HAGENTOFT, C.-E. (2001) Introduction to building physics. Studentlitteratur, Lund, Sweden.
- [8] HENS, H (2007) Building Physics Heat, air and moisture. Fundamentals and engineering methods with examples and exercises. Ernst & Sohn (A John Wiley Company), Berlin, Germany.
- [9] INTERNATIONAL ORGANIZATION FOR STANDARIZATION ISO (1987) *ISO 7345:1987 Thermal insulation Physical quantities and definitions*. ISO, Geneva, Switzerland.
- [10] INTERNATIONAL ORGANIZATION FOR STANDARIZATION ISO (1987) ISO 9251:1987 Thermal insulation – Heat transfer conditions and properties of materials – Vocabulary. ISO, Geneva, Switzerland.
- [11] INTERNATIONAL ORGANIZATION FOR STANDARIZATION ISO (1989) ISO 9288:1989 Thermal insulation – Heat transfer by radiation – Physical quantities and definitions. ISO, Geneva, Switzerland.



- [12] INTERNATIONAL ORGANIZATION FOR STANDARIZATION ISO (1996) *ISO 10051:1996 Thermal insulation – Moisture effects on heat transfer – Determination of thermal transmissivity of a moist material.* ISO, Geneva, Switzerland.
- [13] INTERNATIONAL ORGANIZATION FOR STANDARIZATION ISO (2005) *ISO/DIS 14683:2005* "*Thermal bridges in building construction – Linear thermal transmittance – Simplified methods and default values*". ISO, Geneva, Switzerland.
- [14] INTERNATIONAL ORGANIZATION FOR STANDARIZATION ISO (2007) *ISO 10456:2007 Building materials and products – Hygrothermal properties – Tabulated design values and procedures for determining declared and design thermal values.* ISO, Geneva, Switzerland.
- [15] INTERNATIONAL ORGANIZATION FOR STANDARIZATION ISO (2007) ISO 9346:2007 Hygrothermal performance of buildings and building materials – Physical quantities for mass transfer – Vocabulary. ISO, Geneva, Switzerland.
- [16] KUMARAN, M. (1996) Heat, air and moisture transfer through new and retrofitted insulated envelope parts. Task 3 – Material properties. International Energy Agency (IEA) ANNEX 24 – Final Report. K.U.-Leuven, Leuven, Belgium.
- [17] ASTM INTERNATIONAL (2001) *ASTM Manual 40: Moisture Analysis and Condensation Control in Building Envelopes*, Editor: Treschsel, H., USA.

Building Physics Laboratory – LFC Porto University, Faculty of Engineering Rua Dr. Roberto Frias, 4200-465 Porto, Portugal Phone: +351 225 081 478 E-mail: lfc-scc@fe.up.pt URL: http://www.fe.up.pt/~lfc-scc





# **CIB** Commissions

Members can choose to participate in a selection of over 50 Commissions in the areas of Building Techniques, Design of Building and the Built Environment, and Building Process.

Examples of CIB Commissions are:

W014 Fire Safety

W040 Heat and Moisture Transfer in Buildings

- W062 Water Supply and Drainage
- W116 Smart and Sustainable Built Environments

# **CIB** Publications

International collaborative projects result in the publication of: conference proceedings, state of the art reports, best practice presentations, practitioners guidelines, pre-standardization documents, R&D Roadmaps etc.



Examples of recent CIB Publications are:

- Proceedings of the 38th Int. Symposium on Water Supply and Drainage for Building
- Construction Waste Reduction around the World
- Heat, Air and Moisture Transfer Terminology Parameters and Concepts

#### Membership Fees

Annual Fees depend on the type of Membership (Full, Asssociate or Individual) and on the type and size of the organization.

#### Fees in 2013:

Full member  $\in$  12378 or  $\in$  8252 or  $\in$  2839

Associate member € 1426

Individual member € 283

Discounts of 25% or 50% are offered to Members in countries with a GNIpc of less then USA \$7000 or \$1000 respectively.

# www.cibworld.nl

**CIB General Secretariat** Kruisplein 25-G 3014 DB Rotterdam E-mail: secretariat@cibworld.nl www.cibworld.nl

CIB Publication 369 / ISBN 978-90-6363-070-6